

DHA Analyzer Family

 Optimized Solutions for Detailed Hydrocarbon Analysis

The DHA Analyzer is a complete high resolution gas chromatography solution for the analysis of hydrocarbons in petroleum streams. It is capable of performing all of the standard methods including the analysis of light petroleum streams and crude oil light end.

Key Benefits include:

Compliant with all industry standard methods

Be confident using Scion's DHA Analyzers, which are configured in accordance with all the established standard methods including ASTM D6729, D6730, D6733, D5134, D6623, IP 344/DHA "Front End" and "Fast DHA"

Complete and fully integrated solution

DHA Analyzers come complete with everything you need to be up and running quickly.

Powerful and easy-to-use analyzer

With relatively little training, operators can generate outstanding analysis results day after day.

Save time

Easily generate reports with a few mouse clicks and reduce analysis time using "Fast DHA," increasing lab productivity.

Single vendor solution

Scion's GC analyzers are built and tested at Scion's factory, as well as installed and performance-verified on-site by Scion trained and certified engineers. Rest assured that our analyzers can meet or exceed your needs throughout the instrument's lifetime.

DHA Analyzer Family

Detailed hydrocarbon analysis is often the preferred technique to fully characterize petroleum streams. The technique is based on the identification of individual components using high performance, high resolution capillary gas chromatography.

Software Ensures Accurate Identification

To successfully apply gas chromatography to detailed hydrocarbon analysis (DHA) the analyzer must be able to correctly identify a large number of components (many eluting very closely to one another) in a complex chromatogram. The identification is based on a comparison of their individual retention index values to those in a pre-established database. Therefore, it is extremely important that the analyzer functions in a highly repeatable manner.

Because the concentration of some of the individual components can vary considerably from stream to stream, the retention times for those peaks can shift slightly. This "shift" can lead to component misidentification, particularly with peaks that elute extremely close together or those that may partially co-elute. Scion's based DHA software includes a unique Peak Asymmetry Correction Algorithm to overcome this challenge. It accurately predicts the peak identity even if there is a large concentration change. This dramatically simplifies the operator's job because a single analysis method/ retention index database can be used for widely different streams.

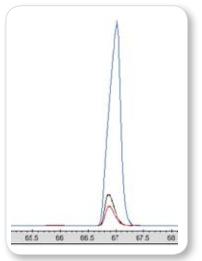


Figure 1: Column overloading has caused a retention time shift by almost 15 seconds. But with the unique peak asymmetry correction algorithm, the retention time is correctly predicted allowing the use of a single database

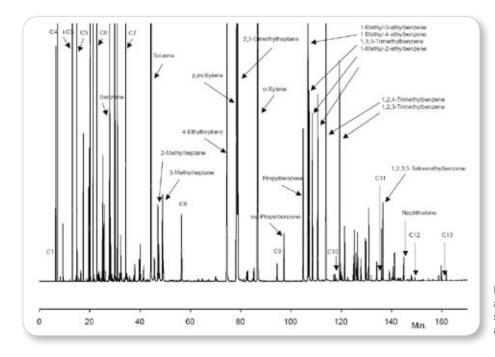


Figure 2: Detailed hydrocarbon analysis of a reformate sample showing aromatics identification according ASTM D6730

Standard Methods

Selecting Individual Peaks and Updating the Database

The DHA software includes a Peak Select and Database Update function to make identification of unknown peaks as straightforward as possible. The system automatically provides the operator with detailed comparative retention index information for each "unknown" peak including a highlighted "best fit" indicator, making it easy for the operator to determine the ID.

	Start Index	End Index	Window ± PJ	
1	0	300	15.0	Append
2	300	400	2.5	
	400	500	1.5	lanat 1
4	500	855	0.6	Insert
5	855	900	0.5	
6	900	9999	0.6	Bemove
	900	9999	0.6	Bemove

Figure 3: Assigning custom peak matching criteria is easy.

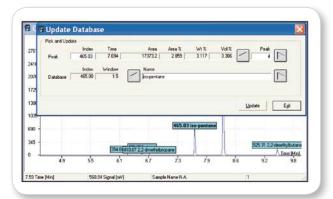


Figure 4: DHA provides an easy-to-use graphical means to select peaks and update the database

Integrated Standard Test Methods

Scion's DHA analyzers are compliant with the following methods:

- ASTM D6729
- ASTM D6623 ASTM D6730 "Fast" DHA
- ASTM D6733 IP 344 "Front end"
- ASTM D5134

ed 01 Nov 2007, 12 16 29 Dete Edited dType C FAST DH ASTM D5134 / COSE STM DE730 DHA ASTM DEE2 ASTM D6733 lobel Time Table | Detablese | Deak Matching | Calculation | Beport

Figure 5: Choosing a preferred standard method is easy with the DHA software

V DHA Report				
PIONA Weight Per	cent Report			
PIONA Volume Pe	rcent Report			
Physical Propertie	s Report			
bal Time Table Da	tabase Peak Mato	hing Calculation	Report	
		<u></u>	epon	

Figure 6: Choosing report options is simple

Although each DHA analyzer is configured, tested and certified at the factory for a standard method specified by the customer, the DHA software permits the operator to utilize any of the other popular standard methods as well. And, because of the outstanding performance and flexibility of the 450-GC and compass CDS software design, Scion is able to quickly modify the existing methods or add new ones if required as a result of the on-going "dynamic" industry standard processes.

Powerful Reporting is Built-in

Scion's DHA software includes several report options to accommodate the standard methods and/or to meet the customer's special needs. These include:

- Carbon number distribution
- PIONA report; (weight and volume percentage by hydrocarbon group)
- Physical properties calculations;
- specific gravity and molecular weight
- True distillation profile
- RON/MON specification

Reduce Sample Analysis Time With "Fast DHA"

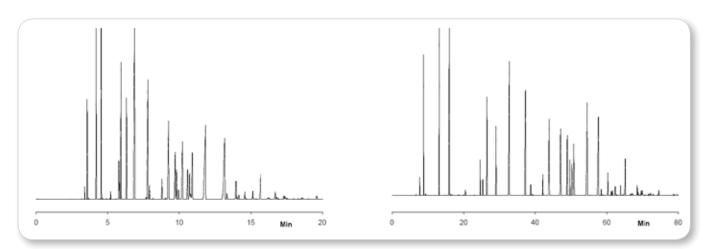


Figure 7: These chromatograms illustrate the decreased analysis time using the "Fast DHA" method. Chromatogram of a naphtha sample run on a 40 m X 0.10 mm X 0.2 μ m film CP-Sil PONA CB using the "Fast DHA" method (left). Chromatogram of the same sample, but run on a 100 m X 0.25 mm ID X 0.5 μ m film CP-Sil PONA CB column using standard method D6729 (right). Note reduced analysis time from ~80 minutes to ~20 minutes; almost four-fold.

DHA Analyzer Includes These Key Components

- Scion 456-GC high performance gas chromatograph equipped with:
 - Split/splitless capillary injection port
 High performance capillary column (dependent on specified method
 - on order) - Flame ionization detector (FID) - Full electronic flow control (EFC) of
- all gases
- State of the art backflush capabilities for the IP 344 "Front End" method
- CP-8400 or CP-8410 automatic liquid sampler
- compass CDS for system control, data acquisition and report generation
- compass CDS based DHA application software
- Computer/monitor
- Pre-loaded standard methods
- Factory test
- Reference chromatogram
- Reference standard for use in conducting on-site performance verification

41 21:01 30% 57.4 61.4 41 21:01 30% 57.4 61.4 46 21:42 40% 62.6 Net Hast 43.1 13% 46 21:42 40% 52.6 Group Meat 44.5 13% 50% 92.3 72.3 72.9 Group Meat 44.5 13% 60% 99.5 7 70% 111.9 115.0 Density 0.7000 g/ml 90% 140.5 132.0 Density 0.7000 g/ml 9% 9% 50% 140.5 </th <th>ate An estual ato File athod ethod ethod</th> <th></th> <th></th> <th>e Derevjastne Deizstoljov Derevliži semple Detsila</th> <th></th> <th>5 DATA</th> <th>006, 15 05</th> <th>цэр</th> <th></th> <th></th> <th></th>	ate An estual ato File athod ethod ethod			e Derevjastne Deizstoljov Derevliži semple Detsila		5 DATA	006, 15 05	цэр			
ID RT CRI Index Name Arm Arm Provide Partner 1 6.53 6.53 104.31 methane 181.3 6.34 1.35 6.32 1 6.53 6.53 104.31 methane 181.3 6.34 1.35 6.32 1 6.53 6.53 1.05.31 methane 1114.4 6.64 1.35 6.32 1 6.43 1.44 6.64 1.35 6.35<	etrem	ent	DHIA 3880								
10 0.01 10.04 None Area Parcent Parcent Parcent Parcent 1 4.53 6.51 100.1 mathem 188.2 6.31 5.32 6.32 2 6.75 6.52 100.2 mathem 124.45 6.64 5.84 5.39 3 3.33 7.32 20.20 parker 124.45 6.64 5.84 5.85 6 6.42 6.47 2.377 5.30 5.35 5.44 7 7.89 9.39 10.34 5.35 5.44 6.65 10 10.34 10.34 10.34 10.35 5.35 5.44 10 10.34 10.34 10.34 10.35 5.35 5.44 10 10.34 10.34 10.34 10.35 5.35 5.34 10 10.34 10.34 10.34 10.34 5.35 5.31 10 10.34 10.34 10.34 10.34 <th>et sili ad</th> <th>nychrocaet</th> <th>on Analysis</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	et sili ad	nychrocaet	on Analysis								
2 2.2 2.2 2.2.2 </th <th>10</th> <th>RT</th> <th>CRT Index</th> <th>Name</th> <th></th> <th>Area</th> <th></th> <th></th> <th></th> <th></th> <th></th>	10	RT	CRT Index	Name		Area					
2 3.23 2.22 2150.23 <td></td> <td></td> <td>4.13 100.13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			4.13 100.13								
4 4.0 5.0 5.0 2.0 5.0 <th5.0< th=""> <th5.0< th=""> <th5.0< th=""></th5.0<></th5.0<></th5.0<>	2	6.72	6.72 199.01	ethane		639.2	0.35	3,46	0.99		
6 0.1 <th0.1< th=""> <th0.1< th=""> <th0.1< th=""></th0.1<></th0.1<></th0.1<>			7.32 200.02	prepare							
2 0.00 0.	5	9.26	9.51 204.09	C unemotioned		482.0	0.27	1.26	0.36		
0 0.00 0.											
0 1031 1031 1031 0.01 0.01 1 1031 1031 0.01 0.01 0.01 0.01 1 1031 1031 0.01 0.01 0.01 0.01 1 1031 1031 0.01 0.01 0.01 0.01 1 1031 1031 0.01 0.01 0.01 0.01 0.01 1 1031 1031 0.01 0.01 0.01 0.01 0.01 0.01 1 1031 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 1031 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 1031 0.01 </td <td></td> <td>10.00</td> <td>30.09 431.79</td> <td>2.2-3 michaelensee</td> <td></td> <td>19.2</td> <td>9.05</td> <td>1.95</td> <td>0.01</td> <td></td> <td></td>		10.00	30.09 431.79	2.2-3 michaelensee		19.2	9.05	1.95	0.01		
10 13/2 1			10.81 412.89	0-2-builtine		379.4					
Liz Liz <thliz< th=""> <thliz< th=""> <thliz< th=""></thliz<></thliz<></thliz<>										1	
10 10.0											
15 15.3 15.3 15.3 15.3 15.3 15.4 1	12		14.75 495.90	2-methyl-1-bubete					0.82		
Line DHA 10 10.40 <td>15</td> <td>15.30</td> <td>15.30 505,41</td> <td>c5 unidentified</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	15	15.30	15.30 505,41	c5 unidentified							
Display DHA 10 16.3 10 16.4 10 16.4 11 16.4 12 16.4 13 16.4 14 16.4 15 16.4 16 16.4 17 16.4 18 16.4 19 16.4 10 16.4 10 <td></td> <td></td> <td>10.04 000.01</td> <td>-loging</td> <td></td> <td>1017.0</td> <td>3.61</td> <td>1.50</td> <td>4.35</td> <td>_</td> <td></td>			10.04 000.01	-loging		1017.0	3.61	1.50	4.35	_	
III.03 IIII.03 III.03 III.03 III.03 III.03 III.03 III.03 III.03	10	16.19	DHA								
Lill Dirke Manufacture accounting or Analysis Lill Dirke Sample Name Single Name Sample Name Sample Name Sample Name Sample Name Sample Name Desa File Dirac Sample Name Sample Name Desa File Dirac Dirac Sample Name Sample Name Dirac Sample Name Dirac Sample Name Sample Name Sample Name Sample Name Dirac Sample Name Dirac Sample Name Sample Name						ALC: N					
10 tries 10 tr			AUSIASIS	according to Ac	51M D6730 0	TRACK.					1
10 10/2 1		17.60									
International State Application Application State											
127 1997 Eva Frig UD-ALC inner E DaviAST 04397 E44 4730 1024424 EATA 5 20.00 Method Value distributionaria DAVID angle Aux/Methodriastm 05730.cha 2003 Eva Frig UD-ALC inner E DAVID angle Davi/Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle Davi/Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle Davi/Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle Davi/Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle Davi/Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle Davi/Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2004 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodriastm 05730.cha 2005 Eva Frig UD-ALC inner E DAVID angle David Methodrias						2			09.24	in 2006, 1	5:05:57
10 10 Method 20 Water 20 Water						STH D6730	EHA 673	# 30 1002492	4 DATA		
Description EMA 6730 13224524 20 - 0 Extrament EMA 6730 13224524 20 - 0 Extrament EMA 6730 13224524 20 - 0 Extrament EMA 5300 0 20 - 0 EMA 5300 0 EMA 5300 0 20 - 0 EMA 5300 0 EMA 5300 0 20 - 0 EMA 5300 0 EMA 5300 0 20 - 0 EMA 5300 0 EMA 5300 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 20 - 0 EMA 500 0 EMA 500 0 </td <td></td>											
20 21.4 20 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4			Description								
31 21:40 9 Physical Propertial Report 32 21:40 9 21:40 9 1 32 21:41 9 1 1 32 21:41 9 1 1 33 21:40 9 1 1 34 21:40 9 1 1 35 21:40 9 1 1 34 21:40 9 1 1 35 21:40 9 1 1 34 21:40 9 1 1 1 35 1 0 4:1,3 RCH Value 36 20:41 9 20:45 2 7:4 36 20:42 9 20:45 2:4 mm.H 37 20:4 1:5:3 Oristi Hiat 4:5:5 39:4 1:1:49 1:3:2:0 Oristi Hiat 4:5:5 39:5% 1:48:1 1:20:0 Oristi Hiat 0:7000			Instrument	2 DHA 30	000						
Vision TBP /C D86 *C Property 1 22.25 3 3 3 2 2.25 3 3 3 3 3 2.24 3 4 2.06 9 4 2.25 MON Value 85.2 4 4 2.26 2.75 MON Value 85.2 4 2.26 2.06 44.2 Property 96.3 4 2.26 2.06 49.2 Property 96.4 96.5 4 2.26 2.26 8.2 8.61 4.2 10.6			Physical Pr	operties Report							
10 10.24 20.35 YscOFF TBP *C D86 *C Property 10 20.46 20.46 20.46 20.46 89.2 99.2 10 20.46 20.46 99.2 99.2 99.2 10 20.46 30.4 99.2 99.2 99.2 10 20.46 30.4 99.2 99.2 99.2 10 10.4 40.0 PCDN Value 96.2 99.2 10 44.0 49.2 PCDN Value 96.2 99.2 10 44.0 49.2 PCDN Value 96.2 99.2 10 20.4 30.5 54.3 Reid Vaper P. 25.4 errs H 10 20.4 52.4 62.4 Ner Hazt 43.1 Mig 20.4 20.4 63.6 Ner Hazt 43.1 Mig 20.4 50.5 72.3 Outst Hazt 44.5 Mig 20.4 11.4 115.3 Outst Hazt 0.7300 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
10 10<			2.055	788.10	046.10			Bernard			
30 21.04 2.1.7 38P -42.0 27.5 MON Value 85.2 41 2.1.9 5% 1.0 44.0 PCP value 96.2 42 2.0.4 5% 1.0 44.0 PCP value 96.3 42 2.0.4 30.0 49.2 PCP value 96.3 40.4 43 2.0.4 30.6 39.2 PCP value 96.3 40.4 43 2.0.4 30.6 39.5 56.3 Paid Vaper P. 23.4 inve H 44 2.0.42 3016 32.5 61.4 40.4 30.4 inve H 46 20.42 4016 63.6 Net Heat 43.1 Mig 461 99.5 Oriciz Heat 46.5 Mig 30.7 30.6 11.9 32.0 4016 1.11.9 115.3 Gensity 0.7300 giml 30.7 30.6 140.1 30.7 30.6 32.0 30.7 30.6 30.7		23.30	19000	189.4	D80 -C			Propert	y.		
No. 27.5 MON Value 85.2 42 23.95 5% 10% 30.0 49.2 PGN Value 96.5 43 24.40 10% 30.0 49.2 PGN Value 96.5 43 24.40 20% 36.5 56.3 Reid Value 96.5 45 24.40 20% 37.4 61.4 Net Hazt 43.1 k3/2 46 26.42 20% 37.2.9 Grass Heat 46.5 k3/2 40% 26.42 115.0 Density 0.7000 g/ml 40% 148.2 140.5 132.9 Density 0.7000 g/ml		23.48									
xi 5xx0 10% 30.0 49.2 Functional Functional xi 5xx0 20% 36.5 56.3 Ped Vapor P. 23.4 enn H xi 2xx0 20% 36.5 56.3 Ped Vapor P. 23.4 enn H xi 2xx0 20% 36.5 56.3 Ped Vapor P. 23.4 enn H xi 2xx0 20% 63.6 Net Heat 43.1 k3/p xiii 20x2 40% 63.6 Net Heat 45.5 k3/p 40 60% 99.5 70% 11.9 135.8 OensRy 0.7000 g/ml 90% 148.5 132.8 95% 124.5 95% 0.7000 g/ml 90% 148.5 148.5 148.5 95% 0.7000 g/ml											
x1 24.7.1 2014 36.5 56.3 Reid Vaper P. 25.4 enn H x2 24.9 2015 57.4 61.4 Net Nazt 43.5 50.4 101.5 50.4 101.5 50.5 201.5 50.5 201.5 50.5 201.5 50.5 201.5 50.5 201.5 50.5 201.5 50.5 201.5 50.5 201.5 50.5 201.5 50.5 50.5 201.5 50.5	29 40	23.95					,	CON Value		96.1	
41 21-01 23-23 20-54 23-32 57.4 61.4 Net Halt 43.1 Ially Ially 40 50.5 72.3 Group Meat 46.5 Ially 60 50.5 72.3 Group Meat 46.5 Ially 60 50.5 72.3 Group Meat 46.5 Ially 60 50.5 70.5 Group Meat 46.5 Ially 60 50.5 111.9 115.0 Demsity 0.7000 g/ml 90.5 140.5 132.0 Demsity 0.7000 g/ml 90% 140.5 140.5 95% 152.0	29 40 41							Reid Vapor I	ρ.	25.4	nm Hg
ve 22.42 40% 63.6 Met Heat: 43.1 M3p 50% 72.3 72.9 Gross Heat: 46.5 M3p 60% 99.5 70% 111.9 135.0 Gens Neat 46.5 M3p 60% 140.5 132.0 Gens Neat 0.7000 g/m1 90% 148.2 148.5 95% 0.7000 g/m1	20 40 41 42 40										
50% 72.3 72.9 Gross Head: 46.5 klip 60% 99.5 70% 118.9 115.0 Dexs/ty 0.7300 g/ml 90% 144.5 l.122.9 Dexs/ty 0.7300 g/ml 90% 144.1 140.5 95% 142.0	20 40 42 40 44 40 44	24.91									
70% 1119 115.0 Density 0.7000 g/ml 00% 140.5 132.9 90% 140.1 140.5 95% 152.0	20 40 40 40 40 40 40 40 40 40 40 40 40 40	24.91 25-22			72.9		(Gross Heat		46.5	k0/p
90% 146.5 132.5 Dentry 0.500 g m 90% 146.5 140.5 95% 162.0	20 10 11 10 11 10 11 10	24.91 25-22	50%								
90% 148.5 95% 162.0	20 40 40 40 40 40 40 40 40 40 40 40 40 40	24.91 25-22	50% 60%	99.5	118.0			Sec. 1		0.7900	aled.
95% 162.0	20 10 11 10 11 10 11 10	24.91 25-22	50% 60% 70%	99.5 111.9				1.00.0			
2000 100 K 174 K	20 40 40 40 40 40 40 40 40 40 40 40 40 40	24.91 25-22	50% 60% 70% 90%	99.5 111.9 140.5	132.9		-	and a state			
1997 - 2003 - 1743	20 10 11 10 11 10 11 10	24.91 25-22	50% 60% 70% 90%	99.5 111.9 140.5 140.1	132.9			an sa			,
	20 40 40 40 40 40 40 40 40 40 40 40 40 40	24.91 25-22	50% 60% 70% 90%	99.5 111.9 140.5 140.1	132.9						,

Figure 8: Physical properties and detailed hydrocarbon report

Chemical Analysis Solutions

GC quadrupole mass spectrometers

The Scion MS delivers the performance you've come to expect from an industry leader in quadrupole innovation. It features an 1200 Da mass range, superior negative ion sensitivity, and unmatched robustness in its performance class. The Scion MS delivers femtogram sensitivity and a wide array of chromatographic and ionization configurations to uniquely match your needs - all in less than 72 cm. (28 in.) of linear bench space!

www.ScionInstruments.com

For research use only. Not for use in diagnostic procedures.

