Computer-Based Primary Visual Cortex Training Combined With LASIK for Treatment of Low Myopia

Erin D. Stahl, MD
Daniel S. Durrie, MD
Durrie Vision
Overland Park, KS

Disclosure

Dr. Stahl's spouse, Dr. Jason Stahl, is a consultant for Alcon, Bausch and Lomb, and AcuFocus

Dr. Durrie is a clinical investigator for:

- Alcon
- Allergan
- Wavefront Science
- NeuroVision
- High Performance Optics
- OcuSense
- QuestVision

- Visiometrics
- Tracey Technologies
- Bausch and Lomb
- IntraLase
- Refractec
- AcuFocus
- WaveTec

What is Neuro Vision?

- Computer based training program used to improve visual performance
- Based on principles of:
 - Neural plasticity
 - Lateral interactions
 - Perceptual learning
 - Gabor Patches

How Does NeuroVision Work?

Neural plasticity relates to the ability of the nervous system to adapt to changed conditions

Visual acuity improvement in adults with amblyopia has been reported ¹³

- After prolonged patching
- After the better eye's vision has been degraded by age related macular degeneration, cataract or trauma

Playing video games can improve a person's ability to perceive objects in a crowded space, reported in the January issue of *Psychological Science*

How Does NeuroVision Work?

Perceptual learning has been evidenced in a variety of visual tasks and was found to persist for years without further practice⁶⁻¹⁰

NeuroVision software enables perceptual learning by repetitive performance of controlled and specific visual tasks

How Does NeuroVision Work?

Neuronal Lateral Interactions

Individual neurons respond to:

- Precise location
- Orientation
- Spatial frequency

Neuronal Interactions:

• Result in excitation or suppression

Lateral Interactions¹⁻⁵

Gabor Patch

- Gabor Patches¹⁴ are widely used in the field of visual neuroscience to describe the shape of receptive fields of neurons in the primary visual cortex
- They represent the most effective stimulation¹⁵

Neurovision Treatment

- Software-based, interactive system tailored and continuously adaptive to individual visual abilities
- Probes specific neuronal interactions to induce improvement of CSF due to a reduction of noise and increase in signal strength
- Compensates for blurred inputs coming from the retina by enhancing neural processing

Customization

sent to Data Center

adjust to progress

Visual Perception Task

- The software measures the contrast threshold of a Gabor target with the presence of flankers
- The patient is exposed to two short displays in succession and the patient identifies which display contains three Gabors

Visual Perception Task – Example

Neuro Vision Treatment

Spatial Frequency

Local Orientation

Contrast

Global Orientation

Target-Flankers Separation

Target Displacement

US Study Design

 Purpose: To compare the combination of visual cortex training and LASIK (NeuroLASIK) with a "sham treatment" and LASIK on postoperative outcomes

Methods

- 98 eyes
- Prospective multicenter study
- All patients underwent LASIK with the Alcon
 LADARVision 4000 or the Wavelight Allegretto laser
- 1 month post-operatively all patients underwent computer based activities of either:
 - Treatment Group NeuroVision treatment
 - Control Group "Sham" treatment of non-visually stimulating video game activity

- Clinical Endpoints
 - Uncorrected distance acuity
 - 1 hour, 1 day, 1 month, 3 months
 - Contrast sensitivity testing
 - 3 month visit

 Acuity data after surgical treatment (prior to visual training exercises)

	Treatment	Control
20/20 or Better	31	30
Worse than 20/20	17	20

Results – Visual Acuity

• 3 month visit – after visual training, n=98

	Treatment	Control
UCVA Improvement (Snellen lines)	0.82	0.28

• 20/20 or better group, n=61

	Treatment	Control
UCVA Improvement (Snellen lines)	0.41	0.27

• Worse than 20/20 group n=37

	Treatment	Control	
UCVA Improvement (Snellen lines)	1.56	0.34	

Results – Contrast Sensitivity

• 3 month visit – after visual training, n=98

	Treatment	Control
CSF Improvement	79%	52%

• 20/20 or better group, n=61

	Treatment	Control
CSF Improvement	76%	56%

• Worse than 20/20 group n=37

	Treatment	Control
CSF Improvement	90%	47%

Visual Acuity Results – 3 months

Summary of Results

• Most significant improvement with NeuroVision treatment in eyes with worse than 20/20 vision after refractive surgery

 Patients tolerated the NeuroVision treatment activities and reported them easy to do

Conclusions

- NeuroVision treatments are a safe, effective and easy way to improve visual acuity and contrast sensitivity in post-refractive surgery eyes
- The treatment can enhance refractive surgery results, especially in patients with less than 20/20 results post-operatively
- We look forward to completing our data collection and presenting finalized results

References

- 1 Polat, U. Functional architecture of long-range perceptual interactions. *Spat Vis* 12, 143-62 (1999).
- 2 Polat, U., Mizobe, K., Pettet, M. W., Kasamatsu, T. & Norcia, A. M. Collinear stimuli regulate visual responses depending on cell's contrast threshold. *Nature* 391, 580-4 (1998).
- 3 Polat, U. & Sagi, D. Spatial interactions in human vision: from near to far via experience- dependent cascades of connections. *Proc Natl Acad Sci U S A* 91, 1206-9 (1994).
- 4 Polat, U. & Sagi, D. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments. *Vision Res* 33, 993-9 (1993).
- 5 Polat, U. & Sagi, D. The architecture of perceptual spatial interactions. Vision Res 34, 73-8 (1994).
- 6 Dosher, B. A. & Lu, Z. L. Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. *Proc Natl Acad Sci U S A* 95, 13988-93. (1998).
- 7 Dosher, B. A. & Lu, Z. L. Mechanisms of perceptual learning. Vision Res 39, 3197-221. (1999).
- 8 Sagi, D. & Tanne, D. Perceptual learning: learning to see. Curr Opin Neurobiol 4, 195-9 (1994).
- 9 Gilbert, C. D. Adult Cortical Dynamics. *Physiological Reviews* 78, 467-485 (1998).
- 10 Polat, U. & Sagi, D. in *Maturational Windows and Adult Cortical Plasticity* (eds. Julesz, B. & Kovâcs, I.) 1-15 (Addison-Wesley, 1995).
- 11 Gabor (1946), Theory of Communication. Journal of the Institute of Electrical Engineers, London, 93, 429-457).
- 12 Daugman. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Res 1980; 20:847-56.
- 13 Polat U, Ma-Naim T, Belkin M, Sagi D. Improving vision in adult amblyopia by perceptual learning. Proc Natl Acad Sci U S A. 2004 Apr 27;101(17):6692-7. Epub 2004 Apr 19.