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Laminar and turbulent natural convection inside concentric spherical shells with isothermal cold and hot
boundaries is numerically investigated up to Rayleigh number values Ra 6 1012 and Pr = 0.71. The study
utilizes direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds averaged Navier–
Stokes (RANS) approaches for investigation of the laminar, transitional and fully developed turbulent
flow regimes, respectively. Three-dimensional flow patterns for slightly supercritical oscillatory flow
regime inside the shell, with internal/external diameter ratio equal to Di/Do = 0.714 are presented and
may be potentially useful for verification of the future linear stability analysis results. Particular attention
has been given to the complex, fully three-dimensional unsteady flows occurring in narrow shell geom-
etries characterized by 0.85 6 Di/Do 6 0.95. For this geometry considerable deviations in predicted heat
flux rate through the shell boundaries are observed when compared with existing heat transfer correla-
tions for the entire range of Ra numbers. The deviations tend to increase for transitional and fully turbu-
lent flows. A new correlation for the heat transfer rate is suggested for laminar and transitional flow
regimes.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Natural convection in confined geometries is of a great scientific
and engineering interest. Depending on the heat source, the flow
may be classified in three main groups: internal heat production,
heating an enclosure from below (Rayleigh–Bénard configuration),
heating an enclosure from its sides (e.g. differentially heated cavi-
ties). The second group has been used as a model problem for
investigation of the transition process from steady flow to the fully
developed turbulent regime through a rich sequence of bifurca-
tions that enable the study of different transition mechanisms
(see e.g. Clever and Busse [1], Busse [2], Gollub and Benson [3],
Curry et al. [4], Daniels and Ong [5]). The first and the third groups
are of importance in chemical and nuclear industries (see e.g. Ga-
bor et al. [6]) as well in the manufacture of bulk semiconductor
crystals Thevenard et al. [7].

Free convection flow inside spherical shells whose internal and
external boundaries are held at constant hot and cold temperature,
respectively is a stand alone and even more challenging configura-
tion, since it locally resembles both Rayleigh–Bénard convection
(at the top of the shell) and the differentially heated cavity (at
the near-equatorial region), while its bottom region is almost ther-
mally stable. Moreover, the instabilities and transition scenarios
depend sensitively on the hot-cold configuration of the shell
boundaries and on the internal to external diameter ratio / =
Di/Do. This ratio gives rise to different flow patterns starting from
‘‘modified kidney shaped eddy’’ for deep shells (/ 6 0.5) going to
‘‘interior expansion–contraction’’ for (0.5 6 / 6 0.65) then trans-
forming into ‘‘three dimensional spiral’’ flow for (0.65 6 / 6 0.85)
and finally ending up with ‘‘falling vortices’’ pattern for narrow
shells (0.85 6 /), as categorized by Powe et al.[8] for the shells
with internal hot and external cold boundaries. At the same time
‘‘dripping blob’’ unsteady phenomenon was observed by Futterer
et al. [9] inside the shells of large and moderate depths
(0.41 6 / 6 0.71) with cold internal and hot external boundaries
for Pr =1.

The analysis of narrow shells is a primary purpose of the pres-
ent work. Their consideration is motivated by a recent study of
Feldman et al. [10], where the performance of the scaled double-
walled Titan Montgolfiere operating at cryogenic temperatures
was investigated. Given Titan’s low gravity (one-seventh of Earth)
and cryogenic atmospheric temperatures (72K–94K), heated hot air
balloon is an attractive configuration for a robotic vehicle for
exploration of Titan, see e.g. Dorrington [11]. The double-walled Ti-
tan Montgolfiere was idealized by two massless rigid concentric
spheres characterized by tending to zero values of surface thick-
ness and thermal resistance, whereas the thin spherical shell plays
the role of an insulating gap. The study presents an accurate anal-
ysis of free convection flow inside stationary fully inflated balloon
and does not account for the possible variation of its shape (due to
the balloon vibrations) and forced convection effects (showing up
at possible balloon’s rotation, deployment or ascend/descend
phases). Despite the simplifications made, Feldman et al. [10]
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reported significant discrepancy between numerically and experi-
mentally determined lift forces compared to those obtained by
applying engineering correlations for the insulating gap.

In order to resolve these discrepancies, we perform simulations
of laminar, transitional and fully turbulent flow regimes for three
idealized narrow shells (/ = 0.85,0.9,0.95) with isothermal sur-
faces. To provide the most favorable comparison possible with
existing correlations uniform temperature of the balloon bound-
aries was assumed, which is plausible for the typical full scale Titan
Montgolfiere (Do = 15m) operating with 2kW heat source. In all
simulations the value of Pr number is set to Pr = 0.71, correspond-
ing to nitrogen which is a primary component of the Titan’s atmo-
sphere (and very similar to air at standard pressure and
temperature). The heat flux values obtained for laminar and tran-
sitional flows are then used to derive a new correlation based on
a power law. Utilizing both DNS and LES approaches for simulation
of fully developed turbulent flows inside the narrow shells is pro-
hibitively expensive in terms of available CPU and time resources.
Therefore the later is simulated by RANS with standard wall func-
tions for modeling the turbulence and wall effects respectively.

The study also extends a numerical data of Scurtu et al. [12] by
focussing on a slightly supercritical flow inside the shell with /
= 0.714. In that case the flow is dominated by a single most ener-
getic oscillating eigenvector whose absolute value is close to the
spatial distribution of the oscillation amplitudes averaged over a
number of periods, see e.g. Feldman and Gelfgat [13]. The reported
spatial distribution of the oscillation amplitudes for each velocity
component and temperature fields is an additional contribution
of the present work and may be useful for verification of the future
linear stability analysis results.
2. Computational details

Free convection flow inside a spherical shell with the internal
hot and external cold boundaries is considered. The gravity g is
constant and pointing along the negative y axis g ¼ �gŷ as shown
in Fig. 1(a). The problem is solved in Cartesian coordinates (x,y,z)
whose origin is located at the center of the shell. A pseudo-struc-
tured grid consisting of quadrilateral finite volumes was utilized
for a spatial discretization of the problem (see Fig. 1(b)). The grid
was generated by using commercial meshing software Gambit
2.4 [14]. The spherical shell was initially split into 8 equal volumes
and then each volume was separately meshed using the same grid
parameters. The generated grid was stretched towards the shell
Fig. 1. Physical and numerical model : (a) geometry and coord
boundaries allowing for an accurate resolution of temperature
and velocity boundary layers.
2.1. DNS approach

For small and moderate Ra numbers all the relevant (unsteady)
scales of motion can be directly resolved on the grid and the free
convection Newtonian incompressible flow inside the shell is gov-
erned by non-dimensional Navier–Stokes equations:

r � u ¼ 0 ð1Þ
@u
@t
þ ðu � rÞu ¼ �rpþ

ffiffiffiffiffiffi
Pr
Ra

r
r2uþ h~ey ð2Þ
@h
@t
þ ðu � rÞh ¼ 1ffiffiffiffiffiffiffiffiffiffi

PrRa
p r2h; ð3Þ

where u = (u,v,w), p, t, and h are the dimensionless velocity, pres-
sure, time and temperature, respectively, and ~ey is the unit vector
in y direction. Assuming constant flow properties and applying
Boussinesq approximation for temperature–velocity coupling the
equations are rendered dimensionless using the scales L = (Do� Di)/2,
U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbLDT

p
, t = L/U, and P = qU2 for length, velocity, time and pres-

sure, respectively. Here L is the shell depth, q is the mass density, g
is the gravitational acceleration, b is the isobaric coefficient of ther-
mal expansion, and DT = Th � Tc is the temperature difference be-
tween the hot and cold boundaries. The non-dimensional
temperature h is defined as h = (T � Tc)/DT. The Rayleigh and Prandtl
numbers are Ra ¼ gb

ma DTL3 and Pr = m/a, where m is the kinematic vis-
cosity, and a is the thermal diffusivity. The governing Eqs. (1)–(3)
were solved with a buoyantBoussinesqPimpleFoam solver which
is a part of an open source parallelized code openFoam developed
by Weller et al [15]. The simulations were performed on a standard
unix cluster and involved up to 256 cores running in parallel. PISO
algorithm [16] was used for pressure-velocity coupling and conser-
vative second order finite volume scheme was utilized for the spa-
tial discretization. The time derivative in the momentum and the
energy equations was approximated by the second order backward
finite difference. No slip boundary conditions were imposed to all
velocity components and a zero pressure gradient was assumed
normal to the all walls when solving Poisson’s equation.
inate system; (b) pseudo-structured computational grid.



Table 1
Average Nu numbers for steady laminar axi-symmetric flow.

/ Ra Present Ref. [27] Ref. [28] Ref. [29]

0.5 1.0 � 102 1.0217 1.001 1.000
1.0 � 103 1.104 1.0990 1.1310 1.1021
1.0 � 104 1.9665 1.9730 1.9495 1.9110
1.0 � 105 3.4012 3.4890 3.4648 3.3555

0.667 1.0 � 103 1.04825 1.001 1.00115
0.833 1.0 � 103 1.011 1.0 1.0018
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2.2. LES approach

Large eddy simulation is typically applied for the analysis of
transitional flows where the full resolution of all unsteady flow
scales by DNS becomes prohibitively expensive due to extremely
high computational demands. In LES the larger three-dimensional
unsteady turbulent motions are directly resolved, while the model-
ing is applied to simulate the effects of the smaller scale motions. A
dynamic one-equation eddy viscosity model which is a modifica-
tion of a statically-derived subgrid scale (SGS) kinetic energy mod-
el introduced by Yoshizawa and Horiouti [17] was used to simulate
fully 3-D turbulent convective flow:

@Ksgs

@t
þ ð�u � rÞKsgs �r � ðmeffrKsgsÞ ¼ 2msgsS2 � C�K

1:5
sgs=D: ð4Þ

where a simple top-hat filter with a size of Di ¼ ðViÞ1=3 was utilized.
Here S ¼ 1=2ð@Ui=@xj þ @Uj=@xiÞ is the filtered rate-of-stress tensor.
By implying the Boussinesq assumption the SGS kinematic viscosity
and kinetic energy are related trough msgs ¼ Ck

�D
ffiffiffiffiffiffiffiffiffi
KSGS
p

while the
effective kinematic viscosity meff is modeled as a sum of the molec-
ular kinematic viscosity m and the SGS kinematic viscosity msgs. Ck

and C� coefficients are dynamically calculated in accordance with
the openFoam formalism. Eq. (4) is simultaneously solved with Na-
vier Stokes Eqs. (1)–(3), whose diffusion terms are now account also
for the modeled SGS kinematic viscosity msgs.

2.3. RANS approach

The fully developed turbulent flow was modeled by utilizing
RANS approach based on k–� model with standard wall functions
[18] for modeling wall effects. An axi-symmetric flow was assumed
and simulated inside a 5� span spherical segment with ‘‘wedge’’
boundary conditions, in accordance with the openFoam formalism.
The later infers zero gradient of all flow properties normal to the
segment lateral boundaries. The system of time averaged Navier–
Stokes equations was simultaneously solved with two additional
transport equations for kinetic energy k and dissipation rate �.
The turbulent kinematic viscosity modeled as mt = Clk2/� (Cl is a
constant equal to 0.09) contributes to the viscous term of time
averaged momentum and energy equations. For more details about
k–� model implementation one should consult any CFD textbook
e.g. [16].

2.4. Calculation of wall heat fluxes

For DNS and LES simulations no wall functions were used for
the near wall effects modeling. For LES approach an accurate pre-
diction of the wall heat fluxes was achieved by verifying the
dimensionless distance from the wall y+ < 3 at all nearest to wall
grid cells for the entire range of Ra numbers. In this case the aver-
age Nusselt number functions was calculated by:

Nu ¼ 1
pDoDi

I
@h
@ĝ

dA; ð5Þ

where ĝ is the non-dimensional normal, Di and Do are non-dimen-
sional internal and external diameters respectively and dA is non-
dimensional infinitesimal area. At the same time RANS modeling
with a standard wall functions for the near wall effects treatment
imply the average Nusselt number to account also for the modeled
turbulent viscosity:

Nut ¼
1

pDoDi

I
@h
@ĝ

1þ mtPr
mPrt

� �
dA; ð6Þ

where the constant value of turbulent Prandtl number Prt = 0.9 was
chosen as the best approximation for the most of the boundary
layer [19].
3. Verification study

DNS results were extensively verified using existing benchmark
data for steady and slightly supercritical flows. Unfortunately,
there is a lack of experimental and numerical data available for
transitional fully 3-D natural convection flows with Pr = 0.71 inside
narrow spherical shells. 3-D DNS analysis was performed in past
for / = 0.714 and Ra 6 105 values [12], while the experimental re-
sults are either related to thicker shells [20] or Ra 6 107 [21]. The
Nusselt number measurements for confined turbulent convection
have been recently extended to up to Ra = 1015 by conducting
experiments in pressurized helium, air and nitrogen [22,23] and
even up to Ra = 1017 by using cryogenic helium gas inside a cylin-
drical enclosure [24,25]. However all of them are related to a Ray-
leigh–Bénard convection and can not be directly projected to the
spherical shell geometry. Therefore the further verification of the
LES results was mainly based on a presently verified DNS data. In
the following we give details of the verification study conducted
for both DNS and LES approaches.

3.1. Verification of the DNS results

An axi-symmetric, steady, laminar flow exists at small Ra and is
characterized by two flow patterns originally termed by [26] as
crescent and kidney shape eddies. Both patterns are basically built
by thin high speed layers immediately adjacent to the shell bound-
aries, while the bulk flow in the middle of the shell is relatively
slow. The pattern existence is directly related to the shell thick-
ness, as determined by /. The first pattern is observed for the wide
range of 0.32 6 / 6 0.85 as summarized by Powe et al. [8] while
the second one only shows up in the range of 0.45 6 / 6 0.65
and characterized by slightly higher Ra numbers. In the both cases
the average Nu numbers predicted by fully 3-D simulations are in a
good agreement with the corresponding values previously re-
ported for axi-symmetric flow as summarized in Table 1. As the
Ra value increases a steady–unsteady transition takes place result-
ing both in a symmetry breaking (the flow becomes fully 3-D) and
in emergence of different flow patterns (see [8] for more details).
As a general trend, the steady-unsteady transition Ra value is
decreasing rapidly with increasing of / and is proportional to
O(105) for deep (/ � 0.5) and to O(103) for narrow (/ � 0.9) shells
respectively. In the present study the spiral and falling vortices
flows were numerically simulated for the verification purposes.
The former is characterized by very slight oscillations of tempera-
ture and velocity fields (see Fig. 2-a) about their previously axi-
symmetric state while the later comprises multi-cellular velocity
pattern located at the upper part of the shell with temperature
sparks instantly rising up and disappearing from the top side of
the inner shell boundary as shown in Fig. 2-b. As a rule a realistic
slightly supercritical 3-D flow demonstrates an enhanced heat flow
rate through the shell for the same operating conditions compared
to its axi-symmetric idealization. The Nu numbers obtained for un-
steady 3-D flow are considerable higher then those computed with
the assumption of axi-symmetric flow (printed in brackets in
Table 2). At the same time an excellent agreement exists for Nu



Fig. 2. Snapshots of velocity and temperature distribution of a slightly supercritical flow: (a) / = 0.714, Ra = 5 � 104; (b) / = 0.9, Ra = 104.

Table 2
Average Nu numbers for unsteady 3-D flow.

/ Ra Present Ref. [27] Ref. [28] Ref. [12]

0.667 1.0 � 104 1.793 (1.073) (1.07138)
1.0 � 105 3.243 (1.917) (1.89756)

0.714 5.0 � 104 2.6358 2.655
7.0 � 104 2.8614 2.85

0.833 1.0 � 104 1.6523 (1.001) (1.0028)
1.0 � 105 3.0678 (1.008) (1.0100)
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when compared with the recent results of Scurtu et al. [12] who
utilized the 3-D spectral code [30] for simulation of fully 3-D flow
in a spherical shell with / = 0.714. In all cases the same average Nu
values up to the third decimal digit were obtained for the external
and internal shell boundaries favorably verifying the heat flux con-
servation over the entire computational domain. The results of
Scurtu et al. recently reported in [31] and consequently refined
in [12] provide a basis for the further verification of our solutions
in terms of temporal-spatial distribution of the temperature and
velocity patterns. Fig. 3 shows pattern snapshots of velocity com-
ponents (radial vr, azimuthal vh (0 6 h 6 2p) and meridional v/

(0 6 / 6 p)) and temperature on the midrange spherical surface
(D = (Di + Do)/2) of the shell for Ra = 5 � 104. The flow is character-
ized by twelve separate convective cells in the form of petals
evenly distributed along the shell azimuthal coordinate h. The pre-
sented pattern is rotating clockwise in azimuthal direction but the-
oretically could also rotate counterclockwise since no preference
can exist between them. Following the formalism introduced in
[12] this flow regime is described as a traveling wave and located
on one of the two branches characterizing the dynamics of slightly
supercritical flow.

It is remarkable that despite the periodic character of the flow
the total kinetic energy and Nusselt numbers computed at
Ra = 5 � 104 for internal and external boundaries converge to con-
stant values as shown in Fig. 4(a) and (b) respectively and was also
reported by Scurtu et al [12]. The later is explained by the period-
icity of the flow whose pattern is rotating as single unit and not
affecting the integral values of kinetic energy and heat flux. Note
also the higher oscillation amplitude of the external boundary Nus-
selt number Nuo compared to the corresponding values internal
boundary Nui value which is apparently a consequence of more
pronounced temperature oscillations.

3.2. Verification of the LES results

As in any turbulence modeling process, LES should be carefully
interrogated to assure the correct understanding and interpreta-
tion of the obtained results. Fig. 5 demonstrates qualitative com-
parison between the typical DNS and LES instanteneous



Fig. 3. Snapshots of the flow patterns on the midrange D = (Di + Do)/2) spherical surface, / = 0.714, Ra = 5 � 104: (a) radial velocity vr; (b) azimuthal velocity vh; (c) meridional
velocity v/; (d) temperature h.
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temperature and radial velocities on a surface midway between
the two shells. Here we consider Ra = 106 for the narrow shell char-
acterized by / = 0.95. The DNS and LES approaches yield close
results for the both fields. The complex distribution of temperature
and radial velocity patterns in azimuthal direction is typical for
statistically stationary flow. In spite of the visually chaotic charac-
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Fig. 5. DNS (left)-LES (right) comparison of instant : (a) temperatures h; (b) radial velocities Ur; obtained for Ra = 106, / = 0.95 and projected on the shell midrange surface.
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ter, the general trends in the temperature and radial velocity distri-
butions reveal a hotter region starting at the top and ending just
below the equator of the shell, and a colder region located close
to the shell bottom. It can also be seen that the most dynamically
active zone coincides with the hotter region while the colder one is
close to the thermal equilibrium and is almost static.

Obtaining grid independent results is additional critical mile-
stone of the present verification study. This can be achieved by
increasing of the grid resolution until no significant changes (up
to a given numerical precision) are found between the results ob-
tained on the two sequential grids. Unfortunately, for fully 3-D
simulations this approach is often unrealistic due to extremely
high computational demands and long times, necessary to collect
the required statistics. Presently, we restricted the grid indepen-
dence study to the two representative cases: comparison between
the DNS results obtained for the Ra = 106 on the grids containing
3 � 106 and 24 � 106 volumes; comparison between the LES re-
sults for the Ra = 108 obtained on the the grids containing
4 � 106 and 32 � 106 volumes. Both tests were performed for the
value of / = 0.9. For both cases we did not recognize any significant
deviations between the qualitative flow characteristics. The differ-
ence between the corresponding averaged Nu values did not
exceed 5% which is probably a little higher than that ideally
expected for benchmark quality results but still too small to have
any significant effect on the Nu–Ra relationship derived in the next
section.

We summarize the LES verification study by presenting a power
spectral density (PSD) analysis for radial velocity and temperature
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monitored by DNS at Ra = 1.8 � 106 and by LES at Ra = 1.8 � 106,
1.8 � 107, 1.8 � 108 as shown in Fig. 6(a) and (b). The signal was ta-
ken at the midway between the tops of the shell internal and exter-
nal boundaries, in the middle of instantaneous thermal and
velocity plumes, were turbulence intensities of the both quantities
are small compared to the corresponding average values and the
turbulent flow is statistically homogeneous. The later allows
applying of Taylor’s hypothesis for approximation of spatial corre-
lations by temporal correlations (see e.g.[32]). As can be seen from
the Fig. 6 a good agreement exists for the both radial velocity and
temperature PSDs yielded by DNS and LES for low and mid fre-
quencies at Ra = 1.8 � 106. The discrepancy between the results is
increasing for the high frequencies which were filtered out by a dy-
namic LES filter. Looking at the obtained PSD one can recognize
that the range of mid frequencies closely proportional to the f�5/3

rapidly broads with increasing of the Ra number. The later illus-
trates the generation of fully developed turbulence in the flow bulk
in agreement with the Kolmogorov spectrum observed for inertial
range of the statistically homogeneous turbulent flow.

4. Results and discussion

4.1. Narrow shell analysis : DNS results

We start the discussion with the comparison between Nu–Ra
relationship computed for the laminar steady flows
(103

6 Ra 6 106, and / values, 0.5 6 / 6 0.95) and the previously
published engineering correlations. The correlation experimentally
derived by Scanlan et al. [21] is among the most popular in the
engineering and scientific community due to its simplicity and a
wide range of applicable /, Ra and Pr values. In accordance with
the notations adopted in the present work the Scanlan et al. [21]
correlation reads:

Nu ¼ 0:228ðRa�Þ0:226; 0:7 < Pr < 4148; 0:356 < /

< 0:917: ð7Þ

Here Ra⁄ = 2RaL/Di a modified Rayleigh number introduced to scale
out the effect of different shell widths. Another widely used corre-
lation was proposed by Raithby and Hollands [33]:

Nu ¼ 0:512
/3ð1� /Þ
ð1þ /7=5Þ5

 !0:25

Ra0:25; Pr ¼ 0:719: ð8Þ

According to the authors [33] the correlation is valid when the
boundary layer is thin compared to the radius of the shell bound-
aries and the flow is laminar. Finally we include the correlation pro-
posed by Teerstra et al. [34] based on linear superposition of
convection and conduction solutions:

Nu� ¼ 2
ffiffiffiffi
p
p 1

1� /
þ Nu�n

tr þ Nu�n
bl

� ��1
n; ð9Þ

where n = 2 is suggested and Nutr ¼
ffiffi
2
p

p
11520

ð1�/Þ3

/2ð1þ/Þ

� �
Ra�,

Nubl ¼ 0:521 Ra�0:25

ð1þ/7=5Þ5=4 are the the transitional and the boundary layer

Nusselt numbers respectively. In this case the modified Rayleigh
number Ra⁄ was computed by choosing the length scale as a square
root of the inner sphere area ð

ffiffiffiffi
p
p

DiÞ. Unlike the correlation of Scan-
lan et al. [21] the formulas of Raithby and Hollands [33] and Teert-
stra et al. [34] explicitly depend on the ratio of diameters /.

Fig. 7 compares the Nu-Ra relationship obtained by DNS for Ra
(or Ra⁄) 6 105 with the results predicted by correlations for 0.5 6 /
6 0.95. While insignificant differences exist between the results
predicted by engineering correlations, three general trends are evi-
dent. First, for the relatively deep shells (0.5 6 / 6 0.714) the cor-
related results are in good agreement (within 10%) with those
obtained by the CFD simulations. Second, for the narrow shells
(0.85 6 / 6 0.95) the discrepancies between the correlated and
numerically predicted Nu numbers increase with increasing / va-
lue reaching up to 40% when compared with the correlation of
Scanlan et al. [21] and about 30% and 20% when compared with
the correlations of Raithby and Hollands [33] and Teertstra et al.
[34] respectively. The third trend evident in Fig. 7 is that for the
narrow shells (0.85 6 / 6 0.95) the Nu–Ra (or Nu–Ra⁄) relationship
is characterized by much steeper slopes then those predicted by
the engineering correlations. It can be also concluded (see Fig. 7-
a) that the modified Ra⁄ number introduced by Scanlan et al. [21]
efficiently scales out the effect of shell width for only deep shells,
while for the narrow shells (/ P 0.85) a rapidly increasing scatter-
ing of the Nu values is observed.

4.2. Narrow shell analysis : LES results

Fig. 8 summarizes LES results for Nu–Ra⁄ relationship obtained
for the values of / = 0.85, 0.9, 0.95 and Ra⁄ up to 2 � 108 with the
superimposed DNS results obtained for the low Ra⁄ numbers. Note
an excellent agreement between the average Nu values predicted
by both LES and DNS approaches for 5 different cases which veri-
fies a correct resolving of the near wall temperature gradients by
the LES model. We also verified that the same time-averaged value
of Nu was obtained at both external and internal boundaries con-
firming the conservation of the heat flux trough the shell bound-
aries. It is evident that both the DNS and LES approaches collapse
fairly well on a power-law relation for Nu–Ra⁄ relationship but at
the same time yield considerably higher slopes when compared
to Scanlan et al. [21]. The higher slope infers an enhanced heat flux
rate intrinsic to the narrow shells for even slightly super critical re-
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neering correlations and numerical results for steady and slightly supercritical
flows inside narrow shels: (a) Scanlan et al. [21] correlation; (b) Raithby and
Hollands correlation [33]; (c) Teertstra et al. [34] correlation.
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gimes. It is remarkable that about the same value of the Nu–Ra
slope (Nu / Ra�0.3 was also observed both numerically [35,36]
and experimentally [37] for turbulent natural convection inside
differentially heated cavities. The reported simulations were per-
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N
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φ=0.85 LES
φ=0.9   DNS
φ=0.9   LES
φ=0.95 DNS
φ=0.95 LES

Scanlan et al. [21]

(a)

Fig. 8. DNS and LES results for the Nu–Ra⁄ relationship: (a) thre
formed up to moderate Ra < 1010 values of Rayleigh numbers, for
which the thinnest conductive layers near the walls still exist
and are not penetrated by the nearest small-scale turbulence flow
structures. We would expect the same behavior for the narrow
shell configuration, characterized by close to each other vertical
and horizontal boundaries whose local curvature at the near equa-
torial and pole regions can be neglected.

As follows from the Fig. 8(a), the modified Ra⁄ in itself does not
scale out the shell width effect for the narrow shells (0.85 6 /
6 0.95) and three separate Nu–Ra⁄ curves for each / are observed.
Noting the monotonic growth of the Ra⁄ coefficient with /, corre-
sponding to the curve intercept, and a very slight variation of the
Ra power (�0.30 up to a second decimal digit), we suggest a new
scaling which would explicitly account for gap width:

Nu¼ ð0:35/� 0:12ÞRa�0:3; 0:856 /6 0:95; 103
6 Ra� 6 2� 108:

ð10Þ

The scaled results collapse on a single curve as shown in Fig. 8(b). It
should be noted that the suggested correlation was derived and
numerically verified for Pr = 0.71 and only the range Ra⁄ and / val-
ues given in Eq. (8). We would not recommend to apply it for ex-
tended range of / and Pr values without additional validation
(numerical or experimental). At the same time the developed meth-
odology and general observations regrading the free convection
flow features intrinsic to narrow shells at a given range of Ra values
are believed to be general and may be useful for the future research
in this area.

4.3. Narrow shell analysis : RANS results

We now turn to the RANS results. RANS modeling of the fully
turbulent confined flow is challenging because the very thin
boundary layers cannot be resolved on the coarse grid, and so-
called wall functions must be used. In this case a simple grid refine-
ment does not yield a grid independent results since the standard
wall functions are only valid when the first grid point is within the
logarithmic region, i.e. when 30 < y+. As a result such wall functions
are only appropriate in the higher Ra number regime; when RANS
is used at lower values of Ra, the wall model must be modified or
switched off entirely. We found that the later can introduce signif-
icant uncertainties and thus we restrict the RANS results here to
108
6 Ra 6 1012, where the flow can safely be assumed fully turbu-

lent, statistically stationary, axi-symmetric and we can verify the
correct wall-model implementation.

Fig. 9 demonstrates RANS results obtained for Ra = 1012 and /
= 0.85, 0.9, and 0.95 in terms of normalized velocity magnitude
(left) and temperature (right) fields. One can recognize a qualita-
tive difference in the averaged velocity magnitude distribution be-
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tween the deepest shell (/ = 0.85) and the two narrower shells (/
= 0.9,0.95). The former (see Fig. 9(a)) is still characterized by a sin-
gle convection cell occupying almost the whole shell volume. Look-
ing at the narrower shell (/ = 0.9, Fig. 9(b)) two convection cells
can be recognized: the smaller one is adjacent to the shell north
pole, while the larger occupies almost the rest of available volume.
Finally the narrowest shell (/ = 0.95) is characterized by 3 convec-
tion cells, two of which are almost of the same size, located at the
shell top and occupy approximately 1/5 of the shell’s volume,
while the rest of it is occupied by the third cell. Note also the steep
decrease in maximal normalized velocity values when comparing
shells characterized by / = 0.85 and / = 0.9 which is apparently re-
Fig. 9. Normalized velocity magnitude (left) and temperature (right) fields obtained
by RANS simulation, Ra = 1012: (a) / = 0.85; (b) / = 0.9; (c) / = 0.95.
lated to the change from a single to double cell spatial topology. In
contrast, further increasing of / to 0.95 results in a higher maximal
value of the averaged velocity magnitude (see Fig. 9(c)). There is a
narrow high velocity region close to the north pole of the shell
(see Fig. 9(a)) for / = 0.85 and / = 0.9 values (see Fig. 9(a) and
(b)) that does not occur in the narrowest shell(see Fig. 9(c)).
The observation suggests an enhanced mixing that increases with
the /.

The averaged spatial distribution of temperature shares the
same general characteristics with those of the averaged velocity
magnitude field. A single, double and triple convection cell pattern
developed in the deepest(/ = 0.85), narrower (/ = 0.9) and the nar-
rowest (/ = 0.95) shells respectively can be easily recognized. On
the other hand there is no large difference between the maximal
temperature values of different shell widths. This is because the
fully developed turbulent temperature field provide the similar
thermal mixing independently on the shell width. Note also the
very thin boundary layers inherent to the both velocity and tem-
perature fields which tend to decrease with the shell width.

The RANS analysis is summarized by plotting the results for the
suggested Nu–Ra⁄ relationship superimposed with previously ob-
tained DNS and LES results as shown in Fig. 10. It appears that in
contrast to DNS and LES results the dependence of the turbulent
results on / is not very well scaled by proposed Nu scaling. In addi-
tion the slope of the best fit curve, obtained for the turbulent re-
sults is much higher /Ra0.4 then that previously found for the
DNS and LES results /Ra0.3. The results are suggestive of a different
turbulent flow regime, characterized by even more enhanced heat
transfer flux rate. It is remarkable that the transition between the
two regimes takes place at about Ra⁄ = 109 (or Ra = 1010) which is
in good agreement with the work of [38] who reported the same
behavior for the Rayleigh–Bénard convection inside a cylinder
above approximately Ra = 3 � 1011. The higher, /Ra0.4 is also con-
sistent with the theoretical study of Kraichan [39] who predicted
Nu / Ra0.5 in the absence of any boundary layer and Nu / Pr�0.25-

Ra0.5/(ln Ra)1.5 in the presence of viscous sub-layer. Note that Krai-
chan’s later relation is well approximated by Nu / Ra0.42 for
108
6 Ra 6 1012 and Pr = 0.71. At the same time a number of recent

works [24,25,22] did not confirm the existence of a critical Ra num-
ber at which a sharp increase of the Nu–Ra curve slope takes place.
According to these investigators there is a constant Nu / Ra0.3

power law relation for the entire range of Ra numbers up to
Ra = 1016.

Basing on the recent work of Niemela and Sreenivasan [25] we
postulate that the results suggest two independent flow regimes,
characterized by either shear- or plume-dominated conditions.
To understand the differences between these regimes we appeal
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Fig. 10. DNS, LES, and RANS results for the Nu–Ra⁄ relationship, / = 0.85, 0.9, 0.95.



Y. Feldman, T. Colonius / International Journal of Heat and Mass Transfer 64 (2013) 514–525 523
to boundary layer theory, which allows us to estimate the thick-
ness of thermal and shear boundary layers for different flows. Pres-
ently, we adopted the result of [25] who correlated the velocity/
temperature boundary layer thicknesses for the Rayleigh–Bénard
convection inside a cylinder as:

d=k ¼ 648 C0:091NuPr0:636=Ra0:445; ð11Þ

where C is the aspect ratio defined as the ratio of the horizontal
dimension of the cylinder to its vertical dimension. Note that a
unity value of d/k would not necessarily distinguish between the
shear- and the thermally-dominated conditions near the wall. This
is because viscous-dominated effects occur only in a certain fraction
of shear boundary layer thickness. At the same time if the thermal
boundary layer is entirely embedded inside the viscous sublayer it
is unlikely to see a high impact of the velocity boundary layer tur-
bulence on the overall heat transport.

We might roughly say that the free convection flow inside a
narrow spherical shell resembles cylindrical Rayleigh–Bénard con-
vection only close to north pole. To quantify this statement we cal-
culated the d/k ratio for both LES and RANS results with different
aspect ratios, C P 5, to address narrow shell configurations. It is
remarkable that while the LES results demonstrate a rapid
decrease of d/k value versus Ra with the minimum equal to d/
k � 2.8 for Ra = 108 (slightly varying versus C), the RANS results
showed an asymptotic behavior of d/k � 2.3 starting from
Ra = 1010, independently from the C value. Note that the real
Fig. A.11. Iso-surfaces of the oscillation amplitudes accompanied by the corresponding
vector field :(a) radial velocity vr; (b) azimuthal velocity vh; (c) meridional velocity v/; (
near-wall dynamics of the flow can only be inferred, since the near
wall effects in the RANS simulations were modeled by standard
wall functions and not directly resolved on grid. Our interpretation
is that in the first case (LES simulations, moderate Ra values) the
temperature boundary layer was still captured inside the velocity
viscous sublayer (although the thicknesses of the both might be al-
most the same for Ra = 108), corresponding to shear-dominated
condition. On the other hand, in the second case (RANS simula-
tions, high Ra values) an asymptotic thermally-dominated regime,
at which the small-scale turbulence penetrated the thinnest con-
ductive layer, might be reproduced. The range of 107

6 Ra⁄ 6 108

values falls in the boundary between the two states. Then it is
not surprising that there is a deviation between the overlapping
LES and k–� model results. The later predicts lower Nu values, that
can be a consequence of not fully developed turbulent boundary
layer leading to underestimation of the turbulent wall heat flux
values.
5. Conclusions

Laminar and turbulent free convection flow inside narrow
spherical shells with isothermal cold and hot boundaries charac-
terized by 0.5 6 / 6 0.95 , Pr = 0.71 was studied. Laminar flow
was carried out by DNS while transitional and turbulent flow
was analyzed by applying LES and RANS approaches. The accuracy
of the results was extensively verified. It was found that the steady
mid cross section of the shell with superimposed projection of the mean velocity
d) temperature h.



Fig. 11. (continued)
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state flow pattern is axi-symmetric and characterized by a single
convection cell. The cell, whose cross section is sometimes called
a ‘‘crescent eddy’’ occupies the shell medium expanding alongside
the equator and rapidly narrowing towards the shell poles. In con-
trast, the unsteady flow is fully 3-D with pattern strongly depen-
dent on the shell’s depth. Inside the narrow shells (/ P 0.85) the
flow is aperiodic and characterized by unsteady patterns known
also as a ‘‘falling vortices’’ [40] evolving and cyclically dissolving
from the shell top towards to its equator. For a deeper shell (/
= 0.714) periodical temperature and velocity distributions in the
form of traveling waves were observed. Turbulent flow (analyzed
both by LES and RANS approaches) is in general characterized by
spatially averaged temperature and velocity distributions in the
flow bulk and very thin boundary layers. We also considered
slightly supercritical flow with / = 0.714 in detail (see Appendix
A) to provide benchmark data for future linear stability studies.

The functional dependence of average Nu on Ra and modified
Ra⁄ has been extensively investigated for the range of 103

6 Ra⁄ -
6 1012 covering laminar, transitional and fully turbulent flow re-
gimes. It was found that the deep and narrow shells feature
different flow characteristics even at low Ra values. In particular
for the deep shells (0.5 6 / 6 0.714) we obtained Nu � Ra⁄0.22 up
to the Ra⁄ 6 105 in agreement with the classical experimental work
of Scanlan et al [21] and more recent numerical study of Raithby
and Hollands [33] and Teerstra et al. [20]. In contrast, for the nar-
row shells (0.85 6 / 6 0.95) both slightly supercritical and transi-
tional flows yield Nu � Ra⁄0.3 up to Ra⁄ 6 2 � 108 which suggests
an enhanced heat flux rate through the shell boundaries. The above
result is in good agreement with the Nu–Ra relation for Rayleigh–
Bénard turbulent convection in a cylindrical container (Nu � Ra1/

3)[25] and in a plane layer (Nu � Ra0.3)[41] as well as for natural
convection inside differentially heated square [35] and tall [36]
cavities, both characterized by Nu � Ra0.33. A new scaling relation
for Nu was suggested for narrow shells Nu–Ra⁄. Finally the fully
turbulent convective flow in the narrow shells was simulated by
RANS approach for Ra up to 1012. A new flow regime characterized
by an even more enhanced heat flux was revealed yielding
Nu � Ra⁄0.4 functional relation. The phenomenon may be related
to transition from laminar to turbulent thermally-driven boundary
layer taking place at very high Ra numbers.
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Appendix A. Intermediate shell analysis : DNS results

To gain a more insight into dynamics of the slightly supercriti-
cal periodic flow we look at the spatial distribution of the oscilla-
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tion amplitudes of each velocity component and temperature fields
corresponding to the most energetic mode as shown in Fig. A.11.
The amplitudes correspond to the maximum absolute deviations
from the base flow averaged over several oscillation periods. The
iso surfaces confine the areas at which amplitude values are not
less than 50% of the maximal amplitude of the corresponding flow
field. As expected the iso surfaces are periodic and occupy the
upper and equatorial part of the shell where the flow is unstable
and velocities attain their maximum. At the same time at the bot-
tom part of the shell, characterized by almost stationary flow, the
flow oscillations are kept to a minimum.

Each oscillation amplitude iso surface is accompanied by the
corresponding mid cross section of the shell with superimposed
projection of the mean velocity vector field. The section plane is
crossing over the two opposite crests of each iso surface. The vec-
tors shown in the figure are scaled by the magnitude of corre-
sponding velocity values. Radial velocity oscillations Avr (see
Fig. A.11(a)) attain their maximum values close to the leading edge
of each convective cell in the midway between internal and exter-
nal boundaries. Taking into account that the radial and the gravity
force directions are almost parallel close to the shell top, the region
falls on the fringe of the thermal plume. The later is rising up from
the north pole of the internal sphere which is the most unstable
flow region. As a consequence the amplitude of the the azimuthal
velocity associated with the wave traveling in the azimuthal direc-
tion Avh

also riches its maximum there, as shown in Fig. A.11(b). In
contrast, azimuthal velocity v/ primarily oscillates at both sides of
the shell equator close to shell boundaries where the maximal v/

velocities are observed. The phenomenon can be explained by an
interaction between almost static bulk flow in the mid part of
the shell and two regions of a high velocity confining it from the
sides and forming an oscillating convection cell (see Fig. A.11(c)).
Looking at the spatial distribution of the temperature amplitudes
(Fig. A.11(d)) one can recognize that their maximal values are lo-
cated closer to the external boundary at the interface between
the cold stream going down along the external boundary and the
hot stream originating at the internal boundary and going up along
the leading edge of convective cell. Mixing of the both cold and
cold streams results in large temperature oscillations localized in
this region.
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