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Abstract 

An extended immersed boundary (IB) methodology utilizing a semi-implicit direct 

forcing approach was formulated for the simulation of incompressible flows in the presence 

of periodically moving immersed bodies. The methodology utilizes a Schur complement 

approach to enforce the kinematic constraints of no-slip for immersed surfaces. The 

methodology is split into an "embarrassingly" parallel pre-computing stage and a time 

integration stage, both of which take advantage of the general parallel file system (GPFS) 

for efficient writing and reading of large amounts of data. The developed methodology can 

be straightforwardly embedded into the whole current family of pressure-velocity 

segregated solvers of incompressible Navier-Stokes (NS) equations based on the projection 

or fractional step approaches. It also accurately meets the no-slip kinematic constraints on 

the surfaces of immersed oscillating bodies. The developed methodology was extensively 

verified by applying it in the simulation of a number of representative flows developing in 

the presence of an oscillating sphere.  

The capabilities of the methodology in simulating incompressible flow generated 

by one or several bodies, characterized by generic periodic kinematics, were demonstrated 

by simulation of the flow developing in the presence of two out-of-phase oscillating spheres 

and in the presence of a rotating ellipsoid. The physical characteristics of the generated 

flows, in terms of the time evolutions of the total drag coefficient or, in the latter case, of 

the torque, are presented as a function of Reynolds values. The vortical structures inherent 

in the generated flows were visualized by presenting the isosurfaces of the 2  criterion.  
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Chapter 1  

Introduction and literature survey 

1.1 Motivation of the study 

1.1.1 Periodic movement of bodies within incompressible fluid 

The periodic movement of bodies immersed in an incompressible Newtonian fluid 

is ubiquitous in various biological systems and in many engineering and industrial 

applications. Indeed, the locomotion of most elongated aquatic vertebrates is based on 

undulatory propulsion, i.e., the sequential periodic activation of the different segments of a 

body. In an extensive review done by Lauder and Tytell [1], fish swimming is classified 

into four classical categories while a different general "mode" of undulatory motion 

characterizes each one (see Figure 1). In engineering, this mechanism is mimicked in bio-

inspired synthetic micro- and nano-swimmers, which rely on the periodic external actuation 

of small rigid members in their locomotion [2]-[4]. In this type of application, propulsion 

is typically provided by the symmetry-breaking excitation of the surrounding flow by the 

periodically moving body of the swimmer.  

The undulatory propulsion mechanism is also present in a number of other 

organisms on the cellular level, as reported in [5]-[8]. One fascinating example can be found 

in the fluid manipulation mechanism of ciliary systems, extensively reviewed in [7]. Ciliary 

systems consist of arrays of microscopic slender flexible rods (cilia), which may beat back 

and forth in recovery and effective strokes, respectively. These systems derive a beneficial 

propulsive effect by synergetic action obtained from a phase relationship between the beats 

of neighboring cilia. This phase relationship results in a wave travelling over the array of 

cilia. An example of ciliary motion enhanced effectiveness in flow generation can be found 
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in micro-organisms such as the Paramecium [9], which is about 100 μm long and contains 

about 4000 cilia on its outer surface; the swimming speed of the Paramecium can reach up 

to ten times its own length per second. Figure 2 shows arrays of cilia covering the surface 

of the Paramecium, as well as the asymmetric motion of a single cilium and the wave-like 

motion of an entire array. Recently the idea of a bio-mimetic ciliary system, composed from 

functional arrays of artificial cilia, has been envisaged as a novel strategy for microfluidic 

manipulation [10]-[15]. In this kind of application, microscopic cilium-like actuators - 

moving in a periodic cycle consisting of effective and recovery strokes as mentioned 

previously - are externally actuated by various kinds of stimuli, such as an electrostatic 

field, a magnetic field or light. These devices have shown the capability of low-Reynolds-

number fluid propulsion and mixing. Figure 3 shows the experimental design used in [10] 

to characterize flow manipulation by magnetically actuated artificial cilia, along a measured 

induced fluid velocity profile in an experimental microfluidic flow cell. Numerical 

modeling of the fluid flow induced by the artificial cilia's periodic movement can be of 

great importance in analyzing the working principle of the cilia, as well as in designing and 

optimizing these kinds of devices.  Similarly, this kind of numerical modeling can produce 

clear benefits in the design of any active micro- and macro-mixer based on the periodic 

movement of externally activated rigid bodies. These kinds of mixer, implemented with 

rotating or oscillating stir-bars of various shapes, are typical in the chemical and medical 

industries [16]-[19].       
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Figure 1: Four classical catagories of fish undulatory propulsion illustrated with fish 

outlines and midlines derived from experimental data (reproduced from [1]). The top half 

of the figure shows the outlines of typical species with displacements illustrating forward 

progression over time, while the lower half shows superimposed midlines at equally 

spaced time intervals throughout a fish tail beat. The presented times refer to the duration 

of the tail beat, while the velocities refer to the fish swimming speed. 

   

 

 

 

(a) (b) 
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(c) 

Figure 2: (a) Paramecium, covered with thousands of cilia; (b) The locomotion of a single 

cilium; (c) The collective wave-like motion of an array of cilia on a surface (reproduced 

from [9]) 

 

 
 

(a) (b) 

Figure 3: (a) Experimental set-up for characterizing flow manipulation by magnetically 

actuated artificial cilia. A rotating magnet, causing each cilium to rotate along a tilted 

cone, externally actuates the cilia array. This action generates simultaneous pumping and 

mixing regimes. (b) Measured fluid velocity profile in the microfluidic flow cell. Panels (a) 

and (b) are both reproduced from [10].  
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1.1.2 Moving boundary simulations 

To simulate the fluid flow developing in the presence of periodically moving 

immersed bodies, it is necessary to perform moving boundary simulations. This kind of 

simulation is based on the key idea of determining the kinematics of the immersed body, 

and then imposing no-slip boundary conditions on the body surface at each computational 

time step. The major challenge in performing such simulations with a traditional body-

conformal grid approach lies in the generation of a high-quality mesh that should, firstly, 

be capable of handling complex body geometries and, secondly, be rebuilt in each 

computational time step. Attempts to handle this challenge have been made in fluid-

structure interaction analyses based on the arbitrary Lagrangian-Eulerian (ALE) 

formulation [20]. The ALE formulation uses a computational mesh that is neither a priori 

fixed in space, nor attached to a body, but, rather, can move arbitrarily to meet the boundary 

conditions on the surface of the solid body in a more flexible and accurate manner. 

Nevertheless, using this technique to tackle a freely moving solid body in a fluid domain 

poses a serious challenge, as it is necessary to ensure that the fluid mesh following the 

interface of the solid is not distorted or tangled upon large motions of the solid body. 

Although a possible remedy for this problem could come from the use of adaptive re-

meshing techniques [21], these techniques are typically time prohibitive and require 

remapping of the field variables between the source and target meshes. Recently, the use of 

novel high-order sliding mesh methods [22]-[24] has been proven effective for solving 

moving interface problems, yet the ever-increasing demand for the analysis of flows typical 

in realistic complex engineering systems can lead to serious deterioration of the 

computational efficiency of these simulations. A promising alternative to these body-

conformal grid approaches is the immersed boundary method (IBM). Initially developed 

by Peskin [25], the method has become very popular over the years and is currently widely 
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used for flow simulations in the presence of stationary and moving immersed bodies of 

complex geometry, as extensively reviewed in [26]. 

Among a number of existing methodologies, the present study focuses on the direct 

forcing approach, initially introduced in [27]. According to this approach, the impact of the 

immersed body (determined as a set of discrete Lagrangian points) on the surrounding flow 

is expressed by introducing additional unknowns in the form of volumetric forces, each 

associated with a corresponding Lagrangian point. The forces act as Lagrange multipliers 

that enforce a no-slip kinematic constraint on the surface of the immersed body, without 

involving any dynamical process. In the most general case, the Lagrangian points of the 

body surface do not coincide with the underlying Eulerian Cartesian grid. Information is 

exchanged between the grids through two adjoint operators, namely, the interpolation 

operator, which interpolates the velocity values from the Eulerian grid to the Lagrangian 

points, and the regularization operator, which smears the volumetric forces from the 

Lagrangian points on the underlying Eulerian grid. Chronologically, the implementation of 

the direct forcing IBM was first based on explicit calculation of the Lagrangian forces. The 

explicit formulation gained great popularity, since it does not require any modification to 

the original solver of the Navier-Stokes (NS) equations. In practice the forces are directly 

solved from the NS equations according to the following formulation: 

 
n

nRHS
t

 −
= −



U u
F   (1.1) 

where F  is the direct forcing term, nu  is the velocity at the n-th time step, U   is the preset 

boundary velocity field and the nRHS  term contains the convective, viscous and pressure 

gradient terms of the NS equations. After F  is determined, it is smeared over the 

neighboring Eulerian grid nodes using the regularization operator. In other words, to equip 

any existing NS solver with the  immersed boundary (IB) functionality, the original solver 
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should be employed twice: the first time without taking into account the existence of the IB 

and the second time by employing the same differential operator with the modified right 

hand side (RHS) containing explicitly calculated Lagrangian forces to reflect the impact of 

the IB on the surrounding flow. The high flexibility of the explicit direct forcing IBM is 

quite impressive. It has been successfully employed over the past two decades in a broad 

spectrum of fields, including in the simulation of particulate flows [28]-[33], thermally 

driven confined flows [34]-[37], two-phase immiscible flows [38] and in the 

phenomenological modeling of the mobility and growth of cancerous tumors [39]-[41]. 

There are, however, two major drawbacks in the explicit calculation of the 

Lagrangian forces. First, to satisfy no-slip kinematic constraints with acceptable accuracy 

the simulations should be run with very small time steps. A number of attempts have been 

made to relax the small time step limitation; these have included solving the coupled system 

of the boundary forces [35]-[36], iteratively updating the velocity at a sub-time step based 

on its difference from the desired boundary velocity [42]-[43] and introducing an additional 

forcing loop [30]-[31] for more accurate imposition of the interface velocity. However, 

despite the evident success of the aforementioned studies in imposing no-slip kinematic 

constraints, none of the proposed strategies can be seen as an ultimate remedy to the second 

– and the most important – drawback, related to the explicit calculation of the Lagrangian 

forces, namely, the violation of the elliptic character of the NS equations. The problem 

shows up in the simulation of flows characterized by low and moderate Reynolds numbers, 

but it can be solved by employing a fully coupled formulation. The key idea is to express 

the Lagrangian forces as additional unknowns in the form of distributed Lagrange 

multipliers (DLM) implicitly embedded into the corresponding NS equations. In this case, 

the kinematic constraints of no-slip are imposed with a machine zero-precision. Recent 

progress in this direction is due to the works in [44]-[48], which successfully established 
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the DLM approach as a powerful tool for investigating incompressible flows for a wide 

range of Reynolds numbers, including linear stability analysis of pressure and thermally 

driven flows [49] and analysis of two-phase immiscible flows [50]. It is also worth 

mentioning the work in [51] that can be seen as a close relative of the DLM approach. In 

this approach, the pressure and boundary forces are treated as a single set of Lagrange 

multipliers that are determined implicitly from a modified Poisson equation; then, a single 

projection step is introduced to satisfy the continuity equation and the no-slip condition, in 

a manner analogous to the traditional fractional step method. This approach has been 

successful, under certain conditions, in achieving second-order accuracy in time. 

Unfortunately, these purely implicit implementations of the IBM typically involve 

substantial modification of the original solvers, which are not initially equipped with the 

IBM capability. For this reason, a semi-implicit implementation of the IBM, in which the 

Lagrangian forces are implicitly coupled with a non-solenoidal velocity field, further 

projected to the divergence-free subspace, has gained increasing interest over the last 

decade [52]-[55] The semi-implicit formulation of the IBM can be straightforwardly 

embedded into the whole family of pressure-velocity-segregated NS solvers based on the 

projection or the fractional step algorithms, while maintaining the accuracy of the imposed 

constraints of no-slip bounded by the discretization error of the numerical scheme [54].  The 

key idea that stands at the basis of the semi-implicit implementation is the analytic 

decomposition of the operator coupling the NS equations with the constraints of no-slip, 

and the pre-computation of the contribution of the latter at the beginning of the 

computational process. It was shown in [54] that, upon completing the pre-computation 

step, the efficiency of the time integration performed by the algorithm based on the semi-

implicit implementation of the IBM is comparable with its explicit counterpart when flows 

in the presence of stationary immersed bodies are considered.  
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1.2 Objectives of the study 

The present work aims to extend the methodology previously developed in [54] to 

flow simulations in the presence of periodically moving immersed bodies whose kinematics 

is governed by periodic functions, and can therefore be described by a finite amount of  

repeating boundary configurations. This feature is exploited in the present algorithm to 

execute the pre-computation step described in [54] on each of the boundary configurations 

in an "embarrassingly" parallel fashion, which enables its efficient acceleration without 

introducing any significant modifications to the original solver.  Then, by taking advantage 

of the general parallel file system (GPFS), and the massively parallel MUMPS solver, every 

pre-computed state can be saved, and, most importantly, read later very efficiently, making 

it possible to perform this kind of simulation in a reasonable amount of time. 

The current study presents the extended methodology, including a detailed 

description of the algorithm, a verification study of the obtained results, and an appraisal of 

the efficiency characteristics in terms of memory and time consumption. The developed 

method was extensively verified by comparing the flow characteristics obtained from 

simulation of confined flows developing in the presence of an oscillating sphere with results 

available in the literature. The capability of the developed methodology to resolve the flows 

developing in the presence of rotating bodies is demonstrated by performing simulations of 

the flow generated by a rotating ellipsoid for different values of Reynolds number.   
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Chapter 2  

Theoretical background  

2.1 Chapter overview 

In this chapter, the mathematical formulations of the research problem and of the 

novel methodology developed and utilized for the numerical solution of the problem are 

described. The study focuses on incompressible flows driven by immersed bodies 

characterized by some kind of pre-determined periodic kinematics. The equations 

governing the flow developing in the presence of a general periodically moving immersed 

body are given in section 2.2. Emphasis is put on building the theoretical model in 

accordance with the formalism of the immersed body method. Additionally, the numerical 

approach is elaborated and the main ideas of the semi-implicit direct forcing IB 

implementation for periodically moving boundaries are laid out. Finally, in section 2.3, the 

implementation details of the developed methodology are given, including a detailed 

explanation of the techniques used to exploit the structure of the problem in order to extract 

parallelism in the time direction.  

2.2 3D incompressible flow induced by a periodically moving 

immersed body: IB formulation 

2.2.1 Governing equations  

The incompressible flow developing in the presence of an immersed body whose 

parameterized surface ( ), X  is moving in accordance with a priori determined 

kinematics, given the surface velocity ( )
U X , is governed by the incompressible 
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momentum and continuity equations. Formulated in Cartesian coordinates and written in 

dimensionless form, the governing equations read as: 

   0, =u   (2.1) 

 ( ) 21

R

 

e
p

t


+  = − +  +


u u

u
u f   (2.2) 

where ( ), ,u v wu , p , and t  are the dimensionless velocity, pressure and time, respectively. 

The volumetric force field ( )xf  in (2.2)  reflects the impact of the moving boundary of the 

immersed body on the surrounding flow. Note that, generally, the value of ( )xf  is 

unknown, and it is therefore necessary to introduce a kinematic constraint of no-slip:  

 ( ) ( )=u X U X   (2.3) 

providing closure of the overall system of Eqs. (2.1)-(2.3). Note that while Eqs. (2.1)-(2.2)

are formulated on a Cartesian grid, Eq. (2.3) holds only for the domain ( )X , which includes 

the surface of the immersed body. Distinction between variables related to the Cartesian 

grid and variables related to the grid coinciding with the immersed body surface is provided 

by assigning them lowercase and uppercase, respectively. In accordance with the IBM 

formalism, all the variables related to the Cartesian grid are called Eulerian variables, while 

the Cartesian grid is called a Eulerian grid. The surface of the immersed body is determined 

by a set of discrete points, which are called Lagrangian points, and all the variables related 

to these points are called Lagrangian variables. Figure 1 shows the set-up of a uniform 

structured staggered 2D Eulerian grid underlying a set of Lagrangian points determining 

the surface of an immersed body of elliptical shape. In general, the Lagrangian points do 

not coincide with the underlying Eulerian grid. Therefore, there is a need to introduce two 

adjoint operators for the exchange of information between the grids, namely, the 
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interpolation operator, I , used to interpolate the Eulerian velocities at the locations of the 

Lagrangian points, and the regularization operator, R , used to smear the volumetric 

Lagrangian forces on the adjacent Eulerian grid: 

 ( )( ) ( )( ) ( )
ii i k iu x u x x dV 


=  −I X   (2.4) 

 ( )( ) ( )( ) ( )
kk k k k i k S

S
x dV=  −R F X F X X   (2.5) 

where the indices i  and k  run for the whole discrete range of Eulerian and Lagrangian 

coordinates, respectively, and the indices   and S  read for the Eulerian and Lagrangian 

grid cells, respectively, thus determining 
i

dV
 as the thi  volume of the Eulerian flow 

domain and 
kSdV  as the virtual volume confining the 

thk  Lagrangian point. To achieve the 

best accuracy, a uniform grid in the vicinity of the immersed body surface is utilized. The 

surface of the immersed body is determined by a set of equispaced Lagrangian points, and 

the distance between the neighboring Lagrangian points is approximately the same as the 

cell width of the underlying Eulerian grid, also yielding 
i kSdV dV  . 
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Figure 4: A schematic representation of the major principles of the IBM. The immersed 

body of elliptical shape is described by set of Lagrangian points indicated by the full black 

dots. A dashed shell of thickness equal to one grid step, attached to the immersed body, 

corresponds to the set of discrete volumes surrounding each Lagrangian point. The dashed 

and dotted circles show the range of action of the regularized Dirac delta functions 

smearing the Lagrangian forces over the Eulerian grid and interpolating the Eulerian 

velocities at the Lagrangian points, respectively. Adapted from [54]. 
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Among a wide variety of possible regularized Dirac delta functions that can be utilized in 

(2.4)-(2.5), the function introduced by Roma et al. in [56] was chosen: 

2

2

1
5 3 3 1 1 for 0 5 1 5

6

1
( ) 1 3 1 for 0 5

3

0 otherwise

r r
r r r

r r r

r
r r r

r r


  
   − − − − +            

  


     = + − +     
     







  (2.6) 

Here, r  is the cell width in the r direction, which means that the above delta function 

supports three grid cells in each spatial direction, while interpolating Eulerian velocities 

and regularizing Lagrangian forces (the same delta function is utilized in both the 

interpolation and regularization operators).  The chosen delta function has been specifically 

designed for performing calculations on staggered grids and has gained popularity over 

recent years [28],[30],[42],[48],[52] due to its compact kernel (only 3 cells in each direction 

of the computational domain). Interpolation of the discrete Eulerian velocities iu  and 

regularization of the discrete Lagrangian forces kF   for the 3D configuration are performed 

by employing the following formulas: 

 ( ) ( ) ( )3

k i i k i k i k

i

x x y z      =  − − −U u   (2.7) 

 ( ) ( ) ( )3

i k k i k i k i

k

x x y z     =  − − −f F   (2.8) 

yielding the resultant discrete boundary velocity at the thk  Lagrangian point, k


U  and the 

discrete volumetric force if   at the thi point ( ), ,i i ix y z  of the Eulerian staggered grid.  
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2.2.2 Numerical approach   

Following the SIMPLE method [57], the system of equations (2.1)-(2.3) equipped  

with the IB capability are transformed into the following set of discrete equations: 

 ( ) ( )( ) ( )
* 1

*1 3 4

Re 2 2

n n
n n

k k p
t t

−− +
− + = + +

 

u u u
L u R F X N u   (2.9) 

 ( )( ) ( )*

i kx =I u U X   (2.10) 

 ( ) *3

2
p

t
 = 


u   (2.11) 

 ( )1 * 12
,

3

n n nt
p p p p + +

= −  = +u u   (2.12) 

where the second-order backward finite difference scheme was utilized for the temporal 

discretization, while a standard staggered mesh second-order conservative finite-volume 

formulation [57] was used for the discretization of all spatial derivatives. Eqs. (2.9)-(2.10) 

play the role of predictor, yielding a non-solenoidal velocity field *u  by taking the values 

of the pressure field 
np  from the previous time step, and Eqs. (2.11)-(2.12) are formulated 

to correct the pressure field and to project the predicted velocity onto the divergence-free 

subspace. Neumann boundary conditions with a single reference Dirichlet point introduced 

anywhere within the computational domain are used for the solution of the Poisson 

equation, Eq. (2.11). The linear terms L  and R  that enter into the momentum equation 

(2.9) and correspond to the Laplace and regularization operators, respectively, are treated 

implicitly, while the nonlinear convective terms N  are treated explicitly by calculating 

their values from the previous time step.  
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Explicit treatment of the nonlinear terms allows us to solve Eqs. (2.9)-(2.10)

successively for each component of the predicted velocity vector *u  and then to continue 

with a standard projection-correction step, determined by Eqs. (2.11)-(2.12). Eqs. (2.9)-

(2.10) can be rewritten in a compact block-matrix form: 

 
1,

0

n nRHS −



    
=    

     

*H R u

I F U
  (2.13) 

where 
1 3

Re 2 t
= −


IH L  is the Helmholtz operator acting on each component of the 

predicted vector *u , I  is the unity matrix, R  and I  are rectangular matrices that contain 

terms resulting from applying regularization and interpolation operators, respectively. and 

1,n nRHS −  stands for the right-hand side vector containing the pressure gradient and 

nonlinear convective terms known from the previous time steps. The next section will focus 

on the solution strategy of the system of Eqs. (2.13) by utilizing the domain decomposition 

technique. Suppose that a generic package capable of solving the Helmholtz equation (2.13) 

is available: 

   1,n nRHS −   =   
*

H u   (2.14) 

Assume also that the above package can be used as a black box driver (i.e., without 

introducing any modifications into the package itself) to obtain *u . In general, such a driver 

can be one of two types: either a standalone solver capable of solving the Helmholtz 

equation (2.13) (e.g., FISHPACK [58]) or a whole CFD package for the simulation of 

incompressible flows from the family of projection or fractional step solvers (e.g., 

openFoam [59]). When utilizing a driver of the first type, one should explicitly build and 

provide to the driver the matrix H and the vector 1,n nRHS −  with appropriate boundary 

conditions, while utilizing a driver of the second type will require only proper determination 
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of the boundary conditions. Furthermore, drivers of both types can also be used for 

calculating the product of -1
H  by any generic vector Z . For a driver of the first type, the 

product is obtained by providing the package with an already existing matrix H  and with 

a modified RHS  vector whose values are now equal to the values of the Z  vector. For a 

driver of the second type, the only requirement is a modification of the RHS  vector. To 

demonstrate the capabilities of the developed methodology, the solver of the second type 

developed in [60] is used as the driver. Keeping in mind the above capabilities, we perform 

an analytic transformation of the system of Eqs. (2.14), known as a Schur complement 

decomposition: 

 
1

1 1 1,n nRHS
−

− − −    = −   F IH R IH U   (2.15) 

 1 1,n nRHS− − = − 
*

u H RF   (2.16) 

The idea is first to find the values of the distributed Lagrange multiplier (DLM), F , 

providing the kinematic constraints of no-slip, and thereafter to use them to find the values 

of the predicted velocity vector, *u . Note that, despite the fact that the process is separated 

into two stages, the obtained F  and *u  values are fully coupled, as the solution procedure 

is implicit. Obtaining the solution of the whole problem by a straightforward application of 

Eqs. (2.15) and (2.16) would require us to perform inversion of the matrices  H  and 

  
-1

IH R , which is computationally prohibitive. Instead, the solution can be obtained by 

calculation of the series of the matrix-vector products of the matrix   
-1

H  and further LU 

decomposition of the small matrix   
-1

IH R . Most of the calculations required to complete 

the stages described in Eqs. (2.15) and (2.16) can be pre-computed once at the beginning 
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of the computational process and then reused throughout the simulation. The 

implementation details of the developed methodology are given in the next section. 

2.3 Implementation details   

Prior to describing the numerical procedure developed for the solution of Eqs. (2.15) and 

(2.16), we make a number of observations regarding the structure of matrices I and R. We 

recall that the matrices contain the terms that were obtained by employing the interpolation 

and the regularization operators, respectively, to enforce the kinematic constraints of no-

slip on the surface of the immersed body. The characteristic property of these two matrices 

is their extreme sparseness, resulting from the compact kernel of the utilized discrete delta 

function. In fact, considering a typical 3D problem characterized by O(106)-O(107) degrees 

of freedom for each velocity component, a row of matrix I (or alternatively a column of 

matrix R) contains only O(102) non-zero values. As a result, both the I and R matrices can 

be stored in compressed sparse row (CSR) format, while their matrix-vector product can be 

efficiently performed by employing standard routines from the Intel Math Kernel Library 

(MKL). We next give a detailed description of both the pre-computing and the time 

integration stages of the developed methodology. 

2.3.1  Pre-computing stage 

Recalling that the present methodology was developed for flow simulation in the presence 

of periodically oscillating immersed bodies, we divide the oscillating period into an integer 

number of cyclically repeated time steps. All the procedures described in this section are 

performed for each time step entering a single oscillating period.  
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 Calculation of matrix 1−  IH R  

The matrix 1−  IH R  is a square matrix of dimensions (𝑚 𝑥 𝑚), where 𝑚 is the total 

number of Lagrangian points determining the surfaces of all the immersed bodies involved 

in the simulation. For a typical 3D problem, 𝑚 lies within the range of 

( ) ( )3 410 10m O O  
 

. Note, also, that following the study in [54] an absolute value of 

the sparsing threshold, 𝑠, was set to 2110s −= . Consequently, only entries with an absolute 

value higher than the value of 𝑠 were stored in the matrix 1−  IH R . The matrix itself was 

stored in a row-column-value (RCV) format, as follows: 

• For each column  
k

R  ,1 k m   of the matrix R : 

- Employ a generic driver of either the first or the second type, with a modified 

right hand side  1,n n

k
RHS −  =  R  to calculate the product  1

k

−
H R ; 

- Multiply the matrix I  stored in CSR format by the obtained vector, 

employing standard routines for the Intel MKL; 

- Fill the thk  column -1

k
  IH R  of the matrix 1−  IH R  in the RCV format, 

while employing the sparsing threshold, s . 

Note that the above process makes it possible for us to avoid the creation of intermediate 

matrices of large dimensions and directly builds the matrix 1−  IH R  of dimensions 

(𝑚 𝑥 𝑚). An additional important observation is that all 3 stages of the above algorithm 

are independent of both the column number k  and the time step t , which makes the 

whole pre-computing stage "embarrassingly" parallel. The parallelism can be exploited on 

two levels: first, while building the matrix 1−  IH R , i.e., the columns of the matrix can be 

calculated separately and then collected into the whole matrix in order to perform the 



20 

 

calculation stage1, and second, while calculating the matrices 1−  IH R corresponding to 

different time steps entering into a single period2. 

 Factorization of matrix 1−  IH R  

Instead of direct calculation of the inverse of the matrix 1−  IH R  we perform LU 

factorization, which then allows us to obtain the product of 
1

1
−

−  IH R  by any generic 

vector of appropriate length. LU factorization was performed by utilizing an open-source 

MUMPS solver [61], [62], and the LU factors calculated for each time step were stored on 

the hard disk3. 

2.3.2  Time integration stage 

After completing the pre-computing stage, the time integration stage can be initiated. The 

implementation details of all the steps required to complete the solution of Eqs.(2.15) and 

(2.16) for one time step are as follows: 

• Calculate 1 1,n nRHS− −  IH : 

- Employ a generic driver of either the first or the second type, with its 

original RHS to calculate the product 1 1,n nRHS− −  IH ; 

- Multiply the matrix I  stored in CSR format by the obtained vector, 

employing standard routines from the Intel MKL. 

• Calculate 1 1,n nRHS− −  − IH U  simply by subtracting two vectors. 

 

1 This strategy is preferable for stationary immersed bodies. 
2 This strategy is preferable for periodically oscillating immersed bodies, and was utilized in the present study. 
3 A still not released version of MUMPS, allowing for the storage and reconstruction of LU  factors, was 

provided by the MUMPS developers, who can be contacted through the software website 

http://mumps.enseeiht.fr/. 
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• Calculate F 4 (See Eq.(2.15)): 

- Retrieve the LU  factors of the matrix 1−  IH R , which were calculated 

at the pre-computing stage for every time step and stored on the hard 

disk; 

- Assign 1 1,n nRHS− −  − IH U  to the RHS of Eq. (2.15); 

- Perform standard backward and forward substitutions of the factorized 

matrix 1−  IH R  with respect to the RHS built in the previous step. 

• Calculate *u  (See Eq. (2.16)): 

- Multiply the matrix R  stored in CSR format by the calculated DLM 

vector F , employing standard routines from the Intel MKL; 

- Calculate 1,n nRHS − − RF  simply by subtracting two vectors; 

- Employ a generic driver of either the first or the second type, with a 

modified RHS equal to 1,n nRHS − − RF . 

Note that after completing the pre-computing stage, the time integration of the presently 

developed methodology is based on double implementation of an original generic driver 

(of either the first or the second type). Namely, for the first time when calculating 

1 1,n nRHS− −  IH  and for the second time when calculating 
1−

H R  products - the same as 

when utilizing any fully explicit formulation of the direct forcing IBM. As a result, not only 

does the developed semi-implicit methodology provide a more accurate imposition of the 

kinematic constraints of no-slip on the surfaces of the periodically oscillating immersed 

 

4 All the stages within the bullet are automated in MUMPS.  
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bodies, but it is also as fast as its fully explicit counterpart in terms of time efficiency of the 

time integration stage. 
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Chapter 3  

Results and discussion 

3.1 Chapter overview 

In this chapter, the results obtained in the framework of the current study are 

presented and discussed. The first part of the chapter, section 3.2, is dedicated to extensive 

verification of the developed methodology through a series of benchmark tests using the 

well-studied configuration of an incompressible flow driven by a transversely oscillating 

sphere in an otherwise quiescent fluid. This flow configuration is further used to assess the 

sensitivity of the developed method to the spatial grid size and time step values (grid 

convergence study), and to analyze its efficiency characteristics in terms of RAM memory 

usage and time step duration. 

The latter part of this chapter (starting from 3.2.4) presents a series of 

demonstrations of the capabilities of the developed method in simulating the 

incompressible flow generated by a body characterized by periodic kinematics. The already 

mentioned oscillating sphere configuration, as well as the configuration of a rotating 

ellipsoid, are simulated for different values of Reynolds number. The physical 

characteristics of the flows in terms of the time evolutions of the total drag coefficient and 

the torque are presented as a function of Reynolds values. The vortical structures inherent 

in these flows are visualized by presenting the isosurfaces of the 2  criterion. 
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3.2 Flow around a transversely oscillating sphere 

An oscillating sphere of diameter D   in an otherwise quiescent fluid confined by a 

rectangular prism of dimensions 4 4 6D D D    is considered. A schematic of the physical 

model is given in Figure 2. The sphere oscillates in the z  direction with periodic velocity 

zU   given by: 

 ( )max sinzU U T=   (3.1) 

where   is the angular oscillating frequency and T  is the dimensional time. Setting the 

coordinate system origin at the center of the prism (as shown in Figure 2), the time 

dependent location of sphere's center of mass can be obtained by integrating Eq. (3.1) over 

time to yield: 

 ( )max0 0 cosc

U
T



 
− 

 
x =   (3.2) 

No-slip boundary conditions are applied to the surface of the sphere and to all the walls of 

the computational domain. The no-slip boundary conditions are chosen as: first, they can 

be easily reproduced in future realistic experiments; and second, the computational domain 

chosen is large enough so that the wall shear effect is negligibly small. After utilizing the 

values of D  , maxU D  and 2

maxU  for scaling the length, velocity, time and pressure fields, 

respectively, the kinematics of the oscillating sphere is governed by the following non-

dimensional equations: 

 0 0 sinc z

D
u t

A

  
= =   

  
u   (3.3) 

 0 0 cosc

A D
z t

D A

  
= = −   

  
x   (3.4) 
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where 
maxA U =  corresponds to the oscillation amplitude of the sphere. After 

substituting the above kinematics in (2.1)-(2.3), it is clear that the flow is governed by two 

non-dimensional parameters, namely, the Reynolds number, 
maxRe U D =  , and the ratio 

of the oscillation amplitude to the sphere diameter, A D . It can be noticed that for the 

choice of 𝐴 = 𝑈𝑚𝑎𝑥 𝜔⁄ , the 𝐴 𝐷⁄  ratio is equivalent to the Strouhal number (𝑆𝑡 =

𝜔𝐷 𝑈𝑚𝑎𝑥⁄ ), typically used to normalize frequency in oscillatory flows. 

 

Figure 5: A schematic representation of the physical model. A sphere of diameter D is 

confined by a prismatic enclosure of dimensions 4𝐷 × 4𝐷 × 6𝐷. The sphere oscillates in 

the 𝑧 direction with amplitude 𝐴. 

Next, the force balance of the accelerating sphere is considered. Recalling that the sphere 

is filled with the same fluid as that outside of it (in accordance with the IB method 

formalism), the force balance can be expressed as [31]: 

 

sphere sphere

D

V V

d
dV dV

dt
= + u f f   (3.5) 
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The first term of the RHS of Eq. (3.5) represents the instantaneous drag force exerted on 

the sphere by the fluid, while the second term corresponds to an instantaneous external 

force that should be exerted on the body to provide its prescribed kinematics. This term can 

be directly calculated by summing all the IB forces in accordance with: 

 

sphere

ijk

ijkV

dV f x y z=    f   (3.6) 

Eqs. (3.5) and (3.6) enable computation of the drag force, 
Df . Under the assumption of 

rigid-body motion on the sphere interface [28], the LHS term in Eq. (3.5)  can be 

approximated as: 

 

sphere

c
sphere

V

dd
dV V

dt dt
=

u
u   (3.7) 

where 
cd dtu   is the acceleration of the sphere center of mass, which can be obtained 

analytically by taking the time derivative of Eq. (3.3). For purposes of comparison, the drag 

force, Df , can also be expressed in terms of the drag coefficient determined for a spherical 

geometry as: 

 
2 2

max

8
i

i

D

D

f
C

U D 
=   (3.8) 

where  
iDf   is the value of the thi   component of the dimensional drag force Df . Utilizing 

the scaling of the present study, the drag coefficient is expressed in terms of the non-

dimensional drag force DF   as 8
i iD dC F = . In compliance with the IB method, the surface 

of the sphere is described by a set of uniformly distributed Lagrangian points, obtained by 

employing the non-iterative method of Leopardi [63]. The number of Lagrangian points 

used for the discretized sphere is determined by: 
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2

2L

D
N

x


=


  (3.9) 

where x  is the typical cell width of the uniform Eulerian grid. Thus, the spacing between 

the Lagrangian points is kept approximately the same as the Eulerian grid cell width, 

providing the high accuracy of the IB method. Figure 3 shows the distributed points over 

the sphere surface, enclosed in virtual surfaces of equal area. 

 

Figure 6: Lagrangian points evenly distributed over the surface of a sphere by the non-

iterative method of Leopardi. 

3.2.1 Verification study 

The developed methodology was verified by comparing the results obtained for the 

transversely oscillating sphere with the corresponding results available in the literature. 

First, a comparison is conducted between the currently calculated time evolutions of the 

non-dimensional drag force in the z  direction and the corresponding values previously 

reported in [64]. The comparison is done for two sets of Re  and A D  values: 

( ) ( )Re, 40,5A D =  and ( ) ( )Re, 40,0 3125A D =  , as shown in Figure 7. We note in 
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passing that the non-dimensional time, t , and the drag force, DF , were multiplied by the 

factors of A D  and 3 Re , respectively, to meet the scaling used in [64]. 

 

(a) 

 

(b) 
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Figure 7: Comparison between the time evolutions of non-dimensional drag forces, 
DF , 

obtained for: (a) ( ) ( )Re, 40,5A D = ; (b) ( ) ( )Re, 40,0.3125A D = . Solid lines correspond to the 

currently obtained results, while ○ markers correspond to the values that were digitally 

scanned from [64]. 

The calculations were performed on a 200 200 300   uniform grid with a time step t  equal 

to 310−  of the oscillation period.  An acceptable agreement between the present and the 

previously reported DF  values is observed for the entire length of the oscillation period, 

while the existing, insignificant, deviation between the results can be attributed to the 

assumptions of an infinite computational domain and an axisymmetric flow regime made 

in [64].  

 As an additional means of verification of the developed methodology, a comparison 

was made between the values of the peak drag coefficient, maxDC , with the corresponding 

values reported in [65], as shown in Figure 8. The maxDC  values were calculated based on 

the drag force in the z  direction exerted on the vertically oscillating sphere by the flow. 

Characteristics of the computational set-up, in terms of grid resolution and time step value, 

were the same as those used in the previous verification test. 
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Figure 8: Comparison of the peak drag coefficient, maxDC , obtained for 𝑅𝑒 = 10 (  ),  𝑅𝑒 =

20 ( ), 𝑅𝑒 = 50 ( ) and 𝑅𝑒 = 100 ( • ) as a function of the A D  ratio with the 

corresponding maxDC  values reported in [65]. 

The current results successfully reproduce two general trends reported in [65]: first, for a 

given value of the A D  ratio, the 
maxDC  values decrease with increasing values of Reynolds 

number; and second, for a given value of Re , the maxDC  values decrease with increasing 

values of the A D  ratio.  The first trend can be attributed to the fact that the value of the 

drag coefficient is inversely proportional to Re , while the second trend is related to the 

inertia effects of the flow, which are inversely correlated to the A D  ratio (the fact becomes 

obvious after taking the time derivative of Eq. (3.3)).  Our results also predict the asymptotic 

value of the peak drag coefficient at A D → , representing the steady state configuration. 

It can be clearly seen that in this case the drag coefficient is significantly lower than its 

unsteady counterpart. This observation can be explained by an impact of the acceleration 

of the body inducing a pressure force which contributes to the drag coefficient.   

It can be seen that there is an acceptable level of agreement between the present and 

the previously reported maxDC  values over the entire range of the Re  and A D  values. As 
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a general trend, the discrepancy between the results increases with increasing Re  and 

decreasing A D ratio values. The maximal discrepancy (not exceeding 7%) was observed 

for ( ) ( )Re, 100,0A D =  . The discrepancies between the results of the current study and 

those reported in [65] can be explained by differences in the size of the computational 

domains and in the basic assumptions made when performing the numerical simulations. 

Particularly, the results of [65] were obtained under the assumption of axisymmetric flow 

in a computational domain extending 50 diameters in both radial and axial directions, while 

the present simulations were performed for a much smaller ( 4 4 6D D D  ) non 

axisymmetric domain. The difference in the computational domain size can also serve as a 

possible explanation for the categorically higher values of peak drag coefficient obtained 

in the present study, as the impact on the sphere is increased by the no-slip boundaries of 

the confining prism. Another possible reason for the observed discrepancies could be the 

assumption of rigid body motion of the fluid within the sphere used in the present study for 

calculating the instantaneous drag force, 
DF  (according to the IB formalism the body is 

represented by a series of discrete points representing its surface, while the confined volume 

is occupied by a fluid of the same density as the surrounding fluid). This assumption is a 

good approximation as long as the flow inertia is low, i.e., for high values of the A D  ratio. 

However, it may not hold very well for low A D values, a fact that is also consistent with 

the slightly higher value of the presently obtained peak drag compared to the corresponding 

value of [64] obtained for ( ) ( )Re, 40,0 3125A D =   (see Figure 6-b). The observed 

discrepancy, however, shows up in the post-processing stage, and has no impact on the 

accuracy of the characteristics of the calculated flow field.  
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3.2.2 Grid and time step convergence 

The sensitivity of the developed methodology to grid size and time step values was 

investigated. For this purpose, the convergence of the values of the peak drag coefficients 

obtained on coarse (100 100 150  ) and fine ( 200 200 300  ) grids was studied. The 

results obtained on both grids were further extrapolated to their zero-grid-size asymptotic 

values, 
max, 0D hC =

, by employing Richardson extrapolation in the following manner: 

 
( )

( )max,1 max,2 1

max, 0 max,2
1

D D p

D h D p

C C
C C O h

r

+

=

−
= + +

−
  (3.10) 

where  
max,1DC  and 

max,2DC are the values obtained on the fine and coarse grids, respectively, 

r  is the grid refinement ratio (in this case 2r = ) and p is the order of the used method (in 

this case 2p = ). Theoretically, equation (3.10) for the Richardson extrapolation provides 

a 1p +  order estimate for the continuum value of 
maxDC . Therefore, considering that 

calculations are done with a second order method employed with grid spacing of 0 02h =   

(as in the present study), this estimation is the equivalent of performing a grid refinement 

with a grid refinement ratio of 7r  . The calculated fine and coarse grid values, along with 

the extrapolated values, were compared with the numerical results reported in [65], as 

shown in Table 1. It can be seen that the maxDC  values monotonically decrease with mesh 

refinement, while the deviation between the fine grid and the zero-grid-size asymptotic 

values does not exceed 3%.  
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Table 1: Comparison between the present and the previously published 
maxDC  values 

Re 10=   

A D   max, 0D hC = 
 

max, 0 02D hC = 
 

max, 0D hC 
 [65] 

0.5 8.88 8.59 8.49 8.14 

1 6.77 6.62 6.57 6.32 

1.5 6.02 5.92 5.89 5.8 

Re 20=  

A D   max, 0D hC =   max, 0 02D hC =   
max, 0D hC 

 [65] 

0.5 6.26 6.01 5.93 5.7 

1 4.58 4.47 4.43 4.27 

1.5 3.98 3.93 3.91 3.83 

Re 50=  

A D   max, 0D hC =   max, 0 02D hC =   max, 0D hC   [65] 

0.5 4.27 4.04 3.96 3.82 

1 2.93 2.85 2.82 2.74 

1.5 2.51 2.47 2.46 2.39 

Re 100=  

A D   max, 0D hC =   max, 0 02D hC =   max, 0D hC   [65] 

0.5 3.44 3.18 3.09 2.97 

1 2.33 2.13 2.06 2.06 

1.5 1.89 1.82 1.8 1.77 

An additional important observation is related to the time evolution of the DC  obtained on 

different grids. Spurious high-frequency oscillations (in the form of saw teeth) were 

observed for the time evolution of DC  calculated on the coarse grid. These oscillations were 
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smoothed completely with mesh refinement.  For this reason, all further results for the 

simulation of the present flow configuration were obtained using a 200 200 300   grid. 

Investigation of the time step value sensitivity of the obtained results revealed that 

sustainable numerical stability of the developed method is achieved for the Courant number 

values 0 2C   . Time step independence of the obtained results (including the elimination 

of the spurious saw teeth oscillations) is achieved for the values of 22 10X −    and 

310t −   for the values of Re 200 . 

3.2.3 Efficiency characteristics  

Focus has been put on the efficiency characteristics of the developed methodology 

in terms of memory consumption and time step duration, for both the pre-computation and 

the time integration stages. The trends for both the efficiency characteristics were obtained 

by utilizing a power law best fit to the corresponding measurements of these characteristics. 

The measurements were taken for three different grid resolutions and four different values 

of the Reynolds number, as shown in Figure 9. It is remarkable that the pre-computing stage 

is characterized by higher absolute values of consumed RAM compared to the time 

integration stage. This behavior can be explained by the extra memory consumed by the 

MUMPS solver when performing the LU factorization procedure. Once the factorization 

stage is completed, only the LU factors are stored on the hard disk5, while all the 

dynamically allocated auxiliary memory is automatically released. It is also worth 

mentioning that the configurations characterized by a lower Reynolds number typically 

consume more memory, which can be explained by the more pronounced elliptical 

character of the low-Reynolds-number-flows. This feature ultimately leads to a higher 

 

5 In accordance with the developed algorithm, the stored factors will be cyclically read during the time 

integration stage. 
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number of non-zero entries in the 1−  IH R  matrix satisfying the determined sparsing 

threshold 2110s −= . Another important observation is related to the fact that exponent values 

of the memory consumption fits, built for both pre-computing and time integration stages, 

are significantly lower than unity, indicating the efficiency in exploiting the sparseness of 

the matrices involved in both stages. 

The efficiency of the developed methodology in terms of time step duration in both 

pre-computing and time integration stages can be assessed by examining the corresponding 

best fits shown in Figure 9. It can be seen that the exponent value corresponding to the best 

fit built for the time integration stage is very close to unity, indicating high efficiency of the 

developed methodology, whose time consumption grows almost linearly with increasing 

grid resolution. In the same instance, a much higher slope characterizes the best fit 

corresponding to the time consumption of the pre-computing stage. This observation can 

be explained by the fact that an increasing grid resolution has, in practice, a dual effect on 

the amount of calculations that have to be performed in the pre-computing stage. First, it 

increases the dimensions of the matrix  H  corresponding to the Helmholtz operator of the 

original solver, not equipped with the IB functionality; and second, it increases the number 

of Lagrangian points (as follows from Eq. (3.9)) needed to meet the requirement of 

approximately the same distance between the neighboring Lagrangian points and the cell 

width of the underlying Eulerian grid, necessary to the achieve high accuracy of the 

obtained results. 
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(a) 

 

(b) 
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(c) 

Figure 9: Efficiency characteristics: (a) Memory consumption in pre-computing stage; (b) 

Memory consumption in time integration stage; (c) Time step duration in pre-computing 

and time integration stages. 

3.2.4 Flow simulations 

Upon successful verification of the developed method for the simulation of flow 

developing in the presence of a transversely oscillating sphere, a number of representative 

results was obtained to gain a better understanding of the 3D flow configuration 

characteristics. Figure 10 presents the time evolution of the drag coefficient, 
DC , obtained 

for the values of Re 50,100,150=  and 200  and 1A D = . The trend which was already 

observed in Figure 8, i.e., an inverse growth of the peak drag coefficient with the Reynolds 

number, is also preserved for the higher values of Reynolds number. Another important 

remark is that the inertia effects of the flow are quite significant. These effects are 

manifested in a clearly visible phase lag between the time evolution of the position of the 

sphere, 0z z− , and the DC  curves, which indicates that the fluid, driven by the oscillating 

sphere, continues its motion even after the sphere has completely stopped moving.  
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Figure 10: Time evolution of the drag coefficient, 
DC , obtained for Re = 50,100,150,200  

and A/D = 1, superimposed on the time evolution of the position of the sphere, 
0z z−   

(dashed line). 𝑡 is the non dimensional time. 

Flow patterns developing on different parts of the sphere trajectory have been visualized by 

looking at the isosurfaces of the 
2  criterion corresponding to the value of 2 0 1 = −  , as 

shown in Figure 11. According to [66], the isosurfaces characterize the vortical structures 

of the flow. Because of the flow inertia, the annular vortical structures are formed at the 

lowest and the highest points of the sphere trajectory, shedding from the sphere surface and 

then propagating through the computational domain. It is also remarkable that the lifetime 

of the annular vortices increases with increasing values of the Reynolds number. In fact, 

for Re 100= , the vortical structure dissipates almost immediately after separating from the 

sphere surface, while for Re 200=  the structure continues to evolve within about half a 

period of the sphere oscillation. 
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(a) Isosurfaces of the 
2 =-0.1 criterion calculated at the lowest point of the sphere trajectory for Re 

= 100,150,200 (from left to right). 

   

(b) Isosurfaces of the 2 =-0.1 criterion calculated at the mid-point of the sphere trajectory on its 

way up for Re = 100,150,200 (from left to right). 
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(c) Isosurfaces of the 
2 =-0.1 criterion calculated at the highest point of the sphere trajectory for Re 

= 100,150,200 (from left to right). 

   

(d) Isosurfaces of the 2 =-0.1 criterion calculated at the mid-point of the sphere trajectory on its 

way down for Re = 100,150,200 (from left to right). 

Figure 11: Visualization of the vortical structures generated by a transversely oscillating 

sphere over a single oscillating period calculated for Re = 100,150,200 and A/D = 1. 

It should be noted here that attempts to simulate the flow developing at even higher values 

of Reynolds numbers, Re 300 , have been made (for these values the symmetry of the 

flow is expected to break down, justifying the full 3D simulation for capturing non-

axisymmetric flow phenomena). Unfortunately, when the simulations are performed on a 
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200 200 300   grid the time evolution of 
DC  showed reoccurrence of the spurious high-

frequency oscillations reported in 3.2.2. This undesirable artifact of unphysical temporal 

oscillations of the pressure field has been previously reported for IBMs dealing with moving 

bodies on a fixed, non-body conformal computational grid [67],[68]. According to Lee at 

el. [67], this artifact manifests itself when using direct forcing IBMs for moving-body 

problems, as the result of a temporal discontinuity in the velocity, which is related to the 

fact that the numerical stencils applied for the forcing terms vary with boundary motion. In 

other words, when the IB approaches an external grid point (of the Eulerian grid), the 

velocity, 
iu , at that grid point should approach the body velocity, 

i


U ; however, in practice, 

it converges to the body velocity with a spatial discretization error up to the order of the 

interpolation error. When this grid point is located on the IB, with the body shifting its 

position in the next time step, its velocity suddenly changes to satisfy the body kinematic 

constraint through the momentum forcing. This discontinuity in time ultimately generates 

non-physical behavior of the pressure near the IB. However, recalling that the magnitude 

of the velocity discontinuity is proportional to the grid spacing [67], this numerical artifact 

can be eliminated by performing simulations on even finer grids. This feat is feasible for 

stationary set-ups, albeit prohibitively expensive for configurations containing oscillatory 

moving immersed bodies. Future research will be focused on developing a sharp interface 

formulation of the developed methodology that will make it possible to implicitly impose 

kinematic no-slip constraints with the second order of accuracy, while keeping intrinsic 

portability of the methodology, i.e., utilizing the existing efficient time steppers of the NS 

equations in a black box manner. 
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3.3 Flow around a pair of transversely out-of-phase oscillating spheres 

To further demonstrate the capabilities of the developed methodology, the 

configuration of a pair of out-of-phase oscillating spheres was considered. Similarly to the 

previous configuration, the flow was calculated for the values of Re 50,100,150=  and 200. 

Both spheres oscillate with a value of / 0A D =  , each around its own oscillation center 

placed at a distance of 1 D  from the top and bottom boundaries of the prism, 

respectively. As a result, a minimal distance of D  is reached between the spheres as 

their velocity reaches zero. This set-up was chosen carefully with the aim of using the same 

prismatic enclosure of dimensions 4 4 6D D D   as that utilized in previous simulations. 

The time evolution of the drag coefficient 
DC  calculated for the upper and lower spheres 

as a function of the Reynolds number is presented in Figure 12. The time evolution of 
DC  

is superimposed on the time evolution of each sphere's position (relative to its oscillation 

center), as indicated by dashed lines. 

 

(a) 
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(b) 

Figure 12: Time evolution of the drag coefficient, 
DC , obtained for Re 50,100,150= and 

200 (solid line) and / 0A D =   for: (a) The lower sphere superimposed on the time 

evolution of its position, 
lz z−  (dashed line), where 

lz  is the lower sphere's oscillation 

center; (b) The upper sphere superimposed on the time evolution of its position, uz z−  

(dashed line), where 
uz  is the upper sphere oscillation center. 𝑡 is the non-dimensional 

time. 

 As in previous configurations, there is a clearly distinguishable phase lag between 

the time evolutions of 
DC  and the corresponding position of the sphere, which again 

confirms the existence of non-negligible inertia effects of the surrounding flow. By virtue 

of the symmetric initial boundary conditions, the time evolutions of DC  of both spheres are 

symmetric relative to the corresponding oscillation centers for the entire range of Reynolds 

numbers, up to a slight bias reflected in a difference between the maximal and minimal 

absolute values of each sphere's DC . In particular, the absolute DC  values are consistently 

higher when the spheres are close to each other over the entire range of Reynolds values, 

as follows from the data acquired over a single oscillating period for the upper sphere, 

without loss of generality, as detailed in Table 2. It is noteworthy that the DC    time 
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evolutions acquired for the two spheres are equal up to a multiplication by minus unity i.e., 

the mutual effect of the spheres is independent of the direction of their motion and is only 

a function of their acceleration and proximity. As the spheres move away from each other, 

their mutual effect decreases and eventually tends to zero, resulting in smaller absolute 

values of the 
DC  extrema. This observation is supported by a comparison between the 

current extremum values of 
DC  and the values of peak drag coefficients calculated for a 

single oscillating sphere at ( ) ( )Re, 50,0A D =    and at ( ) ( )Re, 100,0A D =  , as detailed in 

Table 1. It can be seen that for the case when the two spheres are at the maximal distance 

from one another, the extremum values of DC  are fairly close to the peak drag coefficient 

values acquired for a single oscillating sphere (1.5% deviation). 

Table 2: Absolute values of the minimum and maximum 
DC  acquired for the upper sphere 

as a function of the Reynolds number  

Reynolds 

 number  

DC  Maximum  

absolute value 

DC  Minimum 

 absolute value 

50 4.1 4.25 

100 3.24 3.37 

150 2.89 3 

200 2.69  2.8 

 

It should be mentioned that, although significantly alleviated, the insignificant non-

physical high-frequency oscillations can again be recognized in the time evolution of the 

DC  values of the two spheres for Re 100 . These high-frequency oscillations are a 
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numerical artifact, reappearing as a result of the fact that the acceleration of the spheres6 is 

twice that characterizing the previous configuration. As has already been mentioned, the 

observed high-frequency oscillations can be eliminated either by utilizing grids that are 

even denser or by employing a second-order sharp interface formulation of the developed 

methodology, which will be the focus of our future work. 

The obtained results were visualized by utilizing the same technique as that used for 

the previous configuration, i.e., by presenting vortical structures recognized by isosurfaces 

of the 2  criterion corresponding the value of 2 0 = − . The isosurfaces are presented for 

four representative time instances taken over the oscillation period, as shown in Figure 13. 

Surprisingly, the inertia of the surrounding flow does not have a strong effect on the 

intensity of the shedding phenomenon. In fact, despite the higher acceleration 

characterizing the flow regime under consideration, the intensity of the shedding of the 

annular vortex structures from the sphere surface is significantly less pronounced, as can 

be seen in Figure 13.  This is apparently a consequence of the half length of the trajectory 

of the spheres, which leads to lower peak values of the local fluid flow rate generated by 

the spheres. 

 

6 A direct consequence of a double reduction of the /A D  value.  
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(a) Isosurfaces of the 2 =-0.1 criterion calculated at the lowest point of the sphere trajectory for 

Re = 100,150,200 (from left to right).  

 

(b) Isosurfaces of the 2 =-0.1 criterion calculated at the mid-point of the sphere trajectory on its 

way up for Re = 100,150,200 (from left to right). 
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(c) Isosurfaces of the 2 =-0.1 criterion calculated at the highest point of the sphere trajectory for 

Re = 100,150,200 (from left to right). 

 

(d) Isosurfaces of the 2 =-0.1 criterion calculated at the mid-point of the sphere trajectory on its 

way down for Re = 100,150,200 (from left to right). 

Figure 13: Typical pattern of vortical structures characterized by the isosurfaces of 

2 0 = − , generated by a pair of out-of-phase transversely oscillating spheres over a single 

oscillation period calculated for Re 100,150=  and 200  and for / 0A D =  .  

3.4 Flow around a rotating ellipsoid  

In this section the flow generated by an ellipsoid rotating with uniform angular 

velocity,  , is considered. This kind of flow configuration is of great importance in 
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simulating the active mixing phenomenon that is an integral part of many processes in bio- 

and chemical engineering.   The physical model of the problem is shown in Figure 14. The 

ellipsoid is placed within a prismatic computational domain of dimensions4 4 6D D D  . 

The center of the ellipsoid is aligned with the vertical centerline of the prism and is placed 

at a distance h  from its bottom. The direction of the ellipsoid’s rotation around the z axis 

is as indicated in Figure 14 by a curved arrow.  The ellipsoid radii are a , c  and b  along 

the x , y  and z  axes, respectively. No-slip boundary conditions are applied to the surface 

of the ellipsoid and to all the walls, confining the computational domain. 

 

Figure 14: A schematic representation of the physical model. The ellipsoid is confined by 

a prismatic enclosure of dimensions 4𝐷 × 4𝐷 × 6𝐷 and rotates with a constant angular 

velocity 𝜗̇ around the 𝑧 axis. 

Similarly to for the previous configuration, the surface of the ellipsoid is discretized by a 

set of uniformly distributed Lagrangian points. An in-house developed algorithm, using a 

set of equispaced circular sections to describe the ellipsoid, is used to implement the 
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discretization procedure. For the special case of b c= , the number of circular sections used 

to describe the ellipsoid is determined by: 

 
2

S

a
N

x
=


  (3.11) 

where x  is the typical cell width of the uniform Eulerian grid, and the number of 

Lagrangian points used for the discretization of  the surface of the ellipsoid is given by the 

sum of the equispaced Lagrangian points at each circular section: 
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Simulation results are calculated on a 100 100 150  uniform grid with a time step equal to 

310t − =  of the rotation period. Utilizing the values of 2b , maxU a=  and max2b U for 

normalizing length, velocity and time scales, respectively, the flow is governed by two non-

dimensional parameters, namely, the Reynolds number ( maxRe 2U b = ) and the ratio of 

the longest to the shortest radius, N a b= . The ( ), ,x y z  position of any point on the 

rotating ellipsoid's surface is governed by the following non-dimensional equations:  

 ( ) ( )0 02cos cos 2 2x N t N X b = + +   (3.13) 

 ( ) ( )0 01 2cos sin 2 2y t N Y b = + +   (3.14) 

 ( ) 01 2sin 2z Z b= +   (3.15) 
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where 2 2  −   ,   −    and ( )0 0 0, ,X Y Z  are the coordinates of the ellipsoid's 

center relative to the global coordinate system origin. The ellipsoid's instantaneous velocity 

vector ( ), ,x y zu u u  can be obtained by an analytical time differentiation of the 

corresponding coordinate, yielding: 

 ( ) ( )0cos sin 2xu t N = − +   (3.16) 

 ( ) ( )01 cos cos 2yu N t N = +   (3.17) 

 0zu =   (3.18) 

Assuming rigid-body motion on the ellipsoid interface [28], and taking into account that 

the ellipsoid rotated with a constant angular velocity  , the torque exerted on the ellipsoid 

by the flow as a result of the drag force may be estimated by: 

  
, ,

, ,ellipsoid
i j kV

i j k

M dV x y z= −  =−     r f r f   (3.19) 

The simulations were performed for 2h b= , 2N =  and Re 100,200,300= . The time 

evolution of the torque, M , exerted on the rotating ellipsoid by the flow, as a function of 

the whole range of Reynolds number values is shown in Figure 15. It can be seen that the 

previously reported numerical artifact of spurious high-frequency oscillations is present in 

all the results. Unfortunately, subsequent attempts to perform these simulations on a denser 

200 200 300   grid have failed to achieve a significant mitigation of these oscillations. As 

previously stated, a remedy to this problem must come from a higher order of IB 

formulation accuracy, which will be the focus of future research. At the same time, the 

obtained results still enable studying the qualitative attributes of the flow when focusing on 

the low frequency harmonics of the time evolutions. As expected, the absolute value of M  
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decreases with decreasing Reynolds number. In each curve, the four highest peaks 

appearing during a single turnover time are attributed to the prismatic shape of the 

computational domain. The peaks are related to four symmetric positions of the ellipsoid 

when its longest axis is perpendicular to the face of the domain, resulting in an abrupt 

deviation of the M  value as the distance between the two tips of the ellipsoid and the 

corresponding faces of the prism changes. The above observations are made even more 

substantial by examining the distribution of the vortical structures visualized in Figure 16, 

as shown by the isosurfaces of 2 0 1 = −  . It can be seen that the pairs of patterns observed 

in the figures: Figure 16-a and Figure 16-c, and Figure 16-b and Figure 16-d, are symmetric 

up to 90  rotation, which explains the quarter turn periodicity of the time evolution of M

. It can be seen that the patterns are also somewhat reminiscent of Görtler vorticities, which 

occur at boundary layer flows along concave walls, although the detailed examination of 

this hypothesis remained beyond the scope of the current study. 

 

Figure 15: Time evolution of the torque, M , exerted by the flow on the rotating ellipsoid, 

obtained for Re 100,200,300= , 2N =  and 2h b= . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 16: Typical patterns of vortical structures characterized by the isosurfaces of 

2 0 1 = −   , generated by the rotating ellipsoid for Re 100,200,300= , 2N =  and 2h b=  

at: (a) The starting point of the rotation; (b) 1 8  of the whole turn; (c) 1 4  of the whole 

turn; (d) 3 8  of the whole turn. 
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Chapter 4  

Summary and conclusions 

A novel semi-implicit IB formulation based on the Schur complement approach was 

developed for the simulation of incompressible flows in the presence of periodically 

moving immersed bodies. The developed formulation was successfully verified for the flow 

generated by an oscillating sphere over the entire examined range of Reynolds numbers and 

A D ratios. As an extension of the work published in [54], the developed approach 

comprises a generic methodology that makes it possible for us to equip any existing time 

marching solver of the NS equations based on the segregated pressure-velocity coupling 

(e.g., SIMPLE, fractional step, projection methods and their derivatives) with the IBM 

functionality. A distinctive feature of the developed methodology is that it is composed of 

two stages, namely, pre-computing and time-integration stages. The present methodology 

intelligently employs parallelism in the time direction by exploiting the periodic character 

of the immersed bodies, rendering the whole pre-computation stage "embarrassingly" 

parallel. This fact allows us to boost its computational efficiency. Another distinctive 

feature of the developed methodology is the increased efficiency of the time integration 

stage, achieved by incorporating the MUMPS solver and the GPFS technology in the 

solution procedure. The MUMPS solver enables the efficient storage and reconstruction of 

matrices by using its LU factors, while the GPFS facilitates acceleration of the read-write 

procedures. Overall, the performance characteristics of the developed methodology for all 

the configurations simulated in the framework of the present study can be summarized in 

terms of the following quantitative data: RAM consumption – no more than 20 GB; hard 

disk space required for keeping LU factors for 310  time steps over a single period – no 



54 

 

more than 1.5 TB; typical time required for pre-computing a single time step on a single 

standard Linux server containing 24 cores (48 threads) – less than 10 minutes for a 

100x100x150 grid and less than one hour for a denser, 200x200x300 grid (the time required 

for the pre-computing stage is linearly proportional to the number of servers involved); 

typical time required for performing a time integration of a single time step on a single 

standard Linux server containing 24 cores (48 threads) – less than 2 seconds. 

Several issues related to the present formulations have been encountered throughout 

the study. First, the presence of spurious pressure oscillations in simulations of an 

oscillating sphere with Re 300  and in simulations done for a rotating ellipsoid. Although 

for the case of the rotating ellipsoid, this artifact could be the result of numerical instability 

due to violation of the CFL condition7, it has been found to be closely related the spatial 

order of the accuracy of the scheme. Following from the limited accuracy of the present 

formulation, mitigation of the pressure oscillations will require using much denser 

computational grids, which may be prohibitive in terms of the overall memory consumption 

and the time required for completing the pre-computing stage. In the near future, there is 

room to consider incorporating a higher order of IB formulation accuracy in the developed 

methodology, such as sharp-interface IB methods based on the cut-cell [68]-[71] or ghost 

cell [72]-[73] approaches. These formulations will make it possible for us to produce high 

fidelity results with a reasonable number of computational nodes, which will ultimately 

lead to reduced memory consumption and time duration of the pre-computing stage and 

less intensive usage of hard disk space. These formulations will also allow, to perform the 

simulation of higher Reynolds flows for the configurations investigated in the framework 

of the current study. As such they will allow for investigation of a the axisymmetry breaking 

 

7 As we are dealing with rotational motion of relatively large immersed bodies, very high values of linear 

velocity develop at the tips of the immersed body. 
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flows justifying the effort which was put for the development of the numerical tool capable 

for the simulation of fully 3D flows. Also, these modifications might also allow us to further 

investigate the nature of the vortical structures, including the conditions for their onset and 

shedding, typical of both oscillatory and rotational body configurations.  Note however, 

that the procedure described above will inevitably demand modifications of the original NS 

solver, and therefore could deteriorate the portability of the developed methodology. In 

addition, these formulations involve the calculation of the body stress tensor, based on the 

calculated velocity and pressure fields, which adds further implementation challenges8. 

The numerical simulations performed in the framework of the present study were 

restricted to configurations containing either oscillating or rotating bodies, yet it should be 

stressed that the developed methodology may be used to simulate a wide spectrum of 

incompressible flows in the presence of immersed bodies with any periodic kinematics. 

This capability is important for high-fidelity simulations of flows driven by various kinds 

of rotor machinery, for the undulatory motion of tiny sea creatures and for various 

biomedical applications in which the flow is driven by peristaltic contraction of the 

surrounding tissues. All the above applications will be the focus of our future studies, which 

will also address more efficient parallelizing of the time marching stage of the developed 

methodology by employing hybrid and distributed memory paradigms. Additionally, we 

intend to further investigate the accuracy of the developed methodology by examining 

features related to the instantaneous flow near the domain walls, including an extended 

analysis of the transport of passive scalar.  

 

8 In the present formulation, the pressure is treated with a DLM approach, which removes the mentioned 

complexity.   
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 תקציר

-" מורחבת, המבוססת על גישת האכיפה הישירה הבלתיImmersed Boundaryעבודה זו מציגה מתודולוגיית "

דחיסה בנוכחות גופים שקועים הנעים בתנועה מחזורית. המתודולוגיה  -פורשת למחצה, להדמיית זרימה בלתימ

-( לאכיפת האילוצים הקינמטיים של איSchur Complementנעזרת בפירוק מרחבי בגישת "משלים שור" )

השקועיה המשטחים  על  המתודולוגיה  חלקה  לחלוטין  ם.  מקבילי  מקדים  חישוב  לשלב  מחולקת 

(Embarrassingly parallel  ולשלב אינטגרציה בזמן, אשר מנצלים את יתרונותיה של מערכת קבצים על )

( לצורך כתיבה וקריאה יעילים של כמויות מידע גדולות. המתודולוגיה שפותחה ניתנת  GPFSדיסק משותף )

-" המבוסס על גישת ה"Pressure-Velocity Segregatedסטוקס ממשפחת  -ן נאוויההטמעה נוחה בכל פותרל

"Projectionאו ה "-"Fractional Stepההחלקה על  -את תנאי אי  בדיוק רב  ". בנוסף, המתודולוגיה מקיימת

בהדמיית מספר ידי יישומה  -המבצע תנועה מחזורית. המתודולוגיה אומתה בצורה מקיפה עלמשטחי הגוף השקוע  

ידי  -דחיסה הנוצרת על-משטרי זרימה מייצגים, המתפתחים בנוכחות כדור תונד. יכולותיה בהדמיית זרימה בלתי

ת בנוכחות צמד  והמתפתחהזרימות  ידי הדמיית  -טיקה מחזורית כללית, הודגמו עלגוף אחד או יותר בעלי קינמ

באנטי תונדים  ה-כדורים  סובב.  אליפסואיד  ובנוכחות  של  פאזה  הפיזיקאליים  ,  המתפתחות  הזרימותמאפיינים 

כפונקציה    הוצגובמושגים של השינוי בזמן של מקדם הגרר )במקרה הראשון( או של המומנט )במקרה השני(,  

המאפיינים את הזרימות מבנים הערבוליים  ( של הVisualizationחזיה )(. ה Reynoldsשל ערכי הריינולדס )

 .2של קריטריון   Isosurfaces-ידי הצגת ה-בוצעה על המתפתחות 
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