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The oscillatory instability of a 3D natural convection flow in a cold cubic enclosure containing a tandem
of cold and hot vertically aligned cylinders is investigated in detail as a function of the distance between
the cylinders. The study is performed by applying time integration of slightly supercritical flows. The
flows undergo a transition to unsteadiness via either reflectional symmetry breaking or reflectional sym-
metry preserving Hopf bifurcation as a function of the distance between the cylinders. An extensive dis-
cussion of the observed instability scenarios is presented, and the different instability mechanisms are
characterized in terms of the values of the main oscillating harmonics and the spatial distribution of
the oscillating amplitudes of all the fields obtained for slightly supercritical flows.
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1. Introduction all possible geometries, cylindrically shaped heat sources have
Natural convection flow in a confined rectangular container is a
basic heat transfer mechanism, which is characterized by sponta-
neous mass transfer of the working fluid, dominated by the action
of buoyancy forces. The forces result from a non-uniform temper-
ature distribution of the fluid in the presence of a gravity field,
which can be achieved by heating the cavity walls (for example,
Rayleigh-Bernard or differentially heated cavity configurations)
or by embedding discrete thermally active sources (or sinks) into
the bulk flow. The thermal sources can either be mounted flush
on the walls (see e.g. [1–4]) or take the form of discrete thermally
active bodies of various shapes immersed in the bulk of the con-
vective flow. Various setups of the latter configuration have been
the focus of extensive theoretical and experimental research in
the past two decades, as they comprise convenient test beds for
versatile engineering applications, including heat exchangers filled
with nanofluids [5–8], nuclear and chemical reactors [9,10], cool-
ing systems for electronics [11–13] and energy storage systems
[14,15].

Positioned inside the enclosure, the discrete thermally active
sources not only drive the flow, but also substantially affect the
characteristics of the flow regime as a result of the imposition of
no-slip kinematic constraints on all the source surfaces. Among
attracted much of the attention in the literature, due both to their
particular relevance to many of the above-mentioned engineering
applications and to their purely theoretical interest. The theoretical
research in this area focuses on both 2D and 3D configurations con-
sisting of a single hot cylinder positioned inside a rectangular
enclosure with either cold or locally heated walls. With regard to
2D geometries, the following studies are worthy of mention: Hus-
sain and Hussein [16] investigated the flow around an isoflux cir-
cular cylinder at different vertical locations and different values
of the Rayleigh number (Ra); Lee et al. [17] studied different
regimes of convective flow around a centrally placed hot cylinder
as a function of the Ra value and the size of the local heating zone
attached to the bottom cavity wall; Park et al. [18,19] and Seo et al.
[20,21] investigated natural convection flow in the presence of up
to four hot cylinders with varying horizontal and vertical orienta-
tions for the range of 103 6 Ra � 106; Hussain and Rahomey [22]
recently described natural convection in the presence of cylinders
of different geometries inside a square enclosure filled with porous
layers superposed with a nanofluid; and Feldman [23] investigated
the oscillatory instability of natural convection flow in the pres-
ence of a tandem of vertically aligned cylinders.

The results obtained from the simulation of 2D flows imply zero
velocity and pressure gradients in the spanwise direction and
should therefore be interpreted with care. To completely charac-
terize instabilities of natural convection flow in realistic geome-
tries characterized by a finite size in the spanwise direction, fully
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3D simulations should be performed. As a result of the high com-
putational costs and the non-trivial spatial discretization, the
state-of-the-art research addressing natural convection flow in
3D containers containing embedded cylindrical heat sources is
quite sparse. Nonetheless, ever increasing computational power,
has facilitated some research, mostly in the past decade, and this
work can be logically divided into applied and basic theoretical
studies. Among the applied studies, worthy of mention are works
introducing the concept of smart thermo-insulating materials
[24,25]. Basic theoretical research has focused mainly on address-
ing the 3D instability of natural convection flow in rectangular
geometries in the presence of a single hot cylinder placed inside
a cold cubic cavity [26] or an array of horizontally oriented hot
cylinders in a periodic rectangular channel [27]. Another area of
research interest has centered on the investigation of the 3D flow
effects in a horizontal enclosure with an embedded adiabatic body
[28,29] by applying periodic boundary conditions in the spanwise
direction.

The present research aims to investigate the characteristics of
3D instability inherent in natural convection flow in a cubic cavity,
with all no-slip boundaries, in the presence of a tandem of verti-
cally aligned horizontal hot and cold cylinders. Investigations of
this type of flow belong to the family of the most general TriGlobal
studies, i.e., analysis of global instability in a 3D domain with three
inhomogeneous spatial directions [30]. For many years, the inves-
tigation of 3D instabilities of this type was considered challenging,
if not unfeasible. Nowadays, however, with the increase of avail-
able computational power and the development of advanced
numerical techniques, this analysis has become trivial for 2D flow
configurations and possible for some 3D flow configurations [30].
In particular, the present study is performed by applying a recently
developed and thoroughly verified methodology comprising the
semi-implicit direct forcing immersed boundary (IB) method based
on the Schur complement approach [31].

Following the recent works of [32,33], the problem is addressed
by analyzing the time evolution of slightly supercritical flows
obtained by direct numerical simulation (DNS). The key idea is to
perform time integration of the flow for a time interval that is suf-
ficiently long to preserve only the single most unstable (leading)
eigenmode, while the impact of all the other eigenmodes is either
Fig. 1. Physical model of a tandem of horizontal cold and hot cylinders vertically
aligned inside a cold cube.
totally suppressed or kept sufficiently small. To ensure high accu-
racy, it is critical to fully resolve all flow scales, which limits the
analysis to configurations undergoing steady-unsteady transitions
at relatively moderate Ra values. A tandem of vertically aligned
horizontal hot and cold cylinders confined by a cold cubic cavity
and shifted downwards and upwards relative to the cavity center,
respectively, ideally meets the above limitation, as it generates
natural convection flow undergoing a steady-unsteady transition

as small at a Ra of � O 105
� �

. Despite the very simple geometric

setup, the above alignment gives rise to the formation of fully
3D, highly separated, thermally driven flows, which exhibit a num-
ber of yet to be revealed scenarios of oscillatory instability varying
as a function of the distance between the cylinders. Characteriza-
tion of the above instabilities is of considerable fundamental inter-
est and is the focus of the present study. The investigation includes
elucidation of the symmetry breaking and symmetry preserving
phenomena and characterization of the spatial distribution of the
vortical structures and the leading eigenvector inherent in the
supercritical flow, which together shed light on the physical mech-
anisms responsible for the instability onset typical of the above
configurations.

2. Theoretical background

A tandem of cold and hot cylinders of diameter D aligned along
the vertical centerline of a cubic enclosure of side L (see Fig. 1) is
considered. The enclosure is filled with air and is subjected to a
gravitational field acting in the direction negative to the z axis.
The upper cold cylinder and the lower hot cylinder are held at con-
stant temperatures Tc and Th, respectively, and the distance
between the cylinders is equal to d. The front and rear walls of
the cavity are thermally insulated, while all the other walls are
held at constant temperature Tc , as shown in Fig. 1. The ratio
between the cylinder diameter, D, and the length of the cavity side,
L, is fixed at D=L ¼ 0:2. The dynamics of the fluid can be described
by the incompressible continuity, Navier Stokes (NS) and energy
equations (Eqs. (1)–(3)):

r � u ¼ 0; ð1Þ
Fig. 2. Physical model of a hot cylinder of radius R placed inside a cold cube and
aligned along its horizontal centerline.



Fig. 3. Time evolution of the averaged Nuh and Nuc numbers and the corresponding Fourier spectra obtained for the values of d ¼ 0:4;Ra ¼ 2� 105. The results were obtained
on a 2003 structured uniform grid.

Table 1
Comparison between the present study and the previously published values [26] (as measured by photogrammetry of the corresponding charts) for Nu ,averaged over the surface
of a hot cylinder placed within a cold cube and NuG , averaged over the surface of the cold cube.

Ra ¼ 104 Ra ¼ 105 Ra ¼ 106

Nu NuG Nu NuG Nu NuG

R/L Ref. [26] Present Ref. [26] Present Ref. [26] Present Ref. [26] Present Ref. [26] Present Ref. [26] Present

0.1 6.2493 6.4880 1.0201 1.0208 11.138 11.662 1.8099 1.8360 18.3260 19.2500 2.9945 3.0348
0.2 5.1184 5.1500 1.6161 1.6188 7.2271 7.5800 2.3766 2.3814 13.3610 13.9370 4.3985 4.3677
0.3 5.8084 5.7304 2.6216 2.9091 6.4790 6.5169 2.9726 3.0702 11.2720 11.4010 5.1956 5.3844
0.4 8.7030 8.5544 5.1919 5.3928 8.7030 8.7643 5.2651 5.5131 10.7160 10.8320 6.6106 6.8313

Table 2
Coordinates of points at which the temperature evolution was acquired.

Point number X Y Z

P1 0.25 0.4875 0.25
P2 0.25 0.4875 0.75
P3 0.75 0.4875 0.25
P4 0.75 0.4875 0.75
P5 0.25 0.5125 0.25
P6 0.25 0.5125 0.75
P7 0.75 0.5125 0.25
P8 0.75 0.5125 0.75

Table 4
Maximal and minimal values of the temperature hmonitored at control points P. 2, P. 3 and P. 4 (see Table 2) as a function of d. The calculations were performed on 2003 and 3003

uniform structured grids.

d ¼ 0:4 d ¼ 0:5 d ¼ 0:6

hmax , P.3 hmin , P.3 hmax , P.4 hmin , P.4 hmax , P.2 hmin , P.2

Grid 2003 3003 2003 3003 2003 3003 2003 3003 2003 3003 2003 3003

0.157 0.156 0.131 0.129 0.297 0.298 0.284 0.284 0.278 0.280 0.226 0.228

Table 3
Maximal and minimal values of the Nusselt numbers Nuc and Nuh , averaged over the surfaces of the cold and hot cylinders, respectively, along with the value of x corresponding
to the angular frequency of the leading harmonics as a function of d. The calculations were performed on 2003 and 3003 uniform structured grids.

max Nuc
�

) min Nuc
�

) max Nuh
�

) min Nuh
�

) x

d=Grid 2003 3003 2003 3003 2003 3003 2003 3003 2003 3003

0.4 �0.846 �0.837 �1.517 �1.530 13.824 13.871 13.428 13.460 0.348 0.347
0.5 �0.895 �0.891 �1.017 �1.017 14.127 14.162 13.981 14.013 0.815 0.815
0.6 �0.984 �0.987 �1.642 �1.640 16.645 16.678 16.267 16.480 0.945 0.945
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Fig. 4. Snapshots of the spatial distribution of the isosurfaces of k2 ¼ �0:1 superimposed by stream traces shown at four representative instances taken evenly throughout an
oscillation period: 1 (a); 2 (b); 3(c); 4(d). The time instances 1–4 are defined in Fig. 3, d ¼ 0:4;Ra ¼ 2� 105. The results were obtained on a 2003 structured uniform grid.
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@u
@t

þ u � rð Þu ¼ �rpþ
ffiffiffiffiffiffi
Pr
Ra

r
r2uþ h e!z þ f ; ð2Þ
@h
@t

þ u � rð Þh ¼ 1ffiffiffiffiffiffiffiffiffiffi
PrRa

p r2hþ q; ð3Þ

where u ¼ u;v;wð Þ; p; t and h are the non-dimensional velocity,
pressure, time and temperature, respectively, and e!z is a unit vec-
tor in the direction opposite to that of the gravity force. The flow
buoyancy effects are addressed by applying the Boussinesq approx-
imation, q ¼ q0 1� b T � Tcð Þð Þ1, which results in the appearance of
an additional temperature term as a source in the momentum
1 Here q0 is the reference density of the liquid at T ¼ Tc .
equation in the z direction and makes it possible to couple the tem-
perature and the velocity. The volumetric forces f and the heat fluxes
q appearing as sources in Eqs. (2) and (3) are additional unknowns
introduced to express the influence of the immersed cylinders on
the momentum and energy conservation of the flow. The problem
is scaled by L;U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbLDT
p

; t ¼ L=U, and P ¼ qU2 for length, velocity,
time and pressure, respectively, where q is the mass density of the
working fluid, g is the gravitational acceleration, b is the isobaric
coefficient of thermal expansion, and DT ¼ Th � Tc is the tempera-
ture difference between the hot and cold cylinders. The non-
dimensional temperature h is defined as h ¼ T � Tcð Þ=DT. The Ra

and Prandtl (Pr) numbers are Ra ¼ gb
maDTL

3 and Pr ¼ m=a, where m is
the kinematic viscosity and a is the thermal diffusivity. The value
of Pr ¼ 0:71, corresponding to air, is used in all the numerical simu-
lations performed within the framework of the present study.



Fig. 5. Snapshots of the spatial temperature distributions at the central cross section (X � Z) shown at four representative instances taken evenly throughout an oscillation
period: 1 (a); 2 (b); 3(c); 4(d). The time instances 1–4 are defined in Fig. 3, d ¼ 0:4;Ra ¼ 2� 105. The results were obtained on a 2003 structured uniform grid.

Fig. 6. Distribution of the mean flow characteristics obtained in the midplane X � Zð Þ for: (a) temperature h; (b) mean vx velocity component; (c) mean vz velocity
component, d ¼ 0:4;Ra ¼ 2� 105. The results were obtained on a 2003 structured uniform grid.
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Eqs. (1)–(3) are solved by utilizing the semi-implicit direct forc-
ing IB method recently developed in [31]. For the sake of complete-
ness, a brief description of the method follows. According to the IB
method formalism, the surface of the immersed body is deter-
mined by a set of discrete Lagrangian points, whose location does
not necessarily coincide with the underlying Eulerian grid. It is
important to note that the distance between the neighboring
points of the immersed body surface, Dl, and the width of an Eule-
rian grid cell, Dx, should be approximately the same. For this rea-
son, a uniform structured grid is used for discretization of the
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cubic cavity. To facilitate exchange of information between the
Euelerian and the Lagrangian grids, the interpolation operator I
and the regualarization operator R are defined as follows:
R Fk Xk
� �

;Qk Xk
� �� �

¼
Z
S

Fk Xk
� �

;Qk Xk
� �� �

� d xi � Xk
� �

dVk
S ; ð4aÞ

I u xið Þ; h xið Þð Þ ¼
Z
X
u xið Þ; h xið Þð Þ � d Xk � xi

� �
dVXi

: ð4bÞ

The interpolation operator I interpolates the values of the Eule-
rian velocities u xið Þ and temperatures h xið Þ to the nearby Lagran-

gian points Xk, while an adjoint regularization operator R smears
Fig. 7. Isosurfaces of the oscillation amplitudes obtained for: (a) temperature, h; (b) ux v
isosurfaces confine the regions characterized by at least 25% of the absolute ma
d ¼ 0:4;Ra ¼ 2� 105. The results were obtained on a 2003 structured uniform grid.
the values of the Lagrangian volumetric force Fk Xk
� �

and the heat

flux Qk Xk
� �

to the nearby Eulerian grid. Here, S corresponds to all

the cells belonging to the immersed body surface, X corresponds to
a group of flow domain cells located in the close vicinity of the

immersed body surface, dVk
S corresponds to the virtual volume sur-

rounding each Lagrangian point k, and dVXi
is the volume of the

corresponding cell of the Eulerian flow domain, whose velocity
and temperature values are involved in enforcing the boundary
conditions at point k of the immersed body. Both interpolation
and regularization operators use convolutions with the same dis-
crete Dirac delta function d of the form:
elocity component; (c) uy velocity component; and (d) uz velocity component. The
ximum value. Colors correspond to the relative intensities of the oscillations,



Fig. 8. Temperature monitored at eight points symmetrically distanced relative to the X � Zð Þ midplane for d ¼ 0:4;Ra ¼ 2� 105: (a) time evolution; and (b) Fourier
spectrum. The results were obtained on a 2003 structured uniform grid.

2 Here Ub and Hb are the values of velocity and temperature, respectively, on the
surface of each cylinder. In the present study Ub=0 on the surface of each cylinder,
while Hb ¼ 1 on the surface of the hot cylinder and Hb ¼ 0 on the surface of the cold
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d rð Þ¼

1
6Dr 5�3 jrj

Dr�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 1� jrj

Dr

� �2
þ1

r" #
for 0:5Dr6 jrj61:5Dr;

1
3Dr 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 jrj

Dr

� �2
þ1

r" #
for jrj60:5Dr;

0 otherwise;

8>>>>>>><
>>>>>>>:

ð5Þ
introduced by Roma et al. in [34] and verified in a number of studies
[31,35–38]. Here, Dr is the cell width in the r direction. Closure of
the system of Eqs. (1)–(3) is achieved by introducing kinematic
constraints:

Ub Xkð Þ ¼ I u xð Þð Þ; ð6Þ

Hb Xkð Þ ¼ I h xð Þð Þ; ð7Þ
to enforce the no-slip boundary condition for all velocity compo-
nents and the given temperature values2 on the cylinder surfaces.
The continuity, NS, and energy Eqs. (1)–(3) are discretized by using
a second-order backward finite difference scheme for the time dis-
cretization and a second-order conservative finite volume method
implemented on a staggered uniform structured grid for the spatial
discretization. All the linear terms are treated implicitly, while all
the non-linear terms are taken explicitly from the previous time step
and are put into the right hand side of the equations. The system of
Eqs. (1)–(3), (6), (7)) is solved by employing the semi-implicit direct
forcing IB method [31]. The method exploits the SIMPLE approach
cylinder.
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for the pressure–velocity coupling, while every component of the
non-solenoidal velocity is implicitly coupled with the values of f
and q by utilizing the Schur complement approach. Note that at this

point the Lagrangian kinematic constraints Fk and Qk related by Eqs.
(4a) and (4b) to the corresponding Eulerian terms f and q are calcu-
lated along with the still non-solenoidal velocity field. The obtained
non-solenoidal velocity field is then projected to the divergence-free
subspace by a standard projection-correction step. For further details
regarding implementation details, including an extensive verifica-
tion study of the applied approach, Ref. [31] should be consulted.

The Nusselt number, Nu, is defined as the ratio of convective to
conductive heat fluxes from the given surface, which in accordance
with [31] facilitates the calculation of its average value for the sur-
face of each cylinder by:

Nu ¼
ffiffiffiffiffiffiffiffiffiffi
PrRa

p
DxQ ; ð8Þ

where the average heat flux Q is the arithmetic mean of all the non-
dimensional heat fluxes Qk at each Lagrangian point k of the
immersed surface, intrinsically calculated by the solution of the sys-
temof Eqs. (1)–(3), (6), (7). An additional quantity thatwill be further
used for the verification purposes is the average value of the global
Nusselt number NuG, which expresses the global heat flux through
the surface of the confining cubic enclosure and is defined as:

NuG ¼ 1
N

XN
i¼1

@h
@n

; ð9Þ

where N corresponds to a number of thermally un-insulated edges

and @h
@n is the temperature gradient averaged over the surface of a

given edge of the cube.
3. Verification study

To verify the numerical method utilized in the present study, a
configuration consisting of a single hot cylinder aligned along the
horizontal centerline of a cold cube (See Fig. 2) was analyzed,
and the obtained flow characteristics were compared with the
available data [26] in terms of the values of the Nusselt number,
Nu, averaged over the surface of the hot cylinder, and the values
of the global Nusselt number, NuG, averaged over all the surfaces
of the cubic enclosure. All the simulations were performed on a
Fig. 9. Time evolution of the averaged Nuh and Nuc numbers and the corresponding Fouri
a 2003 structured uniform grid.
2003 uniform structured grid with a time step equal to
Dt ¼ 10�3. No-slip boundary conditions were set on all the walls
of the cubic enclosure and on the surface of the cylinder. The cylin-
der’s surface was held at a constant hot temperature Th, and the
front and rear walls of the cubic enclosure were adiabatic, while
all other walls of the cubic enclosure were held at a constant cold
temperature, Tc , as shown in Fig. 2. The results obtained for values
of Ra ¼ 103;104 and 105 and values of R=L ¼ 0:1;0:2 and 0:3 were
compared with the corresponding independent data [26], as shown
in Table 1. Acceptable agreement was observed between the cur-
rent and the previously reported values of Nu and NuG for the
entire range of Ra and R=L, a finding that verifies the applied
numerical methodology. Remarkably, in contrast to [26], which
reported quasiperiodic and periodic flows for R=L ¼ 0:3 and
R=L ¼ 0:4, respectively, at Ra ¼ 106, our simulations gave steady-
state flows for the entire range of R=L and Ra values. This difference
may be attributed to the non-linear physics of the system, which at
the same value of the Ra number can sustain a number of different
states, as was extensively discussed in a recent study [31]. This
argument is supported by grid and time-step independence stud-
ies, a detailed comparison of the isosurfaces of the temperature
field, and a comparison of the structures of convection cells [31]
and is not repeated here for the sake of conciseness.
4. Results and discussion

Numerical simulations were performed for three different con-
figurations with values of d ¼ 0:4;0:5 and 0:6. For each configura-
tion, the supercritical regime was found by successively increasing
the Ra value by about 10% and taking the values of all the previ-
ously obtained flow fields as the initial condition until the
steady-unsteady transition of the developed natural convection
flow was detected. The transition was detected by monitoring
the time evolution of both Nuh and Nuc averaged over the surfaces
of the hot and cold cylinders, respectively. After the transition was
detected, we verified that the time evolutions of both Nuh and Nuc

were governed by single oscillating harmonics, corresponding to
the oscillating frequency of the leading eigenmode, while the
impact of the other stable eigenmodes was suppressed as a result
of a sufficiently long time integration. This argument is based on
er spectra obtained for the values d ¼ 0:5;Ra ¼ 2� 105. The results were obtained on
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the Hopf theorem, which can be described in the vicinity of the
bifurcation point as [39]:

/ t;Rað Þ ¼ / Racrð Þ þ eReal Ueixt
� �þ O e2

� �
; ð10Þ

where / Racrð Þ is the steady-state of any flow characteristic at the
critical point and U is the eigenvector of the corresponding flow
characteristic whose eigenvalue is given by k ¼ ixcr . Although an
explicit determination of critical Ra values is beyond the scope of
the present study, we note in passing that all the simulations pre-
sented in the current study were performed for Ra values not
exceeding the corresponding critical Racr values by more than
10%, thus ensuring that the analysis was performed for slightly
supercritical flows. It should be noted that although the averaged
Nuh and Nuc numbers comprise a convenient parameter for deter-
mination of the steady-unsteady transition, both parameters are
processed, rather than primitive flow variables which in some cases
can lead to misinterpretation of the realistic transition phenomenon
Fig. 10. Snapshots of the spatial distribution of the isosurfaces of k2 ¼ �0:1 superimpose
an oscillation period: 1 (a); 2 (b); 3(c); 4(d). The time instances 1–4 are defined in Fig. 9,
[23]. For this reason, the description of all the transition regimes
reported in the present study was further supported by the analysis
of temperature evolution acquired for a number of control points.

In accordance with all the above considerations, the analysis
was performed for the values of Ra ¼ 2� 105 for the first two con-
figurations (d ¼ 0:4 and 0:5) and for the value of Ra ¼ 3:4� 105 for
the third configuration (d ¼ 0:6), resulting in the development of a
slightly supercritical flow regime in each configuration. The insta-
bilities observed for each flow configuration were characterized in
terms of: the time histories of the Nusselt numbers, Nuh and Nuc ,
averaged over the surfaces of the hot and cold cylinders, respec-
tively; the isosurfaces of k2 ¼ �0:1, whose negative and close-to-
zero value determines the outermost outer surface of the vortical
structures [40]; the mean fields calculated for every flow charac-
teristics; the isosurfaces of the oscillation amplitudes for all the
flow fields, which for slightly supercritical flows exhibit a strong
qualitative similarity to the structure of the corresponding leading
d by stream traces shown at four representative instances taken evenly throughout
d ¼ 0:5;Ra ¼ 2� 105. The results were obtained on a 2003 structured uniform grid.
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eigenvectors (see e.g. [32,33]). Finally, for every configuration the
time histories of the temperature values were monitored at control
points symmetrically placed in the vicinity of the midplane X � Zð Þ,
as detailed in Table 2.

4.1. Grid independence study

To prove the reliability of the results obtained in the framework
of the present research, a grid independence study was conducted.
The numerical simulations were performed on 2003 and 3003 grids,
and the obtained results were compared in terms of the time evo-
lutions of the Nuh and Nuc values averaged over the surfaces of the
Fig. 11. Snapshots of the spatial temperature distributions at the central cross section (X
period: 1 (a); 2 (b); 3(c); 4(d). The time instances 1–4 are defined in Fig. 9, d ¼ 0:5;Ra ¼

Fig. 12. Distribution of the mean flow characteristics obtained in the mid cross section ð
component, d ¼ 0:5;Ra ¼ 2� 105. The results were obtained on a 2003 structured unifo
hot and cold cylinders, respectively, as well as in terms of the time
evolution of the temperature values collected at a number of con-
trol points whose coordinates are shown in Table 2. Table 3 pre-
sents a comparison of the maximal and minimal values of the
Nuh and Nuc numbers acquired over a single oscillating period on
both grids. The values of the angular frequency corresponding to
the oscillating harmonics of the leading mode were also compared.
It can be seen that for the entire range of Ra and d values the max-
imal deviation between the results does not exceed 1.5%, which
verifies the grid independence of the results. In the next step, we
compared the evolution characteristics of the pointwise tempera-
tures acquired on the 2003 and 3003 grids of different control
� Z) shown at four representative instances taken evenly throughout an oscillation
2� 105. The results were obtained on a 2003 structured uniform grid.

X � ZÞ for: (a) temperature h; (b) mean vx velocity component; (c) mean vz velocity
rm grid.
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points, as summarized in Table 2. All the results related to grid ver-
ification study are summarized in Table 4. It can be seen that the
deviation between the acquired pointwise values does not exceed
1.5% for the entire range of Ra and d values, which again proves the
grid independence of the obtained results.
4.2. Configuration characterized by the value of d ¼ 0:4

We start our discussion by presenting the time evolution of the
Nuh and Nuc numbers averaged over the surfaces of the hot and
cold cylinders, respectively, as shown in Fig. 3a and c. The ampli-
tude spectra corresponding to the Nuh and Nuc time evolutions
are presented in Fig. 3b and d, respectively. Both time evolutions
oscillate with the same value of the angular frequency,
x ¼ 0:348, corresponding to the frequency of the leading eigen-
Fig. 13. Isosurfaces of the oscillation amplitudes obtained for: (a) temperature, h; (b) ux

isosurfaces confine the regions characterized by at least 25% of the absolute ma
d ¼ 0:5;Ra ¼ 2� 105. The results were obtained on a 2003 structured uniform grid.
mode. Note, also, the presence of the multipliers of the main har-
monic whose amplitude is lower by at least an order of
magnitude than that of the main harmonic, which is clear evidence
of the presence of non-linear effects in the slightly perturbed flow
regime. The time evolutions of both Nuh and Nuc are characterized
by close values of the amplitudes. The close values were obtained
despite the considerable difference (about an order of magnitude)
in the average absolute values of Nuh and Nuc , which is a direct
consequence of holding the four cavity walls at a constant cold
temperature Tc. A remarkable result is that the time evolutions
of Nuh and Nuc are biased by half a period adjusted for a small
phase shift, which can apparently be explained by the flow inertia
effects. A deeper insight into the characteristics of the observed
instability can be gained by examining the instantaneous distribu-
tion of the isosurfaces of k2 ¼ �0:1 (see Fig. 4) characterizing the
velocity component; (c) uy velocity component; and (d) uz velocity component. The
ximum value. Colors correspond to the relative intensities of the oscillations,
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vortical structures of the flow. Remarkably, at all the time
instances, the vortical structures preserve their symmetry with
respect to the X � Zð Þ midplane, while no symmetry is preserved
with respect to the Y � Zð Þ midplane. The symmetry breaking phe-
nomenon is also clearly observed when examining the instanta-
neous temperature distributions in the midplane X � Zð Þ of the
cubic confinement (see Fig. 5). All the temperature distributions
are superimposed with instantaneous particle tracers with the
aim of describing the vortical structure of the flow inside the cubic
enclosure. It is clearly evident that in the supercritical regime the
flow loses its symmetry with respect to the central cross section
Y � Zð Þ throughout the whole oscillation period. Over the oscilla-
tion period, the cubical enclosure hosts four vortical structures
whose shape and orientation vary with time. At the first time
instance (see Fig. 5a), corresponding to the maximum Nuh value,
the flow is characterized by two major oppositely rotating vortices
Fig. 14. Temperature monitored at eight points symmetrically distanced relative to t
spectrum. The results were obtained on a 2003 structured uniform grid.
located on each side of the central cross section Y � Zð Þ. An addi-
tional, and much smaller, counter clockwise vortex is located
above and to the right of the surface of the cold cylinder and is dri-
ven by a bifurcated hot plume rising from the hot cylinder. The two
streams of the hot plume fork close to the bottom of the cold cylin-
der, reunite to the left of the cold cylinder, and then immediately
bifurcate again, each proceeding to the opposite vertical edge of
the cube. As the heat flux generated by the hot cylinder decreases,
the fourth clockwise-rotating vortex is formed along the horizontal
top left edge of the cube, occupying almost the whole cube width
(see Fig. 5b). The vortex absorbs the two branches of the bifurcated
rising hot plume swirling around the cold cylinder in the central
region of the cavity, and redistributes them in a spanwise direction
towards the cavity’s left and right vertical boundaries. A further
decrease in the heat flux generated by the hot cylinder results in
considerable weakening of the fourth vortex (see Fig. 5c). As a
he X � Zð Þ midplane for d ¼ 0:5;Ra ¼ 2� 105: (a) time evolution; and (b) Fourier



Fig. 15. Time evolution of the averaged Nuh and Nuc numbers and the corresponding Fourier spectra obtained for the values of d ¼ 0:6;Ra ¼ 3:4� 105. The results were
obtained on a 2003 structured uniform grid.

Fig. 16. Snapshots of the spatial distribution of the isosurfaces of k2 ¼ �0:1 superimposed by stream traces shown for four representative instances taken evenly throughout
an oscillation period: 1 (a); 2 (b); 3(c); 4(d). Time instances 1–4 are defined in Fig. 15, d ¼ 0:6;Ra ¼ 3:4� 105. The results were obtained on a 2003 structured uniform grid.
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result, the convective heat transfer from the hot cylinder to both
upper corners of the cubic enclosure reaches its minimum, as evi-
denced by an intermittent iso-temperature contour in the top left
quarter of the midplane X � Zð Þ of the cubic enclosure. After reach-
ing its minimum at point P. 3 (see Fig. 3a), the heat flux generated
by the hot cylinder starts to increase, eventually causing the fourth
vortex to vanish (see Fig. 5d), thereby leading to a uniform redistri-
bution of the hot plume flow in a spanwise direction in the vicinity
of the cube’s top boundary.

To better understand the origin of the observed symmetry
breaking phenomenon, the mean flow distribution of all the flow
characteristics at the midplane X � Zð Þ obtained by time averaging
of the corresponding flow characteristics over a number of oscillat-
ing periods is presented (see Fig. 6). Note that the mean vy velocity
gets close to zero values over the entire midplane and thus is not
shown in the figure.

It is now clear that the origin of the previously observed sym-
metry breaking phenomenon of the instantaneous flow lies in the
symmetry breaking of the mean flow distribution of all the flow
fields, except for the spanwise vy component whose value is equal
to zero in X � Zð Þmidplane. As a result, the flow oscillates symmet-
rically in both parts of the cavity with respect to the X � Zð Þ mid-
plane, when there is no mixing between the liquids in the two
parts of the cavity. To provide an idea of the spatial distribution
Fig. 17. Snapshots of the spatial temperature distributions at the central cross section (X
period: 1 (a); 2 (b); 3(c); 4(d). Time instances 1–4 are defined in Fig. 15, d ¼ 0:6;Ra ¼ 3
of perturbation corresponding to the leading eigenvector of the
perturbed flow, the spatial distribution of the flow oscillation
amplitudes for the temperature and all three velocity components
calculated at Ra ¼ 2� 105 are presented below (see Fig. 7).

The contours of the oscillating amplitudes of the slightly super-
critical flow resemble the spatial distribution of the leading eigen-
vector of the corresponding flow field (see e.g.[24,33]). The
presented data is obtained by subtracting the mean flow values
from the corresponding maximum values of every flow field
attained at each grid point over a single oscillation period. Isosur-
faces confining the regions in which the values of the oscillation
amplitudes reach at least 25% of the absolute maximum are shown
in Fig. 7 for each flow field. It is evident that the oscillating ampli-
tudes, calculated for the temperature h and the velocity compo-
nents ux and uz fields attain their maximum values on the X � Zð Þ
midplane. In contrast, the uy velocity component is characterized
by zero values of the oscillating amplitudes on the X � Zð Þ mid-
plane. It is remarkable that, despite the symmetry break relative
to the Y � Zð Þ midplane, both the spatial distributions of the k2 cri-
terion (see Fig. 5) and of the oscillating amplitudes for all the flow
fields retain their symmetry relative to the X � Zð Þ midplane. As a
result, it can be expected that the characteristics (both qualitative
and quantitative) of the instability observed for the 3D configura-
tion will also be reproduced by the corresponding 2D analysis.
� Z) shown for four representative instances taken evenly throughout an oscillation
:4� 105. The results were obtained on a 2003 structured uniform grid.
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To further verify that the observed global reflectional symmetry
is preserved over the whole oscillation period, we monitor the
temperature signals at eight points (see Table 2 for locataion of
each point) symmetrically distanced relative to the X � Zð Þ mid-
plane (see Fig. 8).

It can clearly be seen that all the time signals completely coin-
cide at each time step throughout the whole oscillation period. It is
also remarkable that for each signal, the frequency of the main
oscillating harmonic is the same as that corresponding to the aver-
aged Nuh and Nuc values, which verifies the fact that for the above
configuration both Nusselt numbers can safely be used as control
parameters for monitoring steady-unsteady transition. Based on
all the above, it can be concluded that the observed oscillatory
instability exhibits symmetry breaking of the mean flow with
respect to the Y � Zð Þ midplane, while the global reflectional sym-
metry of the oscillatory flow is preserved with respect to the
X � Zð Þ midplane.
4.3. Configuration characterized by the value of d ¼ 0:5

We now perform a similar analysis to characterize the instabil-
ity observed for d ¼ 0:5 and Ra ¼ 2� 105. The time evolution of the
Nuh and Nuc numbers averaged over the surfaces of the hot and
Fig. 18. Distribution of the mean flow characteristics obtained in the mid cross section ð
component; (d) mean vz velocity component, d ¼ 0:6;Ra ¼ 3:4� 105. The results were o
cold cylinders, with the corresponding frequency spectra, are pre-
sented in Fig. 9. Note that similarly to the previous configuration,
the signals monitored for both Nu values are governed by a single
oscillating harmonic and its multipliers. At the same time, the
value of the harmonic x ¼ 0:815 is more than twice that observed
for the previous configuration, giving rise to an expectation of a
qualitatively different character of the observed instability.

In fact, a closer look at the instantaneous distribution of the iso-
surfaces of k2 ¼ �0:1 shown in Fig. 10 reveals that in contrast to
the configuration characterized by d ¼ 0:4 at none of time
instances shown in Fig. 10 does the vortex occupying the left top
corner of the cavity symmetrically extend from both sides of the
midplane X � Zð Þ. On the contrary, at each time instance, it mostly
occupies the space on only one side of the cross section. The qual-
itatively different character of the observed instability is further
confirmed by examining the corresponding temperature distribu-
tion in the midplane X � Zð Þ of the cubic confinement with super-
imposed stream tracers, as shown in Fig. 11. As expected, the
midplane X � Zð Þ of the configuration under discussion here hosts
an additional (fourth) clockwise-rotating vortex at the top left
quarter of the cross section throughout the whole oscillating cycle;
this vortex comprises an instantaneous footprint of the oscillating
vortical structure shown in Fig. 10. It is also remarkable that the
time variation of the temperature contours in this cross section
X � ZÞ for: (a) temperature h; (b) mean vx velocity component; (c) mean vy velocity
btained on a 2003 structured uniform grid.
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is almost indistinguishable. It is important to note that the phe-
nomenon is characterized by fully 3D dynamics and therefore can-
not be reproduced (even qualitatively) by the corresponding 2D
analysis.

The mean flow distribution of all the flow fields, shown in
Fig. 12, resembles the corresponding flow distribution obtained
for the previous flow configuration characterized by d ¼ 0:4 (i.e.,
qualitatively the same symmetry-breaking phenomenon with
respect to the Y � Zð Þ midplane of mean temperature h and vx

and vy velocity components, while the mean values of the vy com-
ponent are close to zero and are thus not shown). Similarly to the
previous configuration, no mixing of the fluid located on both sides
of the cavity midplane X � Zð Þ takes place. At the same time, fur-
ther investigation of the isosurfaces of the oscillation amplitudes
and of the temporal-spectral characteristics of the temperatures
monitored at eight control points (see Figs. 13 and 14, respectively)
reveals an entirely different mechanism of the instability onset
that characterises the present configuration.
Fig. 19. Isosurfaces of the oscillation amplitudes obtained for: (a) temperature, h; (b) ux

isosurfaces confine the regions characterized by at least 25% of the absolute ma
d ¼ 0:6;Ra ¼ 3:4� 105. The results were obtained on a 2003 structured uniform grid.
As a result of increasing the value of d from d ¼ 0:4 to d ¼ 0:5,
the impact of the boundary of the cold cylinder in suppressing
the momentum of the plume rising from the hot cylinder
decreases. Consequently, the momentum of the hot plume devel-
oping and reaching the top boundary of the cube is higher for
the d ¼ 0:5 configuration than for its d ¼ 0:4 counterpart: the
higher momentum of the flow can no longer be dissipated by the
cavity walls in a manner that would provide the reflectional sym-
metry oscillations observed for d ¼ 0:4. As a result, the flow under-
goes bifurcation characterized by spatio-temporal symmetry H half
a period apart, preserving the Y2 symmetry group [41] and for-
mally reading:

Hu X0; t
� � ¼ KY 0 X; t þ T=2ð Þ

¼ uX0 ;�uY 0 ;uZ0ð Þ X0;�Y 0; Z0; t þ T=2
� �

; ð11Þ

with H-symmetric base flow H�u X 0� � ¼ KY 0 �u X0� �
, where KY 0 is the

spatial reflection: Y 0!�Y 0; uY 0!�uY 0 and T is the period of the per-
velocity component; (c) uy velocity component; and (d) uz velocity component. The
ximum value. Colors correspond to the relative intensities of the oscillations,
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turbed flow oscillations. Note that exactly the same scenario was
revealed with respect to the bifurcated shear flow inside a diago-
nally lid driven cavity [33].

The proposed scenario for the observed instability is confirmed
by the symmetry of the oscillation amplitudes, as demonstrated in
Fig. 13 and by examination of the time evolution history of the
temperature signals monitored at all symmetrically located points,
as shown in Fig. 14.

It can be clearly seen that the time evolutions monitored at all
the point pairs are half a period apart, up to a small offset appar-
ently caused by the non-negligible inertial effects of the flow.
The most important observation is that pertaining to the non-
negligible and even dominant value of the half harmonic ampli-
tude clearly seen in Fig. 15(a) and (d) and in Fig. 15(b), respectively.
The presence of the half harmonic could have been attributed to
the secondary Hopf bifurcation setting in via period doubling, in
accordance with the Feigenbaum scenario. However, we argue that
the observed bifurcated flow corresponds to the first, rather than to
Fig. 20. Temperature monitored at eight points symmetrically distanced relative to th
spectrum. The results were obtained on a 2003 structured uniform grid.
the second Hopf bifurcation and that the harmonic value
x ¼ 0:4075 is the value of the oscillating angular frequency of
the leading unstable eigenmode. In fact, half harmonics dominate
in signals acquired at control points P.2 and P.6 located inside
the core of the fourth clock-wise rotating vortex undergoing sym-
metrical oscillations from both sides relative to the symmetry
X � Zð Þ midplane, while the non-negligible footprint of the half
harmonics is also recognized for signals monitored in other pairs
of control points. It is also noteworthy that both Nuh and Nuc num-
bers oscillate with a doubled value of the frequency as they reflect
the symmetrical oscillation of the fourth vortex switching its posi-
tion relative to the symmetry X � Zð Þ cross section with a doubled
frequency.

To summarize, the value of the critical oscillating harmonic for
the present configuration is characterized by the value of
x ¼ 0:4075 rather than byx ¼ 0:815. This value is not so different
from the value of x ¼ 0:348 characterizing the oscillatory instabil-
ity the previous configuration characterized by d ¼ 0:4, although
e X � Zð Þ midplane for d ¼ 0:6;Ra ¼ 3:4� 105: (a) time evolution; and (b) Fourier
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the onsets of the two instabilities may be attributed to entirely dif-
ferent mechanisms.
4.4. Configuration characterized by the value of d ¼ 0:6

To further investigate the influence of the vertical distance
between the hot and the cold cylinders on the instability mecha-
nism, the configuration characterized by the value of d ¼ 0:6 is
considered. Following the steps performed for the previous config-
urations, we first analyze the time evolution of the Nuh and Nuc

values averaged over the surfaces of the hot and cold cylinders,
respectively, as presented in Fig. 15. The time evolution of the
two time averaged Nu values does not differ significantly from
the corresponding signals acquired for the value of d ¼ 0:5. The
time evolution is periodic and is determined by the main harmonic
value equal to x ¼ 0:945. As a result of the non-linearity of the
supercritical flow regime, the main harmonic multipliers are
clearly distinguishable in the corresponding Fourier spectrum
(see Fig. 15b and d). The mean values of the two Nu numbers are
close to those obtained for the previous (d ¼ 0:5) configuration,
but the amplitudes of the Nu values at d ¼ 0:6 are significantly
(more than twice) higher, apparently indicating the presence of a
different instability mechanism.

The above assumption is supported by a further examination of
the isosurfaces of the k2 ¼ �0:1 criterion, as shown in Fig. 16, and
of the corresponding temperature distribution in the midplane
X � Zð Þ of the cubic confinement superimposed by the particle
tracers, as presented in Fig. 17. It can be seen that at each time
instance the midplane hosts four major vortices. The two larger
vortices are formed by a hot plume rising from the surface of the
hot cylinder, and the two smaller vortices are formed by a cold
stream descending along the surface of the cold cylinder. The hot
and cold vortices interact with one another through the dynamic
interfaces whose position and orientation vary over the oscillation
period. Contrary to the two previous configurations, it can be
clearly seen that both the temperature distribution and the stream
traces exhibit global reflection symmetry in the X � Zð Þ midplane
relative to the vertical centerline at each time instance. Also com-
pared to the two previous configurations, the spatial distribution of
instantaneous isosurfaces of the k2 ¼ �0:1 criterion and the corre-
sponding stream tracers (see Fig. 16) both exhibit diagonal reflec-
tion symmetry with respect to the Y � Zð Þ midplane and also with
respect to two main diagonal planes passing through the vertical
opposite edges of the cavity; this finding is worthy of further
investigation.

A deeper understanding of the characteristics of the observed
instability can be gained by examining the distributions of the
mean temperature and of each velocity field in the X � Zð Þ mid-
plane shown in Fig. 18. Contrary to the configurations character-
ized by d ¼ 0:4 and d ¼ 0:5, the present configuration is
characterized, first, by non-zero values of the mean spanwise
velocity component vy, and second, by a symmetric distribution
of the temperature and vz velocity fields and an anti-symmetric
distribution of the vx and vy velocity fields. The first observation
means that the liquid separated by the X � Zð Þ plane undergoes a
mixing phenomenon through this plane, while the second observa-
tion allows us to conclude that the bifurcated flow is preceded by a
steady state preserving the symmetry (and anti-symmetry) of all
the flow characteristics with respect to the Y ¼ Zð Þ midplane.

As expected, the symmetry with respect to the X � Zð Þ and
Y � Zð Þ mid planes is also preserved for the spatial distribution of
the oscillation amplitudes for all the flow fields (see Fig. 19). The
unexpected finding is that the observed reflectional symmetry is
actually not dependent on the orientation of Y and X, as it persists
in all the planes passing through the line for all the oscillation
amplitudes. The same observations were also made for all the
instantaneous distributions of the k2 criterion (see Fig. 16). Note
also that, similarly to the previous configuration, the observed phe-
nomenon is fully 3D and therefore cannot be revealed by the cor-
responding 2D analysis. To determine whether the observed
symmetry persists for each time step or only for some specific time
instances, we further investigated the time evolution history of the
temperature acquired at eight control points, symmetrically dis-
tanced relative to the vertical centerline, as shown in Fig. 20.

It can be seen that the signals acquired for all four pairs of the
control points coincide, clearly indicating that the flow exhibits
reflectional symmetry relative to the centerline at each time step
(see Fig. 20). The flow oscillates with the same angular frequency,
x ¼ 0:945, as the averaged values of the hot Nuh and cold Nuc val-
ues. Small peaks of the doubled time period, and its multiplier, can
be seen at the x=2 and 3x=2 values of the corresponding Fourier
spectrum, respectively. We speculate that the peaks are the out-
come of the secondary Hopf bifurcation, in accordance with the
Feigenbaum scenario, which means that the observed bifurcation
flow should have been formally studied at a Rayleigh value smaller
than Ra ¼ 3:4� 105. At the same time, the absolute values of the
amplitudes of the secondary peaks are very small and do not
exceed 15% of the corresponding amplitude values obtained for
the first Hopf bifurcation. It can thus be safeley stated that the
characteristics of the primary instability described in the present
section for the values of d ¼ 0:6 and Ra ¼ 3:4� 105 are not
affected, nonetheless the flow has apparently undergone a sec-
ondary Hopf bifurcation.
5. Conclusions

Three-dimensional natural convection flow around a tandem of
cold and hot vertically aligned cylinders placed inside a cold cubic
enclosure was thoroughly investigated as a function of the distance
between the cylinders in terms of the values of the major oscillat-
ing harmonics, the isosurfaces of the oscillating amplitudes, and
the global reflectional symmetries of the mean and supercritical
flows. It was found that the distance d between the cylinders plays
an important role in determining the characteristics of the instabil-
ity mechanisms governing the oscillatory flow. In particular, three
different instability mechanisms were revealed and characterized
for the values of d ¼ 0:4;0:5 and 0:6.

It was found that for the values of d ¼ 0:4 and Ra ¼ 2� 105 the
slightly perturbed flow oscillates with an angular frequency equal
to x ¼ 0:348, and the mean flow loses its reflectional symmetry
relative to the Y � Zð Þ midplane. At the same time, the global
reflectional symmetry of the oscillating flow is preserved relative
to the X � Zð Þ midplane at each time instance. The slightly super-
critical flow obtained by further increasing the distance between
the cold and the hot cylinders to d ¼ 0:5, while keeping the same
value of the Ra number, is governed by a different instability mech-
anism, which is characterized by a higher value of the main oscil-
lating harmonic, equal to x ¼ 0:4075. In addition, for this
configuration the flow is characterized by the global reflectional
symmetry of the mean flow and by an offset of half a period of
the flow characteristics relative to the symmetry midplane
X � Zð Þ. The mean flow of all the flow characteristics except for
the mean flow of the vy velocity component loses its symmetry
in the X � Zð Þ midplane, while the mean vy velocity component
is equal to zero in the X � Zð Þ midplane. Therefore, there is no mix-
ing of the fluid with respect to the X � Zð Þ midplane for both the
d ¼ 0:4 and d ¼ 0:5 configurations. Finally, the third configuration,
whose slightly perturbed flowwas obtained for the value of d ¼ 0:6
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at Ra ¼ 3:4� 105, is characterized by a value of the angular fre-
quency of the main harmonic equal to x ¼ 0:945. Both mean and
perturbed flows exhibit global reflectional symmetry relative to
the vertical centerline, which is preserved with respect to all the
planes passing through the line. It is also noteworthy that in all
the configurations studied in the framework of the current study
the Nuh values (both instantaneous and averaged over the time
of oscillating period) are higher by an order of magnitude than
the corresponding Nuc values, which is a direct consequence of
mainting the conducting walls of the cubic cavity at the cold tem-
perature Tc .

The current study clearly demonstrates a rich variety of insta-
bility scenarios typical of the configuration under consideration;
these scenarios include the reflectional symmetry of the bifurcated
flow for d ¼ 0:4, the KY 0 symmetry with a half a period apart of the
bifurcated flow for d ¼ 0:5, and the reflectional symmetry of the
bifurcated flow preserved with respect to all the planes passing
through the vertical center line for d ¼ 0:6. The results obtained
could be useful for verification of future numerical studies focusing
on building detailed stability diagrams based on the technique of
linear stability analysis.
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