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Abstract

Couplers and other fused fiber optic components are integrated in many
optical systems. Such devices make it possible to couple light between two fibers
(2x2 coupler) or combine or split light between several fibers and one central fiber
(Nx1 combiner). Common to all such devices is that they are fabricated by
heating, pulling, and fusing tightly packed optical fibers. The optical behavior of
a coupler or combiner depends on its external shape and on the refractive index
profile, which is dictated by internal dopants and their concentration-distribution.
Over the years, many models and simulation tools have been developed to predict
the optical behavior of such components, provided that their shape and index of
refraction are well defined. Previous research enabled the prediction of the
structure of some fused fiber components. However, theoretical tools that can
predict the external shape and the refractive index profile are still not accurate
or general enough to facilitate accurate optical simulations. Lacking such a tool,
the development of new fused fiber components requires many iterations of trial

and error, which makes the process long and expensive.

The main purpose of this study is to obtain a generic solution based on
numerical simulations to predict the structural evolution of the fiber components
containing a number of fibers in any configuration. The numerical tool should
also include the solution of a convection-diffusion equation in order to predict the
evolution of dopant concentration. Additionally, it was aimed that the solver will
be generic so as to be able to address two-phase flow problems in other physical

areas.
The study consisted of two main phases: a. developing the appropriate

numerical foundations and tools, and b. experimental study and analysis of the

dynamic evolution of fused fiber optic components during fabrication. The
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experimental results were then compared to the numerical prediction and

provided a realistic test case for further study.

First, we developed the numerical methodology based on the Immersed
Boundary (IB) and Front Tracking methods. The methodology makes it possible
to couple the continuity and momentum equations for incompressible two-phase
flow with the solution, where the pressure and surface tension forces serve as
Lagrange multipliers. One of the advantages of this approach is the implicit
fulfillment of mass conservation (with or without source) and the prevention of

mass leakage.

The numerical methodology was implemented in a numerical solver and
extensively validated by comparing the simulation results with previously
published data for four benchmark test cases. Each benchmark case was
distinguished by the driving force, starting from a rising bubble, followed by a
drop under shear flow, and, lastly, rosette relaxation. We also simulated problems
that include body-splitting due to a high-density ratio between the fluids and a
high-velocity gradient. The comparison for all the test cases indicated an accurate

solution of the problems.

After laying the numerical foundations, the study proceeded to the
experimental phase. Fused optic fiber components were fabricated and
characterized; the results were then compared to the corresponding numerical
results. Four different configurations were experimentally tackled. In the first, the
most basic type of coupler was fabricated from two identical fibers, in order to
examine the fully symmetric configuration. The second type was referred to as
the pump-SMF coupler and was also fabricated from two fibers differing only
internally— the external interface of the coupler was thus regarded as being
symmetric, while the core-refractive index of the fibers was not. The third type

of coupler constituted a fully non-symmetric configuration, i.e., fusion of two
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fibers that were different both externally and internally. The fourth configuration
has the most complex geometry - that of non-circular fiber tapering. For all the
configurations, good agreement was obtained by qualitatively and quantitatively
comparing the numerical simulation and the experimental results. In all cases,
the velocity field was obtained by the solution of continuity and NS equations,
and the dopant concentration evolution by solving the convection-diffusion
equation. Additionally, the fibers' viscosity was functionally reduced in

accordance with the OH absorption.

Besides the numerical and experimental comparison, we also simulated
several configurations of non-symmetric couplers characterized by various aspect
ratio values in order to identify the relations between the aspect ratio and the

fusion of the couplers.

The developed numerical tool can also successfully handle the time
evolution of much more complex multi-fiber configurations, incorporating many
contact points for each fiber and also including the non-negligible amount of air
trapped between the boundaries of adjacent fibers. A representative example of

such a simulation is also presented.
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Chapter 1: Introduction

Fiber optic components have diverse structures and applications, ranging
from simple 2x2 symmetric couplers, through fiber-laser pumps and signal
combiners, to even more complex systems such as photonic lanterns [2, 3]. Many
of these fiber optic components are fabricated by the so-called “heat-and-pull”
technique, in which optical fibers are fused and tapered simultaneously. The
popularity of the technique may be attributed to the simplicity of the setup and
the ability to fabricate a wide range of optical components that accurately meet
a variety of design requirements. The “heat-and-pull” technique includes three
fundamental steps: gathering and arranging the optical fibers in a particular
initial order, subjecting the fibers to viscous flow sintering, and subsequently
pulling the fibers. This production process affects both the external geometry of
the produced fiber optic component and the distribution of the internal dopant
concentration. The functionality of fused fiber optic components thus depends on

their structure and the concentration profile of the inner dopants.

A number of models and simulation tools predicting the optical
functionality and the light transmission characteristics of particular fiber
components have been developed over the years and are well established today
[4, 5, 6]. However, all the developed tools require the precise geometry of the
given fiber component as input. Without this information, the result of any
modeling tool will not be sufficiently accurate. This drawback becomes
particularly critical for complex combiners whose light transmission
characteristics are especially sensitive to the geometry of the component and the
concentration profile of the internal dopants. Therefore, the development of

complex fiber components typically requires conducting a series of preliminary
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on-site experiments, which can significantly lengthen R&D times and increase

production costs.

We now briefly review some of the main studies that have focused on
modeling the structure of fiber optic components. Lacroix et al. [7] empirically
approximated the cross-sectional shape of two identical fused fibers by imposing
the principle of conservation of matter. In this model, the fused fibers are assumed
to overlap each other. The overlapping area of the cladding is transferred to the
sides of the fibers by assuming that a circular arc limits the coupler cross-section

(see Fig. 1.1).

FIG. 1.1 Model of fusion. The tangent arcs are calculated so that the hatched area is equal to the
cross-hatched area. D is the width of the coupler cross-section, d is the fiber center separation [7].

FIG. 1.2 Cross-section of a 2x2 coupler for degrees of fusion ranging from 0 to 1. [7]
This model makes it possible to predict the cross-sectional shape as a
function of the degree of fusion (0 for tangent fibers and 1 for full fusion — circular

cross-section), as shown in Fig. 1.2. The degree of fusion is defined by

f - o -d (1.1)

2x2 2(2—\/5)[& '
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where r, is the cladding radius of the unfused fiber and d is the fiber center

separation. The model has demonstrated good agreement with experimental
results. However, it lacks any physical coupling with the evolution-dynamics of
the couplers' shape and predicts only the final outer boundary of cladding and
the center of mass of the core. This approach is limited and does not allow for
addressing other critical phenomena, such as deformation of the optical
component and diffusion of the dopants within the component core, or for
predicting the fusion characteristics of the optical components produced from

initially more complicated structures.

Other research groups have tackled the problem by developing models
based on solving the Navier-Stokes (NS) equations. The studies of Garabedian [8]
and Richardson [9, 10], for example, analyzed the dynamic plane Stokes-flow of a
viscous incompressible fluid bounded by a smooth closed curve driven solely by
the surface tension force. Their analysis was based on conformal mapping and
predicted the shape evolution as a function of the fusion rate. Hopper [11, 12, 13]
developed an advanced model predicting the temporal evolution of the
component’s shape by using conformal mapping in the complex z plane. However,
this method required the assumption of a parametric form based on approximated
shape functions, and it thus cannot be applied to optic fiber components of
arbitrary initial geometry. In 1997, Richardson [14] revisited and extended his
and Hopper's models by addressing the configuration of a circular cylinders un-
closed array. He established this model by two-dimensional (2D) simulations of
touching circular discs developing into one symmetric circle and showed that
when there are N discs in a general position, the evolution of the fluid region can
be described by a conformal map involving 2N-1 time-dependent parameters
governed by N invariants and N-1 first-order differential equations. In his next
study, Richardson [15] considered the corresponding problems when the fluid

occupies a double-connected region, which is equivalent to a bundle of fused
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fibers. In both models, only the flow at the surface of the coupler was treated. To
this point, a generalized solution allowing for prediction of the internal

parameters, rather than only the outer surface behavior, was missing.

Of particular interest are the studies of Pone et al. [1, 16], who investigated
the refractive index profile of fused optic fiber coupler cross-sections. They
presented numerical simulations that were based on the solution of continuity
and NS equations as well as a convection-diffusion equation, and compared the
numerical results to experiments that fundamentally studied the fusion of two

SMF28 fibers, 125um in diameter. The fibers were brought into contact and

heated by a propane micro-torch at a temperature of about 1400°C , and then the
degree of fusion and the external shape of the fused fibers were characterized. The

degree of fusion without pulling as defined in [1] is given by

W, -W(t)

_ , 1.2
W (12)

fv,, =0

where W, W_are the initial and the theoretical final widths of the coupler:
W, =2r +2r,, W _=2Jr? +r?. r_ and r, are the initial radii of the fibers. In
contrast to other studies, they also considered the diffusion of the core governing
the evolution of the dopants' concentration inside the fibers.

Despite progress in simulations of fiber optic components and the excellent
agreement between the numerical and experimental measurements presented by
Pone et al. [1], a generic tool to simulate the structure and the refractive index
distribution of complex fused fiber components is not readily available. The need
for the development of a high-fidelity structural simulation tool for facilitating
the fabrication of components is particularly evident for complex systems whose
fabrication is challenging due to their high optical sensitivity to tiny structural

variations.

Introduction 4



The current study focuses on the development of a theoretical framework
based on the numerical solution of quasi-three-dimensional (3D) incompressible
NS equations formulated for immiscible two-phase flow. Modeling of fiber optic
components requires understanding of optical fibers and fabrication processes,
combined with knowledge of numerical methods for simulation of two- and multi-
phase flow. In practice, numerical modeling of multiphase flows is a broad topic
which plays a significant role in the solution of many applied science and
engineering problems in the fields of environmental and geophysical science [17,
18], biomechanical engineering [19, 20], chemical processing [21] and the
fabrication of optical waveguides. The simulation of two-phase flows is
challenging since it includes modeling of interactions between the different phases,
tracking the boundary interface, and in some cases, resolving solidification and
melting phase changes. Several numerical techniques have been developed for
modeling two-phase flows with deformable interfaces and free boundaries.
Typically, the techniques are classified in terms of the multi-physics phenomena
modeled: the flow modeling, the interface modeling, and the coupling between the
two [22].

There are two basic numerical approaches that deal with free-interface
two-phase flow: interface-tracking and interface-capturing. In the interface-
tracking approach, the interface is determined by a series of Lagrangian markers,
whose location is dynamically updated throughout the numerical simulation.
Front Tracking (FT) [23, 24] and Immersed Boundary (IB) [25, 26, 27, 28]
methods are typical examples of the interface-tracking approach. In the interface-
capturing approach, the interface is reconstructed from a Eulerian scalar field
characterizing the flow properties. This approach includes the Volume Of Fluid
(VOF) [24, 29], Level Set (LS) [24, 30], and Phase-Field (PF) methods [24, 31,
32].

The present study focuses on the development of a formulation based on

the interface-tracking approach and the direct forcing 1B method [33, 34] to
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resolve the two-phase interface. The IB method was initially introduced by Peskin
[25, 26] for simulation of blood dynamics in the cardiac chambers. The method is
suitable for the simulation of flows in the presence of a number of immersed bodies
of arbitrary geometry. Each body is determined by a set of Lagrangian points,
which do not necessarily coincide with the underlying Eulerian grid. In the most
general case, the body can be deformable and moving. In the direct forcing 1B
approach, the kinematic non-slip constraints at all the points of the body are
enforced by applying Lagrangian forces entering as sources into the NS equations.
The values of the applied forces are unknown a priori and are a part of the overall
solution of the problem. In single-phase flows, the values of the Lagrangian forces
are coupled with the pressure and velocity fields governed by the NS equations.
In immiscible two-phase flows, the simulation should also account for the surface
tension forces coupling the fluid characteristics of each phase with the unknown

dynamically evolving curvature of the interphase interface.

The accuracy of any two-phase numerical simulation employing the
interface-tracking approach depends on a precise evaluation of the Lagrangian
forces on the interface between the two phases. The forces comprise the kinematic
constraints for continuous values of shear stress and velocity vectors. Historically,
numerical simulations relied on explicit treatment of Lagrangian forces (see e.g.,
Li et al. [28], Rutka, and Li [35]). The surface tension forces are explicitly
calculated based on the interface curvature obtained at the previous time step,
while the NS equations are solved by the SIMPLE [36] algorithm. The above
methodology can be easily plugged into any existing time marching solver of the
NS equations based on a segregated pressure-velocity coupling, which explains its
high popularity for simulation of both single- and two-phase flows [33, 34, 37, 38].
However, the explicit scheme has a number of disadvantages. First, the kinematic
constraints are applied to the intermediate velocity field, which has to be further
projected to a divergence-free subspace. As a result, a non-negligible mass leakage
through the interface between the two phases typically shows up after completing
the correction-projection step. To improve the accuracy and to ensure the mass

conservation of the explicit direct forcing IB formulation, a number of techniques
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have been proposed. Worthy of note are the works of Kempe et al. [39, 40], who
imposed substantially more accurate boundary conditions on the IB surface by
introducing intermediate iterations. An additional important study was published
by Li et al. [41], who proposed an area preservation correction scheme by
correcting the interface location normally to the interface so that the area remains
constant. More recently, Bao et al. [42] proposed improving volume conservation
by applying a continuous velocity interpolation operator that is divergence-free
and a new force-smearing operator that joins with the interpolation operator and

ensures the energy conservation.

In the numerical part of the present study, we focus on a fully coupled
approach in which the momentum and the continuity equations and the
Lagrangian forces, expressed as the distributed Lagrange multipliers, are fully
coupled. The developed fully coupled approach offers an attractive alternative to
the explicit coupling approach. The idea was originally proposed by Glowinski et
al. [43], who introduced the Distributed Lagrange Multiplier method (DLM) for
simulations of 2D flow around a moving disc [43]. An extension of this study was
conducted in simulations of particulate flows [44, 45, 46] and a fluid/flexible-body
interaction [47]. An additional contribution to the development of the fully
coupled DLM approach was due to the work of Taira and Colonius [48], who
implemented it within the framework of a projection method. The latest
theoretical development of the coupled DLM approach is owing to Feldman and
Gulberg [49], who extended the fully coupled approach to the linear stability
analysis of pressure and thermally-driven 2D flows. The idea underlying all the
implementations of the fully coupled DLM approach is that the initial system of
equations is extended by including additional relationships implicitly linking the
Euler flow fields and the distributed Lagrange multipliers, enforcing kinematic
constraints imposed by the surfaces of immersed bodies. The main purpose of the
present study is to develop and to verify extensively a novel IB formulation
employing the fully coupled DLM approach for simulating two-phase immiscible
flows. The developed methodology belongs to the family of FT methods and

provides precise conservation of mass of both phases without the need for any
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additional correction procedure. In the present formulation, the surface tension
forces, which are proportional to the curvature of the interphase interface, are
introduced as distributed Lagrange multipliers, and play the role of kinematic
constraints providing impermeability of both phases. The Fully Pressure-velocity
Coupled Direct solver (FPCD), originally developed by Feldman and Gelfgat [50]
for the simulation of shear- and thermally-driven confined flows, is used as a
“driver” for presenting the capabilities of the developed methodology. The
principle novelty of the developed approach stemming from the implemented fully
coupled DLM formulation is twofold. First, the kinematic constraints providing
impermeability of both phases are accurately met. Second, the developed
approach provides accurate volume conservation of both phases without the need

for additional correction procedures.

An additional part of this study is the fabrication of optic fiber components
that would serve as experimental validation for the developed numerical model.
The experiments are based on a destructive method and include ‘slice and polish’
to track the outer interface of simple and complex cross-sections of fiber

components, and evaluate the dopants' concentration distribution.

The rest of the thesis is organized as follows. The second chapter presents
a theoretical background, including the governing equations of the impermeable
two-phase flow and implementation details of the IB and FT techniques. The
third chapter comprises a verification study focused on simulations of three
representative two-phase benchmark flows. The fourth and fifth chapters present
the experimental production and diagnostic set up, followed by comparing the
numerical and experimental results and extensive discussions. The major
conclusions, as well as suggestions for future work, are then presented in the last

chapter.
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Chapter 2: Theoretical background

The fabrication of fiber couplers by the "heat-and-pull” technique requires
a heat source (a hydrogen flame in our case) and stages to hold and pull the
fibers. The tapering rate is determined by the pulling speed and the temperature
distribution of the heated zone. The temperature distribution during the process
is, in turn, controlled by the flame intensity, the flame-to-fiber distance, and the
flame scanning rate and length. To obtain an effective isothermal heating zone,
the flame scanning rate must be much higher than the rate of fiber pulling.
Providing that the above conditions are maintained, the active heating zone is
equivalent to the flame scanning length. In summary, the flame scanning length
determines the heating zone, and the stage pulling speed controls the tapering
rate (see Fig. 2.1).

Heating zone

Flame -
scannm rate ¢
E— - — =
Stage pulling Flame scanning length > Stage pulling
speed speed
— —_—

FIG. 2.1. Schematic diagram of the fibers' coupling process.

Typically, the process occurs at a steady temperature lying in the range
of 1200-1900°C, at which the viscous sintering of the fibers may be regarded as
the motion of an incompressible Newtonian fluid driven by surface tension [1] and
damped by viscous dissipation forces. Although the system under consideration
is 3D in practice, the fiber coupling process can be approximated by a transient
quasi-3D model. The third axial direction along the tapered coupler is replaced
by a series of discrete axial cross-sections of different areas. This approximation
is acceptable in the case of an isothermally heated zone, which is a good
approximation for the flame scanning setup, as long as the pulling rate is much
lower than the scanning rate. Each such cross-section comprises the local

structure of the glass coupler whose shape had formed as the coupler was drawn
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through the heated zone. As long as the pulling rate remains constant, each cross-
section can be related to the discrete-time at which the coupler had formed and

had remained “frozen” immediately after it had been drawn out of the hot zone.

The decrease of the cross-sectional area A(t) taking place at time t, as a,
result of simultaneous heating and drawing out of the coupler in the heated zone
is related to the constant pulling rate v. and the flame scanning length |, by the

following ordinary differential equation:

d 2VS —
AD+=EAD =0, (2.1)

whose analytical solution provides an expression for the decrease with time in the
cross-sectional area A(t):

72vst

At)=Ae ', (2.2)
where A, is the initial cross-sectional area of the fibers forming the coupler. The
decrease in the cross-sectional area of the coupler can be formulated by
introducing a volumetric sink ( , defined as:

2,000

| (2.3)

q:

Eq. (2.3) will be utilized in the following sections when describing the fluid

dynamics of the fabrication process of fiber couplers.

It should be noted that the developed simulation tool can be straightforwardly
adjusted for configurations including non-uniform flame scanning. In this case,
the distributed volumetric sink and the silica viscosity should be evaluated
separately for each cross-section of the full 3D model. Afterwards, the time
evolution of each cross-section can be resolved again by 2D analysis. This kind of

simulation will be the focus of our future studies.

2.1 Governing equations
Consider two incompressible viscous fluids A and B confined by a
rectangular domain, where the fluid B surrounds fluid A, and the two fluids are

separated by a sharp closed interface I parameterized by X(s,t), as shown in
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Fig. 2.2. In the context of the present study, fluid A is related to the viscous fused
silica and represents the cross-section of the fiber coupler, whereas fluid B is

related to the surrounding air.

Fluid B

Lx P Hy O

FIG. 2.2 Schematic representation of a two-phase flow configuration.

The two fluids have different densities and viscosities represented by p,,
and ,,, respectively. Fluid A is enriched with dopants to provide the requisite

optical characteristics. The concentration distribution of the dopants c¢ is
controlled by convection and a constant diffusion coefficient D , and it is assumed
that there is no diffusion between fluids A and B. Three equations govern the
fluid dynamics of the described system, namely, the continuity, NS, and the

dopant concentration convection-diffusion equations:

p()V - u=q, (2.4)

ou
p(l)(—+u-Vu] =

o (2.5)
VP +V - (u()(Vu+ V1)) + %,u(l WV - 1)+ F+ p(l)ge,,

Zt_c +(u-Vx =DVZ, (2.6)

where tUu,v), p, ¢, t, f, and q represent the velocity, pressure, dopant
concentration, time, surface tension force density and volumetric mass source,

respectively. €, IS @ unit vector in the direction which is opposite to that of the

gravity force and g is the gravitational acceleration.

Theoretical background 11



Note that because of the spatio-temporal variation of the viscosity, the governing
equations (2.4-2.6) are presented and then solved in dimensional form. (This
approach also subsequently facilitates the calibration and fine-tuning of the
developed numerical methodology to the experiments.) Nonetheless, all the
validation studies and the further post-processing of the obtained results are
rendered dimensionless.

The indicator function, 1(X,t) [41], is a non-dimensional scalar field, whose
values lie within the range 1 €[0,1]. The indicator function is used for
representing the spatial distribution of the material properties [p(l1), «(1)], and is
used to smear their discontinuity in the vicinity of the sharp interface T’
separating the two fluids. We now define the gradient of the indicator function

as:

VI(xt) = jr n(X(s,1)5%(x — X(s,1))s (2.7)

where r(X(s,t)) is a unit vector normal to the interface I' at point X{(s,t)
parameterized by 0 <s <L (L is the total length of the interface). The values of

| are obtained by solving Poisson’s equation:

Al(xt) =V - L n(X(s,1))5%(x — X(5,1))ds, (2.8)

where the 2D convolution function 8% is obtained by multiplication of two one-

dimensional (1D) discrete Dirac delta functions d of the form:

Ly ﬂ’—E;(u)z +1 for |r| < 0.5Ar,
3Ar Ar

1 |r| J Ir Iy,
dr)=<—|5-3——,[-3\1-—) +1| for O.5Ar <|r| <15Ar, (2.9
©) 6Ar[ Ar ( Ar) I (2:9)

0 otherwise,

introduced by Roma et al. [27] and verified by [39, 48, 51, 52, 53, 54]. Here, Ar
is the cell width in the r direction. Following the guidelines formulated by

Tryggvason et al. [23], Eq. (2.8) was solved by the SOR method. The iterations
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were only performed on points close to the interface (typically two grid cells in
each direction, which encloses the field of influence of the discrete Dirac delta
function defined by Eq.(2.9), leaving points away from the interface unchanged.
The procedure made it possible to precisely keep the correct values of the density
and the viscosity fields away from the interface, separating between the phases.
In addition, to prevent small over- and undershoots which can emerge near the
interface when simulating the two-phase flows characterized by high density and

viscosity ratios, a simple filtering was applied while iterating the 1(x,t) values.

The obtained values of 1(x,t) are then utilized to update the spatio-

temporal variation of the p and x fields:

[, 1 (1) =[,®), 111+ ([2,0), 1£,O1-[2,©, 5O (X1 .(2.10)

The surface tension force density 7(x,t), appearing in the right-hand side (RHS)

2
of Eq. (2.5), is related to the local curvature of the interface %(ft) as:
S
O* X(s,t
fxt) = | a#éz(x—X(s,t))ds, (2.12)
r oS
where o is the surface tension coefficient.
2.1.1 Discretization in time and space

The time derivative in the unsteady momentum and the diffusion

equations is approximated by a second-order backward differentiation:

n+l n+l n n-1
v WS Y oA | (2.12)
ot 2At

In the momentum (2.5) and the diffusion (2.6) equations, the linear terms of
diffusion and surface tension forces are treated implicitly, while convective non-
linear terms are treated explicitly and moved to the RHS of the corresponding
equations. Due to explicit advancement of the nonlinear terms, the overall scheme
Is subjected to the restrictions in the size of the time steps. Thus, the time
increments must satisfy the usual Courant number criterion, which is defined in

explicit schemes [55]:
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C, = \u\At/Ax <10,C = MAt/Ay <1.0. (2.13)

Also, when non-zero values of the dynamic viscosity and the molecular diffusivity
are used, the momentum and the diffusion equations do not diffuse more than

one cell in one time step due to stability considerations:

(11, D)At [1/(Ax)z +1/(Ay)2} < % . (2.14)

In a number of benchmark numerical tests [56, 41], in cases where discretization
had h grid cells in the shortest direction (Ax =1/h), the time step was
At =h/16.

The finite volume approach was used for the spatial discretization
performed on a staggered grid [57], as shown in Fig. 2.3. The staggered grid was
introduced by Harlow and Welch [58] for the ‘Marker And Cell' method, and has
been used extensively in computational fluid mechanics ever since. There are two
main reasons why the staggered grid characterized by an offset in the location of
the different fields of the problem is widely used instead of a co-located grid,
where all the fields are located at the same points. The first reason is related to
the accuracy of the discretization. By using a staggered-grid, the pressure gradient
is computed as the difference between the adjacent points. In contrast, when the
calculation is performed on a co-located grid, the pressure gradient is evaluated
by points distant from each other by 2Ax or 2Ay. The second reason is that
discretization on a staggered grid naturally makes it possible to keep the
conservative form of the governing equations. At the same time, the terms of
advection and the derivative of viscosity in the momentum equations require some

extra manipulations for accurate formulation.
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FIG. 2.3 Control volume for the pressure field — staggered grid arrangement.

2.2 Numerical methods

Direct numerical simulations (DNS) are widely used for single-phase flows
in large time and length scales, and enable solving a wide range of problems.
However, the use of DNS for multi-phase flows is less common [33]; therefore,

developing such a tool can make a considerable contribution to the field.

In this section, the IB method was adapted for the simulation of two- and multi-

phase fluid flows, and is presented.

2.2.1 Immersed Boundary method

The 1B method was originally proposed by Peskin in 1977 [26]. The method
was developed to accurately simulate the interaction of blood flow in the heart,
and since then, it has been widely utilized for the simulation of flow in many
biological problems [25]. The main idea of this method is to use the Eulerian fixed
grid, together with Lagrangian markers representing the IB. In our research, we
use the IB method for calculating the surface tension term, while the velocity and
pressure fields are calculated on the Eulerian grid. The interaction between these
two grids is achieved by regularizing the surface tension force from Lagrangian
markers to adjacent locations on the Eulerian grid, and by interpolating the

Eulerian velocity fields to the nearby Lagrangian markers. Both operations are
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implemented by utilizing the same discrete Dirac delta function (Eq. (2.9)). By
applying the delta function, we impose the contribution of the distributed force
of the boundary as a function of a non-dimensional distance r of the Lagrangian

marker to adjacent locations on the Eulerian grid.

It should be noted that, as a result of solving the continuity equation on
the Eulerian grid, the 1B method utilized for the solution of the proposed problem
does not explicitly provide the volume conservation of both phases. For this
reason, Li [41] proposed a simple area-preserving scheme for two-phase fluids by
performing further iterations to correct for mass conservation. In contrast, our
method manages to preserve mass conservation with no need for extra iterations.

Extensive details are presented in the next section.

2.2.2 The numerical methodology
The numerical methodology utilized in the present study is based on the
IB method, specifically developed to simulate two-phase immiscible flows [52]. In
the developed methodology, the enforcing surface tension density 7 is treated
implicitly, and serves as a Lagrange multiplier, applied to enforce the kinematic
constraint of the immiscibility of the two fluids to preserve the sharp interface

between the two phases.

The developed methodology is embedded into the generic incompressible
NS solver, based on full pressure-velocity coupling [50]. The position of the
interface is updated by employing the interface-tracking approach [23, 24].

Following Eqg. (2.11), implicit treatment of the surface force density £ leads to

the introduction of additional unknowns, (52%52 ,5%52), which requires the

addition of supplementary equations to achieve closure of the overall set of

equations:
2 )<n+1 _ 2Xn+1 + )<n+l
[aa)z(lj _ ( 141 ( |)2 I-1 ) (2.15)
S As
X = X"+ At jQ U5 — Xydxdy . (2.16)
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Substitution of X', X""and X":' defined by Eq. (2.16) into Eq. (2.15)

-1

and moving all the terms known from the previous time step to the RHS yields:

[ P80, - %) -25°(X - X)+ 6°(X, - X) |dxdy ) [az X } )
os? |

os]
(2.17)
)(|n+1 ~ 2)<|n + )(In—l

(as)

The system of equations (2.4),(2.5) and (2.17) can now be written in block-

matrix form as

n+l

u
H, H, -V o (X6t")-x) 0 | v | [resre
H, H, -V 0 08’ (Xt - x)|| P RHS "
vV 0 0 (az_xj =| RHS! | ,(2.18)
Ic 0 0 -1 0 05’ RHS;
0 1C, 0 0 ] [ﬂ j | RHS{ |
i [Les )]

where H =V - (u(1)(V+V"))+ %,u(l W(V) - sz—A(l) I are Helmholtz operators

acting on the u and v velocity components, | is the identity matrix, and V*
VY are the first derivatives in the x and y directions, respectively. IC is the

‘Interface Curvature’ operator appearing as the first term of Eq. (2.17). The RHS

is defined as:
RHS _ (I) (UV)U_iun_l_iL[n—l (2 19)
uy = P! At 2At ' -
X' -2X"+ X"
RHSXY =——i 52+ = ’ (220)
| (35
v At
RHS, = I_se ' within fluid A, (2.21)
0 otherwise

All the discrete operators were obtained by applying a second-order
backward finite difference scheme for the temporal discretization, and utilizing

the standard second-order conservative finite volume method [36] for the
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staggered grid spatial discretization. Additionally, all the linear terms were
treated implicitly, and all the nonlinear terms were treated explicitly and appear
in the RHS.

The solution of the equation system (2.18) is based on an LU factorization
of the sparse matrix, built for the entire computational domain. The LU
factorization is carried out by a direct Multifrontal Massively Parallel Solver
(MUMPS) [59, 60] and has to be performed at every time step as a result of
varying material properties in the operator H. The successive calculation of the
velocity and pressure fields is implemented by the backward substitution
procedure, also realized for sparse triangular L and U matrices. Due to efficient
utilization of the matrix sparsity, both LU factorization and back substitution
procedures are relatively fast. The boundary conditions are of the Dirichlet,
Neumann, and periodic types, each applied in accordance with the specific

problem.

The convection-diffusion equation (Eq. (2.6)) was solved separately from
all the other equations by using the velocity field from the previous time sub-
step. The equation was solved only for the fluid domain A, with a zero gradient

boundary condition on the interface I (see Fig. 2.2).

To conclude, each computational time step consisted of three main sub-
steps: The first one was the solution to Poisson's equation, given by Eq.(2.8). The
obtained indicator function 1(x;t) was then used in Eq.(2.10) to identify the
spatial distribution of the x4 and p fields. In the second sub-step, the system of
equations (2.18) was solved implicitly by MUMPS [59, 60] to obtain the fully
coupled velocity and pressure fields. Finally, in the third step, diffusion Eq. (2.6)
was solved to obtain the concentration of dopants ¢, under the assumption of one-
way coupling (i.e., no dependence of the flow p and . fields on the concentration
of dopants), and the interface position was updated by utilizing Eq. (2.16). The
whole procedure was then repeated for the next time step (see Fig 2.4).

Note that for the case of zero concentration, it is possible to skip the

convection-diffusion equation (Eq. (2.6)) and to update the interface directly after

the second step.
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['->1(x,t) - pd),ud)

l

Velocity and pressure fields

Solution of system equations:

Mass Conservation, Momentum and Kinematic Constraint equations

u(x,t)
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Zero gradient boundary condition on T.
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The interface position, T, is updated according to the interface

tracking approach <

Xn+1

FIG. 2.4 Block diagram of the computational time step.
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Chapter 3: Validation study

In order to broadly verify the developed method for a wide range of
applications, four benchmark problems for incompressible two-phase flows were
solved. The flows under consideration were driven by different mechanisms,
namely; buoyancy, shear, and surface tension forces. The benchmark problems

were solved non-dimensionally, where the non-dimensional equations were
obtained by using the characteristic scales D = ZW for the length (where
S is the area of fluid A), U for the velocity (where U is the characteristic
velocity of the specific flow configuration), t =D /U for the time, and
p=u_.U/D for the pressure field. The mass density and the dynamic viscosity
fields were scaled by the corresponding minimum values of either of the two fluids,
p..and u .. The non-dimensional groups determining the two-phase flow under

consideration are the Reynolds (Re), Weber (We) and Froude (Fr) numbers,

defined as

UD U’D
Prin ,We = pm'n—, Fr = U— .(3.1)

'umin o \/93

The first and second benchmark problems consider the flow of a circular

Re =

bubble rising within a fluid of higher density due to buoyancy forces [30, 56, 61].
In general, both fluids can also have different viscosities. Under the action of
buoyancy forces, the bubble accelerates while rising up, until it reaches its
terminal velocity. Similarly to the first benchmark problem, the second
configuration also comprises a circular bubble rising within a fluid of higher
density, with the only difference being that in this case, the flow is characterized
by higher values of density and viscosity ratios, which eventually leads to break-
up of the rising bubble. The third benchmark is the shape evolution of a drop
under pure shear stress [41, 62, 63]. A circular drop of a certain liquid is
submerged into a pure shear flow of another liquid. Both liquids have different

viscosities. As a result of shear forces, the submerged circular drop undergoes
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shape deformation. The fourth benchmark is known as the disc relaxation
problem [41, 64]. A drop of a certain fluid with an initial rosette shape is
submerged in another fluid of different viscosity. As a result of surface tension
forces between the two phases, the rosette-shape drop undergoes complex
deformations until it eventually converges to a circular shape. The results of our
simulations were compared both qualitatively and quantitatively to the data
available from the literature [65, 66, 67] for different Reynolds, Weber, and
Froude numbers. A detailed comparison between the results was published [52],

and is presented in the following section.

3.1 Test case 1 - Rising bubble without break-up

This benchmark focuses on the dynamics of a deformable liquid bubble
submerged in a cavity filled with another fluid of higher density. This flow has
been thoroughly studied both experimentally [68] and numerically [30, 56, 61, 69,
70]. The most comprehensive quantitative results are due to the review of Hysing
et al. [56], which presents a comparison between the time evolutions of the
circularity, the position of the center of mass, and the vertical component of the
velocity of the rising bubble’s center of mass as defined in Eq. (19). This data
was independently obtained by three research groups, each utilizing its own

numerical methodology (consult Ref. [56] for more details).

The buoyant dynamic of an initially circular rising bubble of diameter D

is considered. The bubble is initially placed at point [D,D] within a [2D x4D]

rectangular domain, as shown in Fig. 3.1.
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FIG. 3.1 - Initial configuration and boundary conditions of rising bubble test flow.

The boundary conditions are set as:
ux =0y)=u(x =2D,y) =0,
u(x,y =0)=u(x,y =4D) =0,
ﬂ(x =0y) = @(x =2D,y)=0, (3:2)
OX OX
v(X,y =0) =v(x,y =4D) =0,

In addition, a single Dirichlet point for the pressure field, p =0, was set
in the corner of the computational domain. The values of physical properties and
operating conditions governing the flow under consideration are specified in Table
1.

Table 1 - The values of physical properties and operating conditions.

P P, M M, D g o Re We Fr p/p, w/u
1000 100 10 1 1 098 245 98.99 4 1 10 10

The center of mass of the rising bubble is a local quantity given by:
[ v
QZ

X =<XC’YC)=W’
QZ

(3.3)

where Q. denotes the region occupied by the bubble.
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Following Wadell [71], the bubble’s ‘degree of circularity’ ¢ is defined in R?* as

P 7D
= —a = a y 3 . 4
¢ Pb Pb (3.4)

where P, is the perimeter of a circle with diameter D_, which has an area equal

to that of a bubble with perimeter P, .
The rising velocity, U,_, is defined as the mean velocity of the bubble:

jQ T\,
j av

Q,

U, =U.V,)= (3.5)

To prove the grid independence of the results, the simulations were
performed on four different grids with a time step of At=h/2, where h
corresponds to the grid step. Grid independence of the obtained results is
favorably verified by indistinguishable differences between the final shapes of the
bubble obtained at t =3 on the two finest grids (see Fig. 3.2).

— — h=1/40
— — h=1/80
13k h=1/160 | |
’ e — — h=1/320
/// \\”\
e S
1.2 / N
) N\
e X
/ \
V4 \
1.1 4 \
” \
Vi \\
|
" I
{ /!
1 \ J
N /
N e
-~ .
0.9 [
0.8
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG 3.2 — Bubble shapes obtained on four different grids at time t =3.

In addition, it can be clearly recognized that the bubble shape obtained
at time t =3 on the finest grid is in excellent agreement with the corresponding
results reported in Hysing et al. [56] (see Fig.3.3). Mass conservation of the bubble
is next verified by comparison between the initial and the final areas of the
bubble. It can be seen that for all the grids, the mass lost does not exceed 0.35%

of the initial mass, as summarized in Table 2.
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Table 2. Mass discrepancy (%) at t=3 in test case 1.

h 1740 1/80 1/160 1/320
Mass leakage [%] 0.3364 0.0917 0.0560 0.0204
,/’ \\\.\
O .
J M
! :

FIG. 3.3 — Bubble shapes obtained at final time (t =3): comparison between the present and the
previously published results.

Figs. 3.4, 3.5, and 3.6 compare between the present and the previously

reported time evolutions of the circularity, the Y-axis position, and the V.

velocity component of the bubble’s center of mass, respectively. All the results

were calculated on the grid characterized by h =1/160 with At =h /16.

(a) 1-02 . : . : . (b) 09024
Present results| Present results|
— — TP2D [39] L — — TP2D [39]
1 FreeLife [39] | | 0.9022 FreeLife [39]
— — MooNMD [39] — — MooNMD [39]
0.902 F 4
0.98 - 0.9018
z 2
§0.96 5090161
3 3
£ £0.9014
© 0.94 [8)
0.9012
0.92 0.901 f
0.9008
09+
| I I | | 0.9006 | | |
0 0.5 1 1.5 2 25 3 1.8 1.85 1.9 1.95 2
Time Time

FIG. 3.4 - Time evolution of the circularity values: (a) the whole-time history; (b) close-up view around
the time t=1.9.
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FIG. 3.5- Time evolution of the Y position of the center of mass: (a) the whole-time history; (b) close-up
view around the time t=2.9.
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FIG. 3.6- Time evolution of the rise velocity: (a) the whole history; (b) close-up view around the time t=0.9.

In addition, Table 3 presents a quantitative comparison between the
corresponding instantaneous values of the global minima of circularity, global

maxima of rising velocity and vertical position of the center of mass at t = 3.

It can be clearly recognized that all the presently obtained characteristics
are very close to the corresponding previously obtained results for the entire range
of time instances. The maximal discrepancy between all the flow characteristics
does not exceed 0.04%. The maximal deviation between the circularities is
observed around their global minima (close to the time t =1.9), characterizing
the most significant deformation of the shape of a rising bubble compared to its
initially circular geometry. From this point on, the circularity smoothly increases
until finally attaining its asymptotic value that indicates that the bubble has
reached its terminal velocity. The fact that the bubble has reached its terminal
velocity is also confirmed by noting a constant slope of the time evolution of the

Y coordinate around time t =2.9 (see Fig. 3.5-b).
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Table 3. Global minima values of circularity with corresponding incident times, global maxima values of

rising velocity and final vertical position of the center of mass.

Present method TP2D FreeL.ife MooNMD
Prin 0.9011 0.9013 0.9011 0.9013
tlg=4¢, 1.9000 1.9041 1.8750 1.9000
\ 0.2416 0.2417 0.2421 0.2417
LtV =V . 0.9232 0.9213 0.9313 0.9239
Y(t=3) 1.0813 1.0813 1.0799 1.0817

It is remarkable that the value of the terminal velocity is lower than the
value of the global velocity maxima observed at t ~ 0.9 by about 10% (see Fig.
3.6-b). Increasing the vertical velocity of the bubble is followed by enhanced
deformation of the bubble shape, which results in a moderate deceleration of the

bubble until it reaches its terminal velocity.

3.2 Test case 2 - Rising bubble undergoing break-up

The aim of this simulation is to demonstrate that the developed
methodology is also capable of simulating immiscible two-phase flows with
multiple separated boundaries. For this purpose, the rise of a 2D gas bubble with
its subsequent break-up in a quiescent liquid is considered. The geometry and
boundary conditions of the flow are the same as for test case 1. The values of
physical properties utilized in the present simulations are equivalent (subject to
appropriate rescaling) to those used in the previous studies [65, 66, 67], as detailed
in Table 4.

Table 4 - The values of physical properties and operating conditions utilized in test case 2.

Re We Fr 1 p, w1

120.83 2.6 1 40 83.33

Unfortunately, the breaking process cannot be directly captured only by
the solution of the NS equations with the subsequent Euler integration of the

two-phase interface governed by Eq. (2.16). Explicit modeling of the bubble
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break-up is required. In the present study, we adopt an assumption that the
breaking process is followed by the formation of a deformed neck, which is thinned
by the dynamic local pressure. This scenario is realistic for many physical systems,
for example, for the microfluidic dynamics of two-phase immiscible flow in T-
junctions [72, 73, 74], and is favorably applied here to simulate bubble break-up
in buoyant and pure shear flows. A schematic of bubble break-up modeling is
shown in Fig. 3.7. The distance between all points of the body, with the exception
of a pair of points in the immediate neighborhood of the break-up, is evaluated

for every point of the immersed surface at each computational time step.

a. Before break-up b. After break-up

FIG. 3.7. Schematic bubble break-up modeling.

Once the absolute minimal distance between any two points of the body

| is less than a given threshold aAx (see Fig. (3.7-a)) the body is split into two

min
parts (see Fig. (3.7-b)), where each part is treated as a separate body at the next
computational time. In this study, the value of a was set in the range of
1< a <15, which corresponds to the grid size length and to the range of
influence of the presently utilized discrete Delta function, respectively. Although
the above splitting procedure could result in a certain loss of mass, it was verified
that for the chosen range of a values the mass discrepancy of a single break-up

phenomenon was within the discretization error of the numerical scheme!. After

! The described break-up procedure should be empirically rescaled to preserve mass if multiple
break-up phenomena take place.
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the splitting, Lagrangian points of each newly formed body were redistributed to
preserve an even spacing with the distance approximately equal to the size of the

Eulerian grid.

The time evolution of the rising initially cylindrical bubble simulated for

the physical parameters listed in Table 4 is shown in Fig. 3.8 for t =1.5, 3, 4.5, 6.

Mass conservation of the rising bubble was verified at all the time instances (see
Table 5). It can be seen that the maximum mass loss does not exceed 0.15% of
the initial bubble mass. The instantaneous shape of the bubble is superimposed

with contours corresponding to the absolute values of the velocity vector, M The

obtained results are in acceptable agreement with the results of Gaudlitz and
Adams [65], Wang et al. [66], and Archer and Bai [67] for t =1.5 and t = 3. For
these time instances, the symmetry of the flow relative to the vertical centerline
is preserved. It can also be seen that at t = 4.5 the drop has already undergone
its primary and secondary break-ups, followed by the slight symmetry breaking
in the shapes of the major and four small pinched off bubbles. The crescent thin
arms from both sides of the bubble continue to elongate even more as the bubble
rises. The flow dynamics after the break-up is somewhat different from that
observed in the previous studies [65, 66, 67] based on the LS method. One of the
reasons for the observed discrepancies could be attributed to the different grid
resolutions: the present results were obtained on a 320 x 640 grid, while all the
previously reported results were obtained on a rather dense 40 x 80 grid. It should
be noted that when such a dense grid was applied for the present methodology,
it provided inconclusive results, which can be seen as a drawback of the FT
approach compared to its LS counterpart. On the other hand, the results obtained
by the LS method can be under resolved, which can result in mass conservation
violation. An additional reason for the differences in the post break-up shapes of
the bubbles could be due to the modeling of the break-up process adopted in the
present study, which can be further modified by various fine-tuning strategies to
better comply with existing experimental or numerical results. Recalling that the

main purpose of this simulation was to demonstrate the capability of the
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developed algorithm to handle multiple separated boundaries, the development

of such fine-tuning strategies was beyond the scope of the present study.

0 0.5 1 1.5 2 25

FIG. 3.8. Time evolution of the rising initially cylindrical bubble obtained on a 320x640 grid for the
value of @=1.5 and zero initial velocity. The initial position of the bubble center was (1.25,1.0). The
colors correspond to absolute values of the velocity vector, |u].
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Table 5. Mass discrepancy (%), calculated at every time instance in test case 2.

Time 1.5 3 4.5 6

Mass leakage [%] 0.1664 0.2858 0.1141 0.1346

3.3 Test case 3 - Drop under shear flow

The initial state of the problem is given in Fig. 3.9. The circular drop
submerged into fully developed Couette flow is subjected to pure shear stress,
while the gravity force is neglected. Under the action of shear stresses, the flow
undergoes deformation until the increasing surface tension forces equalize with
the shear forces and the drop shape reaches equilibrium. The square box domain
is of dimensions [2D,2D], and the center of the submerged circular drop with
diameter D coincides with the geometrical center of the box (point [D,D]).
Following the works of Kapil & Pozrikidis [63] and Chinyoka et al. [62], the
simulations were performed for four different values of Reynolds number,

Re =1, 10, 50 and 100, two values of viscosity ratio z, / x4 =1 and 10, and two

values of capillary number, Ca =0.2 and 0.4. Note that the capillary number

relates between the viscous and surface tension forces and is defined in the present

study as
Uu
Ca =V£ _ = Hrin . (3.6)
Re o
Y >
A -
Fluid 1 S
—>
2D
r
%
yh f
v X
_ U
< 2D >

FIG. 3.9 - Initial state of the circular drop submerged into a fully developed Couette flow.
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The boundary conditions applied in the above configuration are that the
top and bottom walls of the cavity for all the velocity components are of the
Dirichlet type:

ux,y = 2D) = —u(x,y =0)=U,

3.7
v(x,y =2D) =v(x,y =0)=0

In addition, periodic boundary conditions were applied for the velocity and
pressure fields in the horizontal, x, direction. A single Dirichlet point for the

pressure field, p =0, was set in the corner of the computational domain. The

mesh grid h =1/ 300 and time step At =10 were utilized in all the simulations.

A comparison between the present and the previously published data [62]
for the drop shapes at steady state as a function of various values of operating
conditions is presented in Fig. 3.10. An excellent agreement between the results
is observed for the entire range of parameters. It can be seen that increasing the
Ca number results in more pronounced elongation of the drop shape, which can
be explained by the reduced surface tension force. In contrast, increasing the
viscosity ratio leads to decreasing the deformation of the drop shape. The mass
leakage calculated for all the configurations analyzed in test case 3 is summarized
in Table 6 at the final time t=3. It can be seen that the maximal value of mass

loss does not exceed 0.023% of the initial drop mass.
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FIG. 3.10 - Drop shapes at t=3: (a) Ca=0.2, u, = 1; (b) Ca=0.2, u, = 10; (c) Ca=0.4, u,, = 1; and (d)
Ca=0.4, u, = 10. Plus markers — Chinyoka et al. [62] results, Lines - the present results.

Table 6. Mass discrepancy (%) at t=3 in test case 3.

Ca=0.2 Ca=04
u =1 u =10 u =1 u =10
Re=1 0.0089 0.0038 0.0051 0.0038
Re =10 0.0089 0.0064 0.0051 0.0064
Re =50 0.0102 0.0178 0.0064 0.0166
Re =100 0.0102 0.0228 0.0064 0.0216
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3.4 Test case 4 - Rosette shape

This benchmark investigates the dynamics of the relaxation of a rosette-
shaped drop to a circular disc in a quiescent viscous liquid. In this configuration,
the flow is driven by the surface tension forces, while the momentum of the flow
is diffused by the viscosity of the fluid. Gravity is neglected. The initial
configuration in this problem consists of a rosette-shaped drop. The center of the
drop coincides with the center of a square cavity. The initial shape of the drop is
defined by

0<6<2r, (3.8)

X X =D -(0.5+r cos())
" IY =D-(05+rsin(@))’

where r =0.25+0.1cos(n@) and n is the oscillation mode. Nonslip boundary
conditions were applied at all the cavity walls. In addition, a single Dirichlet point
for the pressure field, p =0, was set in the corner of the computational domain.

Following the study of Li et al. [41], the problem was studied for three different

modes of n = 3,5 and 8, as shown in Fig. 3.11.

(a) (b) (c)

3

»l
»
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»
>

Fluid 1 Fluid 1 Fhuid
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h b 3
¥ W* 2 ¥yL
« D » e D » e D »|

FIG. 3.11 - Initial configurations of rosette-shaped drop corresponding to: (a) n=3 modes; (b) n=5
modes; (c) n=8 modes.

Since neither the characteristic velocity, nor the Reynolds and Weber
number values were specified in [42], the present simulations were carried out by
solving dimensional NS equations on the computational domain Q=(0,1)x(0,1)
with physical and geometrical parameters provided by [41], as detailed in Table
7.
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Table 7. Physical and geometry parameters utilized in test case 4.
p]_ ,02 lul ’u2 D o
1 1 0.01 0.01 1 130

The problem was solved on h =1/ 64,128 grids with At =h /16. The time
evolution of the rosettes is visualized by presenting the rosette shapes at various
time instances in the range of 0<t <1, as shown in Fig. 3.12. Lagrangian
markers determining the instantaneous rosette shapes are superimposed with the
corresponding rosette shapes reported in [41]. In agreement with the Li et al.
study [41], all the three modes of the rosette drop relax to a disc shape at t =1.
However, in some instances, the presently obtained rosette shapes precede the
corresponding shapes reported in [41]. Such a discrepancy, indicating a higher
rate of momentum diffusion in our simulations, can be, apparently, a consequence
of differences in the distribution of Lagrangian markers at each simulation
instance. Contrary to the study of Li et al. [41], in which a constant number of
Lagrangian markers is used for determining the two-phase interface, the presently
developed methodology utilizes a varying number of Lagrangian markers, while
preserving their even distribution over the interface. It can also be seen that
higher modes are characterized by higher relaxation rates as a consequence of
initially higher values of surface tension forces, which are proportional to the
curvature of the interface separating both phases. Conservation of the area of the
drop at each time step of the simulation comprises a critical criterion for
verification of the developed approach, as it is dictated by the flow
incompressibility. It was also verified (see Table 8) that for all simulations, the
maximal discrepancy in the area did not exceed 0.5% for h=1/64 and 0.21% for
h=1/128.

Table 8. Mass discrepancy (%) at t=0.5 in test case 4.

Mode 3 5 8
h=1/64 0.4437 0.4720 0.4900
h=1/128 0.2028 0.2170 0.2075
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FIG. 3.12. Verification of the time instances of a rosette drop characterized by 3, 5, and 8 modes initial

shape when relaxing to circular disc in quiescent liquid.
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Despite implicit representation of the surface stress forces, parasitic
currents arise with maximum magnitude in the close vicinity of the interface, as
shown in Fig. 3.13. A reason for the presence of these currents is a slight
imbalance between stresses in the interfacial region. The source of the unbalanced
stresses is apparently related to the truncation error associated with the second
derivative of the Lagrangian coordinate X (see Eq. (2.15)) when calculating the
local surface tension force. Nevertheless, the maximal magnitude of the parasitic
velocity does not exceed 0.6% of the characteristic velocity U/, which is too small
to have any effect on the transient and steady-state dynamics of the flow under

consideration.

0005 0.01 0.015 0.02 0.025 003 0.035 0.04 0.045 005 0055 006

FIG. 3.13. The magnitude of parasitic velocities observed for a drop of circular disc shape.

3.5 Additional capabilities of the algorithm

In this section, we examine additional capabilities of the algorithm to
demonstrate that the developed methodology can favorably address both shear
and buoyancy-driven flows in which multiple break-up phenomena take place.
We first simulate a multiple break-up phenomenon for the flow configuration
consisting of a circular drop under the action of pure shear flow. The drop is
placed in the center of a long 10 x1 channel with no-slip velocities Ui and -Ui

at the top and the bottom walls, respectively, and periodic boundary conditions
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in the horizontal direction. Gravity is neglected. The values of the physical

parameters used in the simulation are given in Table 9.
Table 9. The values of physical properties and operating conditions used for 10:1 pure shear flow.

Re We Fr o/ p, w1,

1 7.2 1 1 1

The time evolution of the drop shape is shown in Fig. 3.14. At times
70 <t <100 the obtained results qualitatively repeat the instability phenomena
observed at the central portion of the bubble [75]% The instability is preceded by
elongation of the drop, which resembles the shape of a dumbbell at t = 40, and
is then followed by a detachment of daughter drops via an end-pinching
mechanism at 40 <t < 70. It is remarkable that while spreading over the channel,
the slopes of the elongated drop and a series of its daughter drops further created

as a result of the drop break-up asymptotically decrease to approximately zero.

2 The values of Re and We were multiplied by a factor of 8 to fit the scaling of the present study.
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FIG. 3.14. Interface evolution of circular drop under pure shear flow undergoing multiple break-up phenomena,

Re =1, We =7.2, 10 x 1 channel, on a 50 x 500 grid.
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We next simulate a multiple break-up phenomenon by analyzing the
configuration corresponding to the rising air bubble in water. The simulation was
performed for the physical parameters listed in Table 10. Density and dynamic
viscosity ratios were chosen to fit the air-water two-phase flow. The relatively
high value of the We number was taken to diminish the surface tension effects
and to ensure that the break-up phenomenon takes place before the bubble
reaches its terminal velocity.

Table 10. The values of physical properties and operating conditions utilized for the configuration corresponding
to the air bubble rising in water.

Re We Fr P! p, !

300 2.6 1 1000 185

The time evolution of a rising bubble for a number of time instances t=0.5,
1, 1.5, 2, 2.5, 3 is presented in Fig. 3.15. At the beginning of the motion, the
bubble undergoes deformation stages similar to those observed for test case 2.
The crescent shape of the air bubble at t = 0.5 is transformed to the shape of a
dumbbell, followed by further twisting and thinning at its ends and finally leading

to flow instability and the multiple break-up phenomenon at t = 3.
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FIG. 3.15. Interface evolution of circular air bubble rising in water. The simulations were obtained for
Re =300, We = 2.6, Fr =1 on a 320 x 640 grid.

3.6 Test case 5 — Fiber optic coupler

In the current study we aim to demonstrate the capabilities of the developed
numerical tool in order to simulate fusion dynamics of optic fiber couplers to
further facilitate their fabrication. We start with a comparison of the currently
obtained numerical results with the corresponding numerical and experimental

data obtained by Pone et al. [1] for the fusion of two SMF28 fibers of 125 um
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diameter, as shown in Fig. 3.16. The fibers were brought into contact and heated

with a propane micro-torch at a temperature of about 1400 °C.

50

y(um)

-50

100 ‘ ! ‘ ‘
-150 -100 -50 0 50 100 150
X (pem)

FIG. 3.16. Initial configuration of two SMF28 fibers: A, B, and C represent air, the fused silica fibers,
and the concentration of dopants, respectively.

A structure identical to the one tested in ref. [1] was simulated by plugging in

the same environmental and material conditions and setting the pulling speed v,

to zero. The degree of fusion and the external shape of the fused fibers were then

deduced and compared.

The numerical simulations were performed on a 400x600#m domain to

minimize the impact of the boundaries. The physical properties that were used in

the numerical simulations are given in Table 11.

Table 11. Physical properties of fused silica and air used for the validation procedure.

plkg/m®] uPa-s] D[m?/s] oN/m]
Fused silica 2200 1.15x10°? 1.51x10™ 0.272°
Air 0.185 6.01x107°

& Viscosity and surface tension coefficients of the fused silica were adopted from ref. [1].
A comparison between the results obtained in the current work and those
published in ref. [1] is given in Fig. 3.17. The results depicted in Fig. 3.17 do
indeed show good agreement between the current simulation and the

measurements and numerical results presented in [1]. Nonetheless, validation of
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the numerical method is still needed for more complex situations involving

asymmetric structures, internal dopant flow, diffusion and pulling, as will be

discussed in subsequent sections.

-100 -50 0 50 100
X (pem)

f = 0.355
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FIG. 3.17. Comparison of the simulation results (solid red line) obtained in the current work (left) to the
results of Pone et al. [1] (right). The cross-sections are at:
(a) f =0.355, (b) f = 0.6, and (c) f = 0.92.
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Chapter 4. Experimental setup

The primary purpose of the experiments reported here was to test and
validate the numerical methodology in complex situations and to study its
accuracy and limitations. For this purpose, several fused fiber components were
fabricated and analyzed. To fabricate the components, a commercial scanning
hydrogen flame glass-processing workstation (Lighted CW-5000) was used. In all
the test cases except for one (in which a non-circular fiber was tested), two optical
fibers were stripped, cleaned, and fixed in a holder, ensuring good physical contact
between them (see Fig. 4.1). The fibers were then slowly pulled, while the
scanning hydrogen flame provided the energy required to transform the glass into
an effective viscous fluid. Scanning the flame back and forth along a preset length
of the contacting fibers at a much higher rate than the pulling rate provided a
zone of an effective constant temperature [76], quantitative justification for this
assumption is given in appendix I. The flame was set to scan a total length of
10mm at a rate of 500 um/s. The pulling rate was set to 0.75 um/s. The process
was terminated after about two hours when the pulled length had reached 10

mm. The temperature of the glass was approximated to be 1650°C.

FIG. 4.1 lllustration of the glass processing workstation. The main components are: 1 - optical fibers,
2 - scanning flame, 3 - pulling holders.

At the end of each fabrication process, the new optic fiber component was
inserted into a U-shaped glass ferrule. The ferrule was filled with epoxy resin and

subjected to UV curing to form a rigid material encapsulating the fiber
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component, which was then placed in a holder positioned in a micrometer screw.
Next, the end of the ferrule with its epoxy-immobilized fiber component was sliced
off (using a turning diamond disc), and the cut end was polished (with a polishing
sheet), as depicted in Fig. 4.2. The polished end was then examined under a
microscope, and its cross-sectional shape was recorded with a camera. The process
was repeated a number of times. Combining the photographs of the fused
component along its longitudinal axis enabled a 3D reconstruction of its shape.
To minimize the uncertainty as to the location of each cross-sectional
measurement, slicing, polishing, and recording was performed using the same
fixture. Nevertheless, there are a number of uncertainties inherent to the
experimental setup. A full description of the uncertainties and their consequences

to the experimental results is given in appendix Il.

(a) The first step of measurements. The coupler (b) The second step of measurements. The
was sliced and polished at a precise cross-section. coupler's cross-section was photographed.

FIG. 4.2. The measurement setup: 1 - fused coupler, 2- U-shaped glass, 3- epoxy resin, 4- holder, 5-
micrometer screw, 6- edge of the rotating cutting disk, 7- rotating sandpaper, 8- camera.

To cover the wide spectrum of the parameters, the simulations and
experimental analyses were performed and compared for four different types of
components (see Fig. 4.3). The first most basic component (coupler) was prepared
from two SMF-28 single-mode fibers (125/8.2 um cladding/core diameters) and
was used for examining the fully symmetric configuration. The second type was
composed of an SMF-28 fiber combined with a 125/106 pm diameter
(cladding/core) fiber. In this case — referred to as the pump-SMF coupler later in
the thesis — the external interface of the coupler was symmetric, and the core-
refractive index of the fibers was not symmetric. The large core of the 125/106
um fiber facilitated the tracking of the core interface. The third type of coupler

constituted a fully non-symmetric configuration produced from two fibers, one
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with a 125 um outer cladding diameter and the other with a 80.3 um outer
cladding diameter. The fourth configuration had the most complex geometry-
that of non-circular fiber tapering. Our working hypothesis for this study was
that once the developed numerical methodology had been validated for accurate
prediction of the characteristics typical of the four above configurations, it could
also be used for the theoretical analysis of optical fibers having a wide variety of

external shapes (other than those used here) and internal compositions.
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FIG. 4.3. Initial configurations of the analyzed cases, where the black lines represent the external
interface, and the red line shows the shape of the initial core: (a) fully symmetric case, (b) symmetry only
of the external interface, (¢) non-symmetric case, and (d) complex geometry.
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Chapter 5: Calibration and similarity

analysis

Prior to describing the series of numerical simulations and experiments
that were conducted, we point out two major factors that can result in significant
deviations between the numerical and the experimental results. The first factor
is the strong dependence of the viscosity of fused silica on the temperature [77,
78]. This is in contrast to the density (~2200 kg/m?) and the surface tension
coefficient (~0.3 N/m) of fused silica, known to be only slightly dependent on
temperature variations [77]. To illustrate this factor, we present the time
evolution of the degree of fusion, f, calculated for several values of the viscosity
of the fused silica, as shown in Fig. 5.1. The time evolution was calculated for
viscosity values lying in the range of u = (5-50 GPa-s), which corresponds to the
typical range of working temperatures T = (1800-1650 °C), respectively. As can
be seen from Fig. 5.1, the f values measured at the same time instance can
deviate by up to five-fold, which stresses the need for careful calibration of the
viscosity of the fused silica as a function of temperature. The second factor stems
from a strong dependency of the viscosity of fused silica on the absorption rate of
hydroxides (OH) formed on the fiber surface during heating by the hydrogen
flame [79]. This dependency can result in a significant deviation between the

numerical and experimental results for long-term heating processes.
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FIG. 5.1. Time evolution of the degree of fusion for several values of the viscosity. (vs = 0)
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Since it is difficult to calculate and measure the OH concentration during
the fabrication process, the time dependence of the fused silica fibers subjected to
a constant hydrogen flame at a constant temperature was approximated by the

following relation:
ut) = (uy — 2™ + (5.1)
where y,, 4 ,and A are the initial viscosity, the viscosity at the saturated state,

and the OH absorption rate, respectively [79].

Significant variation of the viscosity values and the marked impact of this
variation on the degree of fusion motivated us to perform a similarity analysis
that would allow us to cancel out the dependence of the degree of fusion on the
viscosity of the fused silica. The similarity was achieved by representing the
degree of fusion as a function of the aspect ratio, H /W of the coupler, as defined
in Fig. 5.2. As a result, the simulated degree of fusion was correlated with the

aspect ratio of the coupler, regardless of the viscosity values (see Fig. 5.3).
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FIG. 5.2. Geometric dimensions of a typical coupler.
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FIG.5.3. Evolution of the degree of fusion for several viscosity values as a function of the aspect ratio
H/W of the coupler (vs=0).

In addition, to characterize the evolution of viscosity in the current experiments,
the problem was simulated with several initial and saturated viscosities and

different OH absorption rates. It was found that the values of u, = 50 GPa-s, s

=5GPa-s, and A = 6-10* s provide the best correlation with the experimental
results.

In contrast to the degree of fusion determined by Egq. (1.2), the pulling
rate was not equal to zero in the current experiments and simulations, and

therefore W, and W_ were not constant during the process and had to be
evaluated at each time instance for each cross-section. The relationship between
W and the cross-sectional area is given by W, (t),W_(t)] o \/@ and hence the
modified fusion degree (MFD) is expressed by:

LW, -W()

= : 5.2
"W, -W, 0 2

Where W, (t) :Vi//"g)\/@ and W_(t) = %Q/A(t). In the current experiments,
A /4

the area A(t) and the width W (t) were measured to evaluate the MFD for each
cross-section, and the height H(t) was measured to calculate the aspect ratio of

the coupler (H(t) /W(t)).
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Chapter 6: Results

In this chapter, the numerical simulation and experimental results are
presented and compared. The experimental results were obtained by the
methodology described in chapter 4. The numerical simulations were performed
for initial structures, as shown in Fig. 4.3, while the dynamic properties (density,
viscosity, and surface tension coefficient) were taken from the literature [77, 78]
and have been further fine-tuned by adapting them to the currently acquired
experimental results, as described in the previous chapter. For the sake of
completeness, we will also introduce the dynamic properties here: the density and
the surface tension coefficient of silica are approximately equal to
~2200 kg /m® and ~0.3 N /m [77, 78], respectively. The viscosity of the silica in
the initial and the saturated state for different OH absorption rates were

evaluated to be 4, =50GPas, x4 =5GPas, and 1 =6-10"'s™" [see Eq.(5.1)].

Table 12 - The values of dynamic properties and experimental operating conditions.

Py M, H A o D I v, At

kg/m®* GPas GPas ¢! N/m wum/s mm wum/s s
2200 50 5 6E-4 0.3 2.712E-2 10 0.75 10

All the numerical simulations were performed for a computational domain
of 600um x 400um, while the grid resolution was 675x450. The boundary
conditions utilized in the numerical simulations were the Dirichlet boundary
condition for pressure and a zero gradient value for all the velocity components
at all four edges of the computational domain. The initial values of the
concentration in the numerical simulations were set to unity, representing the
normalized value related to the initial concentration. The experimental analysis

and the simulation results are presented and discussed in the following sections.

A number of representative simulations were also performed on a
1350><900 grid in the framework of a grid independence study. It was found that
the discrepancy between the degrees of fusion obtained on the two grids did not

exceed 3%, thus allowing us to perform all the simulations on the 675%450 grid.
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Remarkably, the maximal discrepancy between the results obtained on the two
grids was observed at the beginning of the numerical simulations, as a result of
exceptionally high values of the interface curvature at the point of contact
between the two fibers. The dimensional computational time step used in all the
simulations was equal to 10 s, which is sufficient when taking into account that
the duration of a typical production process in the conducted experiments was
more than two hours. For shorter durations of the production process, smaller

values of the computational time step should be used.

The initial values of the concentration in the numerical simulations were
set to unity, representing the normalized value related to the initial concentration.
The experimental analysis, as well as simulation results, are presented and

discussed in the next section.

6.1. The numerical simulations and the experimental results

6.1.1. Symmetric two-SMF coupler

A qualitative comparison between the experimentally and numerically
obtained external shapes of the coupler and the spatio-temporal distribution of
the dopant within the coupler’s core - determining the refractive index profile
(under the assumption of linear dependence of the dopant concentration on the
refractive index) is given in Fig. 6.1. Each row is related to a specific cross-section
of the coupler, corresponding to a given time instance. The first and the third
columns represent the experimental and the numerical results, respectively, while
the second column represents a superposition of the two. The fourth column is a

close-up of the core area of the left fiber.

As shown in Fig. 6.1, good correlation was found between the
experimentally and numerically obtained external boundaries of the coupler for
the entire range of time instances. Additionally, an acceptable qualitative
agreement between the distribution of the dopants in the core of each fiber
allowed reliable prediction of their spatio-temporal concentration distribution and

the refractive index profile. Note that the glare areas clearly visible on the
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photographs acquired in the course of experiments were generated by an external
light source. As such, the areas constitute only qualitative characteristics of the
spatial distribution of the dopants. Nonetheless, the numerical results predict a
significant (between 4- and 10-fold) decay of the peak concentration values with

time (see the fourth column in Fig. 6.1).

A gquantitative comparison between the numerically and experimentally
obtained evolution areas and the MFD [see Eq.(5.2)] is given in Fig. 6.2. It can
be seen from the figure that the numerically obtained temporal evolutions of the
area and the MFD are cross-correlated with the corresponding experimentally
measured values for the entire range of time instances, which successfully
validates the developed quasi-3D model. We note in passing that at the beginning
of the numerical simulations values of the MFD are very small (0(107%)), but still
negative values of the MFD were obtained. This unphysical result may be
attributed to the numerical error resulting from exceptionally high values of the
interface curvature and could be corrected by applying simple filtering, replacing

the negative unphysical values by zero.

We next present the numerically and experimentally obtained results
correlating the MFD with the height-to-width ratio of the coupler, as shown in
Fig. 6.3. Good agreement between the numerical and experimental results was
obtained. Note that the results shown in Fig. 6.3 are invariant to the viscosity
values. The presented MFD height-width ratio relationship directly affects the
overall fusion time and indirectly affects the distribution of the core dopants. The
graph in Fig. 6.3 may assist coupler design by serving as a preliminary tool for

estimating the MFD from the external dimensions of the fibers
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FIG. 6.1. Experimentally and numerically obtained cross-sections of a fully symmetric SMF fiber coupler
at different time instances: (a) 30 s, (b) 1650 s, (c) 3600 s, and (d) 5300 s. Columns 1 and 3 show the
experimental and simulation results, respectively; column 2 shows a superposition of columns 1 and 3, and
column 4 shows close-ups of the numerically predicted core area of the left fiber.
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FIG. 6.2. Comparison between the numerically and experimentally obtained temporal evolutions of the
cross-sectional area and the MFD typical of the symmetric coupler. Line — Simulation results, Points —
Experimental results. (a) The decrease in area with time. (b) Temporal evolution of the MFD.
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FIG. 6.3. Comparison between the numerically and experimentally obtained temporal evolutions of the
MFD as a function of the coupler dimensions. Line — Simulation results, Points — Experimental results.

6.1.2. Pump-SMF coupler

The pump-SMF coupler configuration is characterized by a symmetric
external shape, while the core of one of the fibers is much bigger than the core of
its counterpart. This setup allows for more efficient tracking of the experimentally
acquired data regarding the spatio-temporal distribution of the dopants in the
cores. A comparison between the simulation and the experimental results acquired
at four different time instances revealed an acceptable agreement between the
numerically and experimentally obtained characteristics of the coupler for the
entire range of time instances (Fig. 6.4). In contrast to the simple configuration,
the core of the left fiber intersects the vertical centerline crossing the domain at
x =0 in the course of the fusion process (see Fig. 6.4 (d)). Note that from a
numerical point of view, the observed spatial expansion of the core of the left
fiber was attributed to the molecular diffusion resulting from one-way coupling
between the NS [Eq.(2.5)] and convection-diffusion [Eq. (2.6)] equations. The
assumption of one-way coupling adopted in the current study was validated by
the good qualitative agreement obtained between the experimentally and
numerically obtained spatio-temporal distributions of the dopants in the coupler

core.

The obtained results also successfully verified the correctness of the
implementation of the boundary conditions applied to the coupler boundary, that
aim to provide zero concentration flux outside of the dopants out of the coupler.
Figure 6.5 presents a quantitative comparison between the numerically and

experimentally obtained temporal evolutions of the coupler area and the MFD. It
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can be seen from Fig. 6.5(a) that for most of the time instances the experimentally

measured area is slightly larger than that predicted numerically. A possible reason

for this discrepancy could be that the fibers were not fixed tight enough in their

holders to avoid slight sliding at the beginning of the fabrication process prior to

tapering. Note that, despite the discrepancy in the cross-sectional areas, the

correlation between the coupler aspect ratio H /W and the MFD was preserved,

as shown in Fig. 6.6. For this reason, the experimentally acquired photographs

presented in Figs. 6.4(b) and 6.4(c) were downscaled by up to 5%.

100 -50 0 50 100
X (um) X (pm) X (pum)

0.2 .50

0.2.50

FIG. 6.4. Experimentally and numerically obtained cross-sections of the pump (125/106 ~m) and SMF
(125/8 «m) fiber couplers at different time instances: (a) 210 s, (b) 2100 s, (c) 4400 s, and (d) 7500 s.
Columns 1 and 3 show the experimental and simulation results, respectively; column 2 shows a
superposition of columns 1 and 3, and column 4 shows close-ups of the numerically predicted core area of

the left fiber.
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FIG. 6.5. Comparison between the numerically and the experimentally obtained temporal evolutions of the
cross-sectional area and the MFD typical of the second test case. Line — Simulation results, Points —
Experimental results. (a) The decrease in area with time. (b) Temporal evolution of the MFD.
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FIG. 6.6. Comparison between the numerically and experimentally obtained temporal evolutions of the
MFD as a function of the coupler dimensions for the second test case. Line — Simulation results, Points —
Experimental results.

6.1.3. Non-Symmetric coupler

The non-symmetric coupler was prepared by fusing fibers with outer
cladding diameters of 125 um and 80 um. Comparisons of the experimental and
numerical results demonstrated good qualitative agreement for both the outer
shape and the spatial distribution of the dopants (see Fig. 6.7) and the temporal
evolution of the cross-sectional areas (see Fig. 6.8a). Agreement between the
experimentally and numerically obtained time evolutions of the MFD were not
as good as that for the areas (see Fig. 6.8a vs. 6.8b): the discrepancies between

the values were particularly marked at the beginning and end of the fusion
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process, reaching 70% and 10%, respectively. This observation may indicate an
overestimation of the viscosity values utilized in the numerical simulations
compared to the actual viscosities in the experiments, which resulted in a
smoother evolution of the MFD in the numerical simulations. Remarkably, the
above notwithstanding, an acceptable agreement was obtained between
experimentally and numerically obtained values of the MFD as a function of the
coupler cross-section size (see Fig. 6.9). These results indicate that the temporal
evolution of the cross-sectional area is primarily determined by the initial
geometry of the fibers, while the values of the viscosity and the pulling rate affect
the duration of the overall process.

(@)

N
o

B m B Om .
y(ém) 8

o
=]

0.8
0.6

y (pm)
o

y (gm)

#

&
?0-7

0.4

o
=]

02 -10

o
S

0.6 m
A 4

0.4

y (pm)
o

&
<)

100 -50 0 50 100 40 20
X (um) X (um)
50 20
£ T &b %
20 6) 05 3ot T ¥F )
> 0.1 > \>¥0J
50 0.
005 20
100 -50 0 50 100 -30 -20 10 0 10
(d) X (pum) X (pum)

o
o1 & Q%g\)'
© 0.08 20 U 0.6
0.06 > o
“O-
0.04 =
4100 -50 0 50 100 20 0 20

X (um) X (um)

100 50 0 50 100
X (um)

FIG. 6.7. Experimentally and numerically obtained cross-sections of the non-symmetric coupler at different
time instances: (a) 30 s, (b) 1350 s, (c) 4300 s, and (d) 7000 s. Columns 1 and 3 show the experimental
and simulation results, respectively; column 2 shows a superposition of columns 1 and 3, and column 4

shows close-ups of the numerically predicted core area of the left fiber.

Results 56



@) » %10

1 1
0 2000 4000 6000 8000
t(s)

0 o i ] 1 1 1
0 2000 4000 6000 8000
t(s)

FIG. 6.8. Comparison between the numerically and experimentally obtained temporal evolutions of the
cross-sectional area and the MFD typical of the non-symmetric coupler. Line — Simulation results, Points
— Experimental results. (a) The decrease in area with time. (b) Temporal evolution of the MFD.

0.8 *

0.6 - .

0.4 .

0 I ' : ! I !
0.4 0.5 0.6 0.7 0.8 0.9 1
H/W

FIG. 6.9. Comparison between the numerically and experimentally obtained temporal evolutions of the
MFD as a function of the coupler dimensions for the non-symmetric coupler. Line — Simulation results,
Points — Experimental results.

6.1.4. Fiber with a non-circular cross section

The custom-made fiber investigated in this section was characterized by a
non-circular cross-section along its entire longitudinal axis (see Fig. 6.10a). In
contrast to the previous configurations, the viscosity values at the initial and

saturated states were equal to 4, = 20GPas, u = 2GPas, respectively, while the

value of the OH absorption rate was equal to A =6-10"s™ (the same as that for
the previous configurations). Generally speaking, this kind of fiber fulfills its
optical purpose in its present form and should not be tapered. Nonetheless, the
current test case was processed for the purpose of validation of the developed

numerical tool. A comparison between the numerically and experimentally
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obtained results revealed good qualitative agreement between the temporal
evolutions of the outer shapes of the fiber for all the time instances (see Fig. 6.10).
Good agreement for all the time instances was also apparent in a comparison
between the numerical and experimental spatio-temporal evolutions of the
concentrations of the dopants. Fig. 6.11 shows good correlation between the
numerical and experimental results of the cross-sectional area and the MFD time
evolutions. Moreover, in this configuration, the time required to obtain full fusion

(fm =1) is much shorter than that for the other test cases, where the viscosity

values were higher. Fig. 6.12 also shows the excellent compatibility between the
experimentally and numerically obtained values for the temporal evolution of the
MFD as a function of the coupler dimensions.

(a)

3]
o
3]

y (gm)
y (pm)

-50

o
'
o

-100 -50 0 50 100

(b

X (pm)

~

<]
o

y (gm)

-50

o

X (pm) X (Ii;n)

© .
50 50
o)
£ € 04 E o? 2
2o o o s
> > > 0.3
0.2 ;
-50 50 -20 0
100 50 0 50 100 100 50 0 50 100 100 50 0 50 100 302010 0 10
(d) X (pm) X (pum)
50 ' 50 03 20 —
: K IR T
€ € £ [ OF5\S
30 20 02 3of || |
> > > \\ //
50 50 0.1 0!
-20 .0
100 50 0 50 100 100 50 0 50 100 100 50 0 50 100 -30-20-10 0 10
X (um) X (pum) X (pum) X (um)

FIG. 6.10. Experimentally and numerically obtained cross-sections of the non-circular tapered fiber
coupler at different time instances: (a) 10 s, (b) 1320 s, (c) 2500 s, and (d) 5000 s. Columns 1 and 3 show
the experimental and simulation results, respectively; column 2 shows a superposition of columns 1 and 3,

and column 4 shows close-ups of the numerically predicted core area of the left fiber.
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FIG. 6.11. Comparison between the numerically and experimentally obtained temporal evolutions of the
cross-sectional area and the MFD typical of a fiber with a non-circular cross section during tapering.
Line — Simulation results, Points — Experimental results. (a) The decrease in area with time. (b)
Temporal evolution of the MFD.
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FIG. 6.12. Comparison between the numerically and experimentally obtained temporal evolutions of the
MFD as a function of the coupler dimensions for a fiber with a non-circular cross-section. Line —
Simulation results, Points — Experimental results.

Fig. 6.13 shows the full 3D shapes of the four types of optical components
by superpositioning several cross-sections simulated at a number of consecutive
time instances. This kind of data may serve as input for optical numerical
simulation packages, such as Opticwave, Rsoft, and Comsol, which can predict
the optical performance of the component (such simulations are beyond the scope
of this study). Note that the smaller the initial cross-sectional area of the core,
the more rapid is the decay of the corresponding concentration peak values of the

dopants.
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FIG. 6.13. Simulated 3D structure of: (a) a symmetric coupler, (b) a coupler composed of pump (125/106
«m) and SMF (125/8 «m) fibers, (c) a non-symmetric coupler, and (d) a tapered non-circular fiber.
Each cross-section was obtained at different time instances.

6.2. Characterization of the non-symmetric couplers

In the course of the simulations, it was found that the viscosity values
have a considerable effect on the overall time required to achieve the complete
fusion between the fibers and to provide diffusion of the dopants. It was also
found that the values of the aspect ratio H/W and the MFD are almost not
affected by variations in the viscosity. For this reason, we simulated several
configurations of non-symmetric couplers characterized by various H/W aspect
ratios. Fig. 6.14 presents seven curves, each related to a different initial value of
H/W, starting from the symmetric case characterized by a value of H/W=0.5 and
ending with the strongly non-symmetric coupler characterized by a value of
H/W=0.8. As mentioned above, the mapping so obtained can be used as a
preliminary tool used for the design of couplers, as it facilitates the evaluation of
the MFD by simple measurements. As can be seen from Fig. 6.14, for all the
cases, the MFD started from zero and increased up to unity. It may also be seen

that a higher initial value of H/W resulted in faster growth of the MFD,
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apparently as a consequence of the higher surface tension forces prevailing
throughout the fusion process, in turn, as a result of higher curvature values

typical of fibers with smaller cross-sections.
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FIG. 6.14. Simulation results of the MFD related to the height-width (H/W) ratio of the coupler for
several initial ratios.

6.3. Advanced modeling of multi-fiber combiners

The developed numerical tool can also successfully handle the time
evolution of much more complex multi-fiber configurations, incorporating many
contact points for each fiber and also including the non-negligible amount of air
trapped between the boundaries of adjacent fibers. A representative example of
such a simulation is demonstrated in Fig. 6.15, for an optical combiner composed
of seven fibers arranged as six fibers circling a central fiber; each fiber touches its
neighbor at a single contact point, such that the central fiber has six contact
points with all the surrounding fibers, and each external fiber has three contact
points with its immediate neighbors. The physical properties of the fiber material
are the same as those utilized for the first three configurations (see Chapter 5).
In the course of the numerical simulation, the area of air trapped between the
boundaries of the neighboring fibers decreases until the total termination of the
air regions. The process is simulated explicitly by controlling the air pull-out rate
implemented as a distributed sink (Eqg. (2.3)) for each air-trapped region. The

time evolution of the air-trapped regions and the external interface of the
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combiner is governed by the solution of the continuity and NS equations (Egs.
2.4, 2.5).
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FIG. 6.15. Simulation results for a combiner composed of 7 fibers at times: (a)-Initial state, (b)
900 s, (c) 2500 s, and (d) 5000 s.

It can be seen that in the first stage of the production process, the
peripheral fibers evolve non-axisymmetrically (although the periodicity is
preserved) due to the initially non-axisymmetric geometry of the air-fiber
interface and the air regions trapped between the peripheral and the central fibers.
As the tapering progresses, the regions of trapped air are eliminated, and the
external shape of the component is smoothed out by the surface tension force,
causing the shape of the component to eventually approach a circular

configuration. Similar component shapes were obtained experimentally by [80]
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Chapter 7: Summary and conclusions

In the framework of the present study, a novel generic numerical
methodology was developed for the prediction of the structural features of fiber
optical components fabricated by the “heat-and-pull” technique. It was also
shown that this methodology can serve to solve a wide range of physical problems
involving two-phase flow. The numerical model was based on extending the
Immersed Boundary method and the FT approach, as well as on the distributed
Lagrange multiplier approach for the configuration of the relevant two-phase
immiscible flows. The capabilities of the developed method were demonstrated by
utilizing a full pressure—velocity coupled direct solver (FPCD) [50] as a
computational platform. The idea underlying the developed approach was that
the initial system of fully pressure-velocity coupled continuity and NS equations
is extended by including additional relationships implicitly linking the Euler flow
fields and the distributed Lagrange multipliers. This linkage enforces kinematic
constraints of the impermeability of both fluids on the interface separating the
two phases. The fully coupled formulation enables controlling mass conservation
(with source) of both phases without the need for any additional correction

procedure, which is of significant computational advantage.

The developed method was extensively verified for three typical two-phase
flow benchmark cases. In the context of optic fiber components, the quasi-3D
approximation was successfully validated by comparing numerical predictions
with four different and real optical couplers, representing a wide spectrum of
diversity. It was thus demonstrated that the tool could be applied to achieve a
reliable spatio-temporal prediction both of the external shape of the fiber

components and of the dopants' concentration distribution inside them.

A comparison of the numerical and experimental results also revealed that
the viscosity of the fused silica dropped during the fabrication process, despite
insignificant temperature variations. This observation may be attributed to the

absorption of OH (hydroxyl) in fused silica when the last is exposed to a hydrogen
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flame. It is thus essential that the change in the viscosity of the fused silica due
to OH absorption will be considered when a hydrogen flame is used to fabricate

fused optical components.

The numerical characterization of the structural evolution of couplers was
also performed for several non-symmetrical cases, showing that it is possible to
evaluate the degree of fusion of a given optical coupler by only measuring its
height and width. Finally, a numerical simulation predicting the spatio-temporal
evolution of a fused seven-fiber-combiner was presented. This simulation showed
that the numerical tool can handle complex geometries and may be used to

develop a wide range of fused optic fiber components.
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Appendix |

Heat transfer problems that involve surface convection effects are governed
by the Biot number, which provides a measure of the temperature drop in the
solid relative to the temperature difference between the solid surface and the fluid.

The Biot number may be interpreted as a ratio of thermal resistances:

Bi = 2—L (7.1)

fs

where k. _,h, and L are the thermal conductivity, convection heat transfer

coefficient, and characteristic length, respectively. In particular, if Bi <1, the
assumption of a uniform temperature distribution within the solid is reasonable
[81]. For the case of optical fibers (fused silica), the fibers are the cylinders
interacting with the surrounding air. The characteristic length of a typical fiber

iS | = _fiber _ 9, while the convection coefficient h for the natural convection

S

heat transfer between the horizontal cylinder and the surrounding air can be

assessed by [81]:

2

0.387Ra*
heXlos+ % | (7.2)
D ar16 1P/%7
[1 +(0.559 / Pr) }
Where the Prandtl (Pr) and Rayleigh (Ra,) numbers are:
Pr = % (7.3)

where - fluid viscosity, C - fluid specific heat, and k- fluid thermal

conductivity.
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Ra, =Gr -Pr, (7.4)

32 2
Gr, =D p"gAT g/ 1=, (7.5)

where o - fluid density, (- gravitational acceleration, and £ - fluid thermal
expansion coefficient. Substitution of characteristic length D =31.25um,
g=981lm/s*, and AT =1900K with the values of dynamic properties of air

w

given in Table 13 in Eq. (7.2) yields h = 357 — e
m- -

Table 13- The values of dynamic properties of air.

H C k P s Pr Gr Ra

kg/ms J/kgK W/mK kg/m* 1/K

58E-6  1.25E3  106E-3  0.1885 3400E-6 0.68 2.07E-5 141E-5

w
The thermal conductivity of fused silica is K, = 1'4ﬁ' Substitution into

Eq. (7.1) yields Bi = 358 31‘25E =6 ~ 0.008, which justifies the assumption of

uniform temperature of the fibers during the process.

Moreover, comparison of the heat transfer by conductiom, by convection and by

radiation indicate that heat flux by convection is " = hAT = 6.6E5W /m? while
the heat flux by radiation is q"=o(T,' -T,*) = 7E5W /m?*. Thus, both heat

transfer mechanisms are of the same order of magnitude and can be safely

neglected compared to the conduction heat transfer.
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Appendix I

The error bars shown in the graphs in chapter 6 reflect uncertainties of
the experimental measurements. The horizontal error bars attached to the fusion
time measurements express uncertainty of the specific location of the cross-section
along the coupler axis. We estimate the uncertainty of the slicer (the micrometer

screw with the polish paper) to be bounded by A = +100xm . This value is related
to the corresponding time interval estimated by At = A/2v = +66s.

The vertical error bars correspond to uncertainties inherent to
measurements of the cross-section characteristic length and area. Prior to
recording the cross-section of each coupler, a fiber picture with an a priori known
reference diameter was taken, in order to calculate the number of pixels per 100
micrometers. Thus, the estimated uncertainty of the calculated ratio is A = £3PX,
due to the boundary thickness of the fiber. The measurements of H and W (see
Eq. (5.2)) were sampled with the same error. The error bars in the graphs in
chapter 6 correspond to maximum and minimum values yielded by combinations

of these values.
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