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Abstract   

Abstract 

Couplers and other fused fiber optic components are integrated in many 

optical systems. Such devices make it possible to couple light between two fibers 

(2x2 coupler) or combine or split light between several fibers and one central fiber 

(Nx1 combiner). Common to all such devices is that they are fabricated by 

heating, pulling, and fusing tightly packed optical fibers. The optical behavior of 

a coupler or combiner depends on its external shape and on the refractive index 

profile, which is dictated by internal dopants and their concentration-distribution. 

Over the years, many models and simulation tools have been developed to predict 

the optical behavior of such components, provided that their shape and index of 

refraction are well defined. Previous research enabled the prediction of the 

structure of some fused fiber components. However, theoretical tools that can 

predict the external shape and the refractive index profile are still not accurate 

or general enough to facilitate accurate optical simulations. Lacking such a tool, 

the development of new fused fiber components requires many iterations of trial 

and error, which makes the process long and expensive.    

The main purpose of this study is to obtain a generic solution based on 

numerical simulations to predict the structural evolution of the fiber components 

containing a number of fibers in any configuration. The numerical tool should 

also include the solution of a convection-diffusion equation in order to predict the 

evolution of dopant concentration. Additionally, it was aimed that the solver will 

be generic so as to be able to address two-phase flow problems in other physical 

areas. 

The study consisted of two main phases: a. developing the appropriate 

numerical foundations and tools, and b. experimental study and analysis of the 

dynamic evolution of fused fiber optic components during fabrication. The 
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experimental results were then compared to the numerical prediction and 

provided a realistic test case for further study. 

First, we developed the numerical methodology based on the Immersed 

Boundary (IB) and Front Tracking methods. The methodology makes it possible 

to couple the continuity and momentum equations for incompressible two-phase 

flow with the solution, where the pressure and surface tension forces serve as 

Lagrange multipliers. One of the advantages of this approach is the implicit 

fulfillment of mass conservation (with or without source) and the prevention of 

mass leakage.   

The numerical methodology was implemented in a numerical solver and 

extensively validated by comparing the simulation results with previously 

published data for four benchmark test cases. Each benchmark case was 

distinguished by the driving force, starting from a rising bubble, followed by a 

drop under shear flow, and, lastly, rosette relaxation. We also simulated problems 

that include body-splitting due to a high-density ratio between the fluids and a 

high-velocity gradient. The comparison for all the test cases indicated an accurate 

solution of the problems.  

After laying the numerical foundations, the study proceeded to the 

experimental phase. Fused optic fiber components were fabricated and 

characterized; the results were then compared to the corresponding numerical 

results. Four different configurations were experimentally tackled. In the first, the 

most basic type of coupler was fabricated from two identical fibers, in order to 

examine the fully symmetric configuration. The second type was referred to as 

the pump-SMF coupler and was also fabricated from two fibers differing only 

internally  the external interface of the coupler was thus regarded as being 

symmetric, while the core-refractive index of the fibers was not. The third type 

of coupler constituted a fully non-symmetric configuration, i.e., fusion of two 
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fibers that were different both externally and internally. The fourth configuration 

has the most complex geometry - that of non-circular fiber tapering. For all the 

configurations, good agreement was obtained by qualitatively and quantitatively 

comparing the numerical simulation and the experimental results. In all cases, 

the velocity field was obtained by the solution of continuity and NS equations, 

and the dopant concentration evolution by solving the convection-diffusion 

equation. Additionally, the fibers' viscosity was functionally reduced in 

accordance with the OH absorption.  

Besides the numerical and experimental comparison, we also simulated 

several configurations of non-symmetric couplers characterized by various aspect 

ratio values in order to identify the relations between the aspect ratio and the 

fusion of the couplers. 

The developed numerical tool can also successfully handle the time 

evolution of much more complex multi-fiber configurations, incorporating many 

contact points for each fiber and also including the non-negligible amount of air 

trapped between the boundaries of adjacent fibers. A representative example of 

such a simulation is also presented.  
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Introduction  1 

Chapter 1: Introduction 

 

Fiber optic components have diverse structures and applications, ranging 

from simple 2×2 symmetric couplers, through fiber-laser pumps and signal 

combiners, to even more complex systems such as photonic lanterns [2, 3]. Many 

of these fiber optic components are fabricated by the so- heat-and-p

technique, in which optical fibers are fused and tapered simultaneously. The 

popularity of the technique may be attributed to the simplicity of the setup and 

the ability to fabricate a wide range of optical components that accurately meet 

a variety of design requirements. heat-and-p

fundamental steps: gathering and arranging the optical fibers in a particular 

initial order, subjecting the fibers to viscous flow sintering, and subsequently 

pulling the fibers. This production process affects both the external geometry of 

the produced fiber optic component and the distribution of the internal dopant 

concentration. The functionality of fused fiber optic components thus depends on 

their structure and the concentration profile of the inner dopants. 

A number of models and simulation tools predicting the optical 

functionality and the light transmission characteristics of particular fiber 

components have been developed over the years and are well established today 

[4, 5, 6]. However, all the developed tools require the precise geometry of the 

given fiber component as input. Without this information, the result of any 

modeling tool will not be sufficiently accurate. This drawback becomes 

particularly critical for complex combiners whose light transmission 

characteristics are especially sensitive to the geometry of the component and the 

concentration profile of the internal dopants. Therefore, the development of 

complex fiber components typically requires conducting a series of preliminary 
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on-site experiments, which can significantly lengthen R&D times and increase 

production costs. 

We now briefly review some of the main studies that have focused on 

modeling the structure of fiber optic components. Lacroix et al. [7] empirically 

approximated the cross-sectional shape of two identical fused fibers by imposing 

the principle of conservation of matter. In this model, the fused fibers are assumed 

to overlap each other. The overlapping area of the cladding is transferred to the 

sides of the fibers by assuming that a circular arc limits the coupler cross-section 

(see Fig. 1.1). 

 

FIG. 1.1 Model of fusion. The tangent arcs are calculated so that the hatched area is equal to the 

cross-hatched area. D is the width of the coupler cross-section, d is the fiber center separation [7]. 

 

FIG. 1.2 Cross-section of a 2×2 coupler for degrees of fusion ranging from 0 to 1. [7] 

This model makes it possible to predict the cross-sectional shape as a 

function of the degree of fusion (0 for tangent fibers and 1 for full fusion  circular 

cross-section), as shown in Fig. 1.2. The degree of fusion is defined by 

 

( )


−
=

−
2 2

2

2 2 2

cl

cl

r d
f

r
 , (1.1) 
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where 
cl
r  is the cladding radius of the unfused fiber and d  is the fiber center 

separation. The model has demonstrated good agreement with experimental 

results. However, it lacks any physical coupling with the evolution-dynamics of 

the couplers' shape and predicts only the final outer boundary of cladding and 

the center of mass of the core. This approach is limited and does not allow for 

addressing other critical phenomena, such as deformation of the optical 

component and diffusion of the dopants within the component core, or for 

predicting the fusion characteristics of the optical components produced from 

initially more complicated structures. 

Other research groups have tackled the problem by developing models 

based on solving the Navier-Stokes (NS) equations. The studies of Garabedian [8] 

and Richardson [9, 10], for example, analyzed the dynamic plane Stokes-flow of a 

viscous incompressible fluid bounded by a smooth closed curve driven solely by 

the surface tension force. Their analysis was based on conformal mapping and 

predicted the shape evolution as a function of the fusion rate. Hopper [11, 12, 13] 

developed an advanced model predicting the temporal evolution of the 

component  shape by using conformal mapping in the complex z plane. However, 

this method required the assumption of a parametric form based on approximated 

shape functions, and it thus cannot be applied to optic fiber components of 

arbitrary initial geometry. In 1997, Richardson [14] revisited and extended his 

and Hopper's models by addressing the configuration of a circular cylinders un-

closed array. He established this model by two-dimensional (2D) simulations of 

touching circular discs developing into one symmetric circle and showed that 

when there are N discs in a general position, the evolution of the fluid region can 

be described by a conformal map involving 2N-1 time-dependent parameters 

governed by N invariants and N-1 first-order differential equations. In his next 

study, Richardson [15] considered the corresponding problems when the fluid 

occupies a double-connected region, which is equivalent to a bundle of fused 
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fibers. In both models, only the flow at the surface of the coupler was treated. To 

this point, a generalized solution allowing for prediction of the internal 

parameters, rather than only the outer surface behavior, was missing. 

Of particular interest are the studies of Pone et al. [1, 16], who investigated 

the refractive index profile of fused optic fiber coupler cross-sections. They 

presented numerical simulations that were based on the solution of continuity 

and NS equations as well as a convection-diffusion equation, and compared the 

numerical results to experiments that fundamentally studied the fusion of two 

SMF28 fibers, 125 m  in diameter. The fibers were brought into contact and 

heated by a propane micro-torch at a temperature of about 1400 C , and then the 

degree of fusion and the external shape of the fused fibers were characterized. The 

degree of fusion without pulling as defined in [1] is given by 

 0

0

( )
( 0)

pull

W W t
f v

W W


−
= =

−
, (1.2) 

where 
0

W , W

 are the initial and the theoretical final widths of the coupler:

0 1 2
2 2W r r= + , 2 2

1 2
2W r r


= + . 

1
r  and 

2
r  are the initial radii of the fibers. In 

contrast to other studies, they also considered the diffusion of the core governing 

the evolution of the dopants' concentration inside the fibers.  

Despite progress in simulations of fiber optic components and the excellent 

agreement between the numerical and experimental measurements presented by 

Pone et al. [1], a generic tool to simulate the structure and the refractive index 

distribution of complex fused fiber components is not readily available. The need 

for the development of a high-fidelity structural simulation tool for facilitating 

the fabrication of components is particularly evident for complex systems whose 

fabrication is challenging due to their high optical sensitivity to tiny structural 

variations. 
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The current study focuses on the development of a theoretical framework 

based on the numerical solution of quasi-three-dimensional (3D) incompressible 

NS equations formulated for immiscible two-phase flow. Modeling of fiber optic 

components requires understanding of optical fibers and fabrication processes, 

combined with knowledge of numerical methods for simulation of two- and multi-

phase flow. In practice, numerical modeling of multiphase flows is a broad topic 

which plays a significant role in the solution of many applied science and 

engineering problems in the fields of environmental and geophysical science [17, 

18], biomechanical engineering [19, 20], chemical processing [21] and the 

fabrication of optical waveguides. The simulation of two-phase flows is 

challenging since it includes modeling of interactions between the different phases, 

tracking the boundary interface, and in some cases, resolving solidification and 

melting phase changes. Several numerical techniques have been developed for 

modeling two-phase flows with deformable interfaces and free boundaries. 

Typically, the techniques are classified in terms of the multi-physics phenomena 

modeled: the flow modeling, the interface modeling, and the coupling between the 

two [22].  

There are two basic numerical approaches that deal with free-interface 

two-phase flow: interface-tracking and interface-capturing. In the interface-

tracking approach, the interface is determined by a series of Lagrangian markers, 

whose location is dynamically updated throughout the numerical simulation. 

Front Tracking (FT) [23, 24] and Immersed Boundary (IB) [25, 26, 27, 28] 

methods are typical examples of the interface-tracking approach. In the interface-

capturing approach, the interface is reconstructed from a Eulerian scalar field 

characterizing the flow properties. This approach includes the Volume Of Fluid 

(VOF) [24, 29], Level Set (LS) [24, 30], and Phase-Field (PF) methods [24, 31, 

32]. 

The present study focuses on the development of a formulation based on 

the interface-tracking approach and the direct forcing IB method [33, 34] to 
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resolve the two-phase interface. The IB method was initially introduced by Peskin 

[25, 26] for simulation of blood dynamics in the cardiac chambers. The method is 

suitable for the simulation of flows in the presence of a number of immersed bodies 

of arbitrary geometry. Each body is determined by a set of Lagrangian points, 

which do not necessarily coincide with the underlying Eulerian grid. In the most 

general case, the body can be deformable and moving. In the direct forcing IB 

approach, the kinematic non-slip constraints at all the points of the body are 

enforced by applying Lagrangian forces entering as sources into the NS equations. 

The values of the applied forces are unknown a priori and are a part of the overall 

solution of the problem. In single-phase flows, the values of the Lagrangian forces 

are coupled with the pressure and velocity fields governed by the NS equations. 

In immiscible two-phase flows, the simulation should also account for the surface 

tension forces coupling the fluid characteristics of each phase with the unknown 

dynamically evolving curvature of the interphase interface.  

The accuracy of any two-phase numerical simulation employing the 

interface-tracking approach depends on a precise evaluation of the Lagrangian 

forces on the interface between the two phases. The forces comprise the kinematic 

constraints for continuous values of shear stress and velocity vectors. Historically, 

numerical simulations relied on explicit treatment of Lagrangian forces (see e.g., 

Li et al. [28], Rutka, and Li [35]). The surface tension forces are explicitly 

calculated based on the interface curvature obtained at the previous time step, 

while the NS equations are solved by the SIMPLE [36] algorithm. The above 

methodology can be easily plugged into any existing time marching solver of the 

NS equations based on a segregated pressure-velocity coupling, which explains its 

high popularity for simulation of both single- and two-phase flows [33, 34, 37, 38]. 

However, the explicit scheme has a number of disadvantages. First, the kinematic 

constraints are applied to the intermediate velocity field, which has to be further 

projected to a divergence-free subspace. As a result, a non-negligible mass leakage 

through the interface between the two phases typically shows up after completing 

the correction-projection step. To improve the accuracy and to ensure the mass 

conservation of the explicit direct forcing IB formulation, a number of techniques 
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have been proposed. Worthy of note are the works of Kempe et al. [39, 40], who 

imposed substantially more accurate boundary conditions on the IB surface by 

introducing intermediate iterations. An additional important study was published 

by Li et al. [41], who proposed an area preservation correction scheme by 

correcting the interface location normally to the interface so that the area remains 

constant. More recently, Bao et al. [42] proposed improving volume conservation 

by applying a continuous velocity interpolation operator that is divergence-free 

and a new force-smearing operator that joins with the interpolation operator and 

ensures the energy conservation.   

In the numerical part of the present study, we focus on a fully coupled 

approach in which the momentum and the continuity equations and the 

Lagrangian forces, expressed as the distributed Lagrange multipliers, are fully 

coupled. The developed fully coupled approach offers an attractive alternative to 

the explicit coupling approach. The idea was originally proposed by Glowinski et 

al. [43], who introduced the Distributed Lagrange Multiplier method (DLM) for 

simulations of 2D flow around a moving disc [43]. An extension of this study was 

conducted in simulations of particulate flows [44, 45, 46] and a fluid/flexible-body 

interaction [47]. An additional contribution to the development of the fully 

coupled DLM approach was due to the work of Taira and Colonius [48], who 

implemented it within the framework of a projection method. The latest 

theoretical development of the coupled DLM approach is owing to Feldman and 

Gulberg [49], who extended the fully coupled approach to the linear stability 

analysis of pressure and thermally-driven 2D flows. The idea underlying all the 

implementations of the fully coupled DLM approach is that the initial system of 

equations is extended by including additional relationships implicitly linking the 

Euler flow fields and the distributed Lagrange multipliers, enforcing kinematic 

constraints imposed by the surfaces of immersed bodies. The main purpose of the 

present study is to develop and to verify extensively a novel IB formulation 

employing the fully coupled DLM approach for simulating two-phase immiscible 

flows. The developed methodology belongs to the family of FT methods and 

provides precise conservation of mass of both phases without the need for any 
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additional correction procedure. In the present formulation, the surface tension 

forces, which are proportional to the curvature of the interphase interface, are 

introduced as distributed Lagrange multipliers, and play the role of kinematic 

constraints providing impermeability of both phases. The Fully Pressure-velocity 

Coupled Direct solver (FPCD), originally developed by Feldman and Gelfgat [50] 

for the simulation of shear- and thermally-driven confined flows, is used as a 

eveloped methodology. The 

principle novelty of the developed approach stemming from the implemented fully 

coupled DLM formulation is twofold. First, the kinematic constraints providing 

impermeability of both phases are accurately met. Second, the developed 

approach provides accurate volume conservation of both phases without the need 

for additional correction procedures.   

An additional part of this study is the fabrication of optic fiber components 

that would serve as experimental validation for the developed numerical model. 

The experiments are based on a 

to track the outer interface of simple and complex cross-sections of fiber 

components, and evaluate the dopants' concentration distribution.  

The rest of the thesis is organized as follows. The second chapter presents 

a theoretical background, including the governing equations of the impermeable 

two-phase flow and implementation details of the IB and FT techniques. The 

third chapter comprises a verification study focused on simulations of three 

representative two-phase benchmark flows. The fourth and fifth chapters present 

the experimental production and diagnostic set up, followed by comparing the 

numerical and experimental results and extensive discussions. The major 

conclusions, as well as suggestions for future work, are then presented in the last 

chapter.  
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Chapter 2: Theoretical background 

 

The fabrication of fiber couplers by the "heat-and-pull" technique requires 

a heat source (a hydrogen flame in our case) and stages to hold and pull the 

fibers. The tapering rate is determined by the pulling speed and the temperature 

distribution of the heated zone. The temperature distribution during the process 

is, in turn, controlled by the flame intensity, the flame-to-fiber distance, and the 

flame scanning rate and length. To obtain an effective isothermal heating zone, 

the flame scanning rate must be much higher than the rate of fiber pulling. 

Providing that the above conditions are maintained, the active heating zone is 

equivalent to the flame scanning length. In summary, the flame scanning length 

determines the heating zone, and the stage pulling speed controls the tapering 

rate (see Fig. 2.1). 

 

FIG. 2.1. Schematic diagram of the fibers' coupling process. 

Typically, the process occurs at a steady temperature lying in the range 

of 1200-1900 , at which the viscous sintering of the fibers may be regarded as 

the motion of an incompressible Newtonian fluid driven by surface tension [1] and 

damped by viscous dissipation forces. Although the system under consideration 

is 3D in practice, the fiber coupling process can be approximated by a transient 

quasi-3D model. The third axial direction along the tapered coupler is replaced 

by a series of discrete axial cross-sections of different areas. This approximation 

is acceptable in the case of an isothermally heated zone, which is a good 

approximation for the flame scanning setup, as long as the pulling rate is much 

lower than the scanning rate. Each such cross-section comprises the local 

structure of the glass coupler whose shape had formed as the coupler was drawn 
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through the heated zone. As long as the pulling rate remains constant, each cross-

section can be related to the discrete-time at which the coupler had formed and 

had remained frozen  immediately after it had been drawn out of the hot zone. 

The decrease of the cross-sectional area ( )A t  taking place at time t, as a, 

result of simultaneous heating and drawing out of the coupler in the heated zone 

is related to the constant pulling rate 
s

v  and the flame scanning length l , by the 

following ordinary differential equation: 

 
2

( ) ( ) 0s
vd

A t A t
dt l

+ = , (2.1) 

whose analytical solution provides an expression for the decrease with time in the 

cross-sectional area ( )A t : 

 
2

0
( )

s
v t

lA t Ae
−

= , (2.2) 

where 
0

A  is the initial cross-sectional area of the fibers forming the coupler. The 

decrease in the cross-sectional area of the coupler can be formulated by 

introducing a volumetric sink q , defined as: 

 
2 ( )

s
v

q
l


= −

x
. (2.3) 

Eq. (2.3) will be utilized in the following sections when describing the fluid 

dynamics of the fabrication process of fiber couplers. 

It should be noted that the developed simulation tool can be straightforwardly 

adjusted for configurations including non-uniform flame scanning. In this case, 

the distributed volumetric sink and the silica viscosity should be evaluated 

separately for each cross-section of the full 3D model. Afterwards, the time 

evolution of each cross-section can be resolved again by 2D analysis. This kind of 

simulation will be the focus of our future studies. 

2.1 Governing equations 

Consider two incompressible viscous fluids A and B confined by a 

rectangular domain, where the fluid B surrounds fluid A, and the two fluids are 

separated by a sharp closed interface   parameterized by ( , )s tX , as shown in 
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Fig. 2.2. In the context of the present study, fluid A is related to the viscous fused 

silica and represents the cross-section of the fiber coupler, whereas fluid B is 

related to the surrounding air. 

 

FIG. 2.2 Schematic representation of a two-phase flow configuration. 

The two fluids have different densities and viscosities represented by 
1,2
  

and 
1,2

 , respectively. Fluid A is enriched with dopants to provide the requisite 

optical characteristics. The concentration distribution of the dopants c is 

controlled by convection and a constant diffusion coefficient D , and it is assumed 

that there is no diffusion between fluids A and B. Three equations govern the 

fluid dynamics of the described system, namely, the continuity, NS, and the 

dopant concentration convection-diffusion equations: 

 ( , )I q   =u  (2.4) 

 

( )

( )

1
( )( ) ( ) ( ) ( ) ,

3
T

y

I
t

p I I I ge



  

 
+   = 

 

− +    +  +    + +

u
u u

u u u f

 (2.5) 

 2( ) ,
c

c D c
t


+   = 


u  (2.6) 

where ( , )u vu , p , c , t , f , and q  represent the velocity, pressure, dopant 

concentration, time, surface tension force density and volumetric mass source, 

respectively. 
y

e  is a unit vector in the direction which is opposite to that of the 

gravity force and g  is the gravitational acceleration.  
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Note that because of the spatio-temporal variation of the viscosity, the governing 

equations (2.4-2.6) are presented and then solved in dimensional form. (This 

approach also subsequently facilitates the calibration and fine-tuning of the 

developed numerical methodology to the experiments.) Nonetheless, all the 

validation studies and the further post-processing of the obtained results are 

rendered dimensionless.    

The indicator function, ( , )I tx  [41], is a non-dimensional scalar field, whose 

values lie within the range [0,1]I  . The indicator function is used for 

representing the spatial distribution of the material properties [ ( ), ( )]I I  , and is 

used to smear their discontinuity in the vicinity of the sharp interface   

separating the two fluids. We now define the gradient of the indicator function 

as: 

 2( , ) ( ( , )) ( ( , ))I t s t s t ds


 = −x n X x X , (2.7) 

where ( ( , ))s tn X  is a unit vector normal to the interface   at point ( , )s tX  

parameterized by 0 s L  (L  is the total length of the interface). The values of 

I  are obtained by solving Poisson's equation: 

 2( , ) ( ( , )) ( ( , )) ,I t s t s t ds


 =   −x n X x X  (2.8) 

where the 2D convolution function 2  is obtained by multiplication of two one-

dimensional (1D) discrete Dirac delta functions d  of the form: 

 

2

2

1 | |
1 3 1 for |r| 0.5 r,

3

1 | | | |
( ) 5 3 3 1 1 for 0.5 r |r| 1.5 r,

6

0 otherwise,

( )

( )

r

r r

r r
d r

r r r

  
 + − +   

    


 
= − − − − +     

     





 (2.9) 

introduced by Roma et al. [27] and verified by [39, 48, 51, 52, 53, 54]. Here, r

is the cell width in the r  direction. Following the guidelines formulated by 

Tryggvason et al. [23], Eq. (2.8) was solved by the SOR method. The iterations 
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were only performed on points close to the interface (typically two grid cells in 

each direction, which encloses the field of influence of the discrete Dirac delta 

function defined by Eq.(2.9), leaving points away from the interface unchanged. 

The procedure made it possible to precisely keep the correct values of the density 

and the viscosity fields away from the interface, separating between the phases. 

In addition, to prevent small over- and undershoots which can emerge near the 

interface when simulating the two-phase flows characterized by high density and 

viscosity ratios, a simple filtering was applied while iterating the ( , )I tx  values. 

The obtained values of ( , )I tx  are then utilized to update the spatio-

temporal variation of the   and   fields:  

 
1 1 2 2 1 1

[ , ]( ( , )) [ ( ), ( )] [ ( ), ( )] [ ( ), ( )] ( , )( )I t t t t t t t I t       = + −x x  .(2.10) 

The surface tension force density ( , )tf x , appearing in the right-hand side (RHS) 

of Eq. (2.5), is related to the local curvature of the interface 
2

2

( , )s t

s





X
 as:   

 
2

2

2

( , )
( , ) ( ( , )) ,

s t
t s t ds

s
 




= −




X
f x x X  (2.11) 

where   is the surface tension coefficient. 

 Discretization in time and space 

The time derivative in the unsteady momentum and the diffusion 

equations is approximated by a second-order backward differentiation: 

 
   + + − − +

= + 
 

1 1 1
23 4

( )
2

n n n n

O t
t t

 . (2.12) 

In the momentum (2.5) and the diffusion (2.6) equations, the linear terms of 

diffusion and surface tension forces are treated implicitly, while convective non-

linear terms are treated explicitly and moved to the RHS of the corresponding 

equations. Due to explicit advancement of the nonlinear terms, the overall scheme 

is subjected to the restrictions in the size of the time steps. Thus, the time 

increments must satisfy the usual Courant number criterion, which is defined in 

explicit schemes [55]: 



 

Theoretical background  14 

 =    =   / 1.0, / 1.0
x y

C u t x C v t y . (2.13) 

Also, when non-zero values of the dynamic viscosity and the molecular diffusivity 

are used, the momentum and the diffusion equations do not diffuse more than 

one cell in one time step due to stability considerations:   

 ( ) ( )    +  
  

2 2 1
( , ) 1/ 1/

2
D t x y  . (2.14) 

In a number of benchmark numerical tests [56, 41], in cases where discretization 

had h  grid cells in the shortest direction ( 1/x h = ), the time step was

/16t h = . 

The finite volume approach was used for the spatial discretization 

performed on a staggered grid [57], as shown in Fig. 2.3. The staggered grid was 

introduced by Harlow and Welch [58] for the 'Marker And Cell' method, and has 

been used extensively in computational fluid mechanics ever since. There are two 

main reasons why the staggered grid characterized by an offset in the location of 

the different fields of the problem is widely used instead of a co-located grid, 

where all the fields are located at the same points. The first reason is related to 

the accuracy of the discretization. By using a staggered-grid, the pressure gradient 

is computed as the difference between the adjacent points. In contrast, when the 

calculation is performed on a co-located grid, the pressure gradient is evaluated 

by points distant from each other by 2 x  or 2 y . The second reason is that 

discretization on a staggered grid naturally makes it possible to keep the 

conservative form of the governing equations. At the same time, the terms of 

advection and the derivative of viscosity in the momentum equations require some 

extra manipulations for accurate formulation.  
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FIG. 2.3   Control volume for the pressure field  staggered grid arrangement. 

2.2 Numerical methods 

Direct numerical simulations (DNS) are widely used for single-phase flows 

in large time and length scales, and enable solving a wide range of problems. 

However, the use of DNS for multi-phase flows is less common [33]; therefore, 

developing such a tool can make a considerable contribution to the field.   

In this section, the IB method was adapted for the simulation of two- and multi-

phase fluid flows, and is presented. 

 Immersed Boundary method 

The IB method was originally proposed by Peskin in 1977 [26]. The method 

was developed to accurately simulate the interaction of blood flow in the heart, 

and since then, it has been widely utilized for the simulation of flow in many 

biological problems [25]. The main idea of this method is to use the Eulerian fixed 

grid, together with Lagrangian markers representing the IB. In our research, we 

use the IB method for calculating the surface tension term, while the velocity and 

pressure fields are calculated on the Eulerian grid. The interaction between these 

two grids is achieved by regularizing the surface tension force from Lagrangian 

markers to adjacent locations on the Eulerian grid, and by interpolating the 

Eulerian velocity fields to the nearby Lagrangian markers. Both operations are 

,i jp

1, 1i jp − + , 1i jp + 1, 1i jp + +

1,i jp −

1, 1i jp + −

1,i jp +

1, 1i jp − − , 1i jp −

1/2, 1i ju − +

1/2,i ju −

1/2, 1i ju − −

1/2, 1i ju + +

1/2,i ju +

1/2, 1i ju + −

, 1/2i jv +

, 1/2i jv −

1, 1/2i jv − +

1, 1/2i jv − −

1, 1/2i jv + +

1, 1/2i jv + −
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implemented by utilizing the same discrete Dirac delta function (Eq. (2.9)). By 

applying the delta function, we impose the contribution of the distributed force 

of the boundary as a function of a non-dimensional distance r of the Lagrangian 

marker to adjacent locations on the Eulerian grid. 

It should be noted that, as a result of solving the continuity equation on 

the Eulerian grid, the IB method utilized for the solution of the proposed problem 

does not explicitly provide the volume conservation of both phases. For this 

reason, Li [41] proposed a simple area-preserving scheme for two-phase fluids by 

performing further iterations to correct for mass conservation. In contrast, our 

method manages to preserve mass conservation with no need for extra iterations. 

Extensive details are presented in the next section. 

 The numerical methodology 

The numerical methodology utilized in the present study is based on the 

IB method, specifically developed to simulate two-phase immiscible flows [52]. In 

the developed methodology, the enforcing surface tension density f  is treated 

implicitly, and serves as a Lagrange multiplier, applied to enforce the kinematic 

constraint of the immiscibility of the two fluids to preserve the sharp interface 

between the two phases. 

The developed methodology is embedded into the generic incompressible 

NS solver, based on full pressure-velocity coupling [50]. The position of the 

interface is updated by employing the interface-tracking approach [23, 24]. 

Following Eq. (2.11), implicit treatment of the surface force density f  leads to 

the introduction of additional unknowns, ( ) 
 

2 2

2 2,X Y
s s

, which requires the 

addition of supplementary equations to achieve closure of the overall set of 

equations: 

 
( )

( )

1 1 12
1 1

2 2

2n n n

l l ll

s s

+ + +

+ −
− + 

= 
   

X X XX
, (2.15) 

 1 1 2( )n n n n

l l l
t dxdy+ +


= +  −X X u X x . (2.16) 
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Substitution of 1

1

n

l

+

−
X , 1

l

n+X and 1

1

n

l

+

+
X  defined by Eq. (2.16) into Eq. (2.15) 

and moving  all the terms known from the previous time step to the RHS yields: 

 
( )

( )

1 2 2 2 2
1 1

2 2

1 1

2

( ) 2 ( ) ( )

2

n n n n

l l l l

n n n

l l l

t dxdy

ss

s

  +

+ −

+ −

  − − − + −    − = 
   

− +
−



 u X x X x X x X

X X X
 .(2.17) 

The system of equations (2.4),(2.5) and (2.17) can now be written in block-

matrix form as 

( )
( )

1

2 1 1,

1,2

2

2

2

2

( , ) 0

0 ( , )

0 0 0

0 0 1 0

0 0 0 1

n

x n n n n
u uv p

u
n ny n

vvu v p
n

x y
s

u v
n

X
x

n

Y
y

u

H H s t v RHS

p RHSH H s t

RHSX

s RHSIC
RHSYIC

s





+

+ −

−

 
  − −        − −        =            −         −      

   

X x

X x

 ,(2.18) 

where 
1 3 ( )

( ( )( )) ( ) ( )
3 2

T I
H I I

t


 =    +  +   −


I  are Helmholtz operators 

acting on the u  and v  velocity components, I  is the identity matrix, and x  

y  are the first derivatives in the x  and y  directions, respectively. IC is the 

Interface Curvature  operator appearing as the first term of Eq. (2.17). The RHS 

is defined as: 

 1

,

2 1
( ) ( )

2

n

n

u v
RHS I

t t
 − 

=   − + 
  

u u u u ,  (2.19) 

 

( )
1 1

, 2
 

2n n n

s s s

X Y
RHS

s

+ −
− +

= −



X X X
, (2.20) 

 

22
,

0

sv t

s l

s

v
e within fluid A

RHS l
otherwise


−

−
= 



.  (2.21) 

All the discrete operators were obtained by applying a second-order 

backward finite difference scheme for the temporal discretization, and utilizing 

the standard second-order conservative finite volume method [36] for the 
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staggered grid spatial discretization. Additionally, all the linear terms were 

treated implicitly, and all the nonlinear terms were treated explicitly and appear 

in the RHS. 

The solution of the equation system (2.18) is based on an LU factorization 

of the sparse matrix, built for the entire computational domain. The LU 

factorization is carried out by a direct Multifrontal Massively Parallel Solver 

(MUMPS) [59, 60] and has to be performed at every time step as a result of 

varying material properties in the operator H. The successive calculation of the 

velocity and pressure fields is implemented by the backward substitution 

procedure, also realized for sparse triangular L and U matrices. Due to efficient 

utilization of the matrix sparsity, both LU factorization and back substitution 

procedures are relatively fast. The boundary conditions are of the Dirichlet, 

Neumann, and periodic types, each applied in accordance with the specific 

problem.  

The convection-diffusion equation (Eq. (2.6)) was solved separately from 

all the other equations by using the velocity field from the previous time sub-

step. The equation was solved only for the fluid domain A , with a zero gradient 

boundary condition on the interface   (see Fig. 2.2). 

To conclude, each computational time step consisted of three main sub-

steps: The first one was the solution to Poisson's equation, given by Eq.(2.8). The 

obtained indicator function ( , )I tx  was then used in Eq.(2.10) to identify the 

spatial distribution of the   and   fields. In the second sub-step, the system of 

equations (2.18) was solved implicitly by MUMPS [59, 60] to obtain the fully 

coupled velocity and pressure fields. Finally, in the third step, diffusion Eq. (2.6) 

was solved to obtain the concentration of dopants c, under the assumption of one-

way coupling (i.e., no dependence of the flow   and   fields on the concentration 

of dopants), and the interface position was updated by utilizing Eq. (2.16). The 

whole procedure was then repeated for the next time step (see Fig 2.4). 

Note that for the case of zero concentration, it is possible to skip the 

convection-diffusion equation (Eq. (2.6)) and to update the interface directly after 

the second step. 
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FIG. 2.4 Block diagram of the computational time step. 
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Chapter 3: Validation study 

In order to broadly verify the developed method for a wide range of 

applications, four benchmark problems for incompressible two-phase flows were 

solved. The flows under consideration were driven by different mechanisms, 

namely; buoyancy, shear, and surface tension forces. The benchmark problems 

were solved non-dimensionally, where the non-dimensional equations were 

obtained by using the characteristic scales 2 /D S =  for the length (where 

S  is the area of fluid A ), U  for the velocity (where U  is the characteristic 

velocity of the specific flow configuration), = /t D U  for the time, and 

min
/p U D=  for the pressure field. The mass density and the dynamic viscosity 

fields were scaled by the corresponding minimum values of either of the two fluids, 


min

and 
min

. The non-dimensional groups determining the two-phase flow under 

consideration are the Reynolds (Re), Weber (We) and Froude (Fr) numbers, 

defined as  

 

 
2

min min

min

, ,
UD U D U

Re We
gD

 

 
= = =Fr  .(3.1) 

The first and second benchmark problems consider the flow of a circular 

bubble rising within a fluid of higher density due to buoyancy forces [30, 56, 61]. 

In general, both fluids can also have different viscosities. Under the action of 

buoyancy forces, the bubble accelerates while rising up, until it reaches its 

terminal velocity. Similarly to the first benchmark problem, the second  

configuration also comprises a circular bubble rising within a fluid of higher 

density, with the only difference being that in this case, the flow is characterized 

by higher values of density and viscosity ratios, which eventually leads to break-

up of the rising bubble. The third benchmark is the shape evolution of a drop 

under pure shear stress [41, 62, 63]. A circular drop of a certain liquid is 

submerged into a pure shear flow of another liquid. Both liquids have different 

viscosities. As a result of shear forces, the submerged circular drop undergoes 
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shape deformation. The fourth benchmark is known as the disc relaxation 

problem [41, 64]. A drop of a certain fluid with an initial rosette shape is 

submerged in another fluid of different viscosity. As a result of surface tension 

forces between the two phases, the rosette-shape drop undergoes complex 

deformations until it eventually converges to a circular shape. The results of our 

simulations were compared both qualitatively and quantitatively to the data 

available from the literature [65, 66, 67] for different Reynolds, Weber, and 

Froude numbers. A detailed comparison between the results was published [52], 

and is presented in the following section.  

3.1 Test case 1 - Rising bubble without break-up 

This benchmark focuses on the dynamics of a deformable liquid bubble 

submerged in a cavity filled with another fluid of higher density. This flow has 

been thoroughly studied both experimentally [68] and numerically [30, 56, 61, 69, 

70]. The most comprehensive quantitative results are due to the review of Hysing 

et al. [56], which presents a comparison between the time evolutions of the 

circularity, the position of the center of mass, and the vertical component of the 

was independently obtained by three research groups, each utilizing its own 

numerical methodology (consult Ref. [56] for more details).   

The buoyant dynamic of an initially circular rising bubble of diameter D  

is considered. The bubble is initially placed at point [ , ]D D  within a [2 4 ]D D   

rectangular domain, as shown in Fig. 3.1.  
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FIG. 3.1  Initial configuration and boundary conditions of rising bubble test flow. 

The boundary conditions are set as:  

 

( 0, ) ( 2 , ) 0,

( , 0) ( , 4 ) 0,

( 0, ) ( 2 , ) 0,

( , 0) ( , 4 ) 0,

u x y u x D y

u x y u x y D

v v
x y x D y

x x
v x y v x y D

= = = =

= = = =

 
= = = =

 

= = = =

. (3.2) 

In addition, a single Dirichlet point for the pressure field, 0p = , was set 

in the corner of the computational domain. The values of physical properties and 

operating conditions governing the flow under consideration are specified in Table 

1. 

Table 1 - The values of physical properties and operating conditions.  

1
  

2
 

1
 

2
 D  g    Re  We  Fr   

1 2
/   

1 2
/  

1000 100 10 1 1 0.98 24.5 98.99 4 1 10 10 

 

The center of mass of the rising bubble is a local quantity given by: 

 2

2

( , ) ,
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dV
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
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



x
X  (3.3) 

where 
2
 denotes the region occupied by the bubble. 
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Following Wadell [71], the bubble     is defined in  2  as 

 ,a a

b b

P D

P P


 = =  (3.4) 

where 
a

P  is the perimeter of a circle with diameter 
a

D , which has an area equal 

to that of a bubble with perimeter 
b

P . 

The rising velocity, 
C

U , is defined as the mean velocity of the bubble: 

 2

2

( , )
C C C

dV
U V

dV





= =




u
U . (3.5) 

To prove the grid independence of the results, the simulations were 

performed on four different grids with a time step of  = / 2t h , where h 

corresponds to the grid step. Grid independence of the obtained results is 

favorably verified by indistinguishable differences between the final shapes of the 

bubble obtained at = 3t  on the two finest grids (see Fig. 3.2). 

 

FIG 3.2  Bubble shapes obtained on four different grids at time t =3. 

 In addition, it can be clearly recognized that the bubble shape obtained 

at time = 3t  on the finest grid is in excellent agreement with the corresponding 

results reported in Hysing et al. [56] (see Fig.3.3). Mass conservation of the bubble 

is next verified by comparison between the initial and the final areas of the 

bubble. It can be seen that for all the grids, the mass lost does not exceed 0.35% 

of the initial mass, as summarized in Table 2. 
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Table 2. Mass discrepancy (%) at t=3 in test case 1. 

h  1/40 1/80 1/160 1/320 

Mass leakage [%] 0.3364 0.0917 0.0560 0.0204 
 

 

FIG. 3.3  Bubble shapes obtained at final time (t =3): comparison between the present and the 

previously published results. 

Figs. 3.4, 3.5, and 3.6 compare between the present and the previously 

reported time evolutions of the circularity, the Y-axis position, and the 
C

V  

velocity component of the bubble  center of mass, respectively. All the results 

were calculated on the grid characterized by = 1/160h  with  = /16t h . 

  

FIG. 3.4  Time evolution of the circularity values: (a) the whole-time history; (b) close-up view around 

the time t=1.9. 
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FIG. 3.5  Time evolution of the Y position of the center of mass: (a) the whole-time history; (b) close-up 

view around the time t=2.9. 

  

FIG. 3.6  Time evolution of the rise velocity: (a) the whole history; (b) close-up view around the time t=0.9. 

In addition, Table 3 presents a quantitative comparison between the 

corresponding instantaneous values of the global minima of circularity, global 

maxima of rising velocity and vertical position of the center of mass at = 3t .  

It can be clearly recognized that all the presently obtained characteristics 

are very close to the corresponding previously obtained results for the entire range 

of time instances. The maximal discrepancy between all the flow characteristics 

does not exceed 0.04%.  The maximal deviation between the circularities is 

observed around their global minima (close to the time = 1.9t ), characterizing 

the most significant deformation of the shape of a rising bubble compared to its 

initially circular geometry. From this point on, the circularity smoothly increases 

until finally attaining its asymptotic value that indicates that the bubble has 

reached its terminal velocity. The fact that the bubble has reached its terminal 

velocity is also confirmed by noting a constant slope of the time evolution of the 

Y coordinate around time = 2.9t  (see Fig. 3.5-b).  
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Table 3. Global minima values of circularity with corresponding incident times, global maxima values of 

rising velocity and final vertical position of the center of mass. 

 Present method TP2D FreeLife MooNMD 


min

 0.9011 0.9013 0.9011 0.9013 

 =
min

|t  1.9000 1.9041 1.8750 1.9000 

max
V  0.2416 0.2417 0.2421 0.2417 

=
max

|t V V  0.9232 0.9213 0.9313 0.9239 

=( 3)Y t  1.0813 1.0813 1.0799 1.0817 
 

It is remarkable that the value of the terminal velocity is lower than the 

value of the global velocity maxima observed at  0.9t  by about 10% (see Fig. 

3.6-b). Increasing the vertical velocity of the bubble is followed by enhanced 

deformation of the bubble shape, which results in a moderate deceleration of the 

bubble until it reaches its terminal velocity. 

3.2 Test case 2 - Rising bubble undergoing break-up 

The aim of this simulation is to demonstrate that the developed 

methodology is also capable of simulating immiscible two-phase flows with 

multiple separated boundaries. For this purpose, the rise of a 2D gas bubble with 

its subsequent break-up in a quiescent liquid is considered. The geometry and 

boundary conditions of the flow are the same as for test case 1. The values of 

physical properties utilized in the present simulations are equivalent (subject to 

appropriate rescaling) to those used in the previous studies [65, 66, 67], as detailed 

in Table 4.  

Table 4 - The values of physical properties and operating conditions utilized in test case 2.  

Re  We  Fr   
1 2
/   

1 2
/  

120.83 2.6 1 40 83.33 

 

Unfortunately, the breaking process cannot be directly captured only by 

the solution of the NS equations with the subsequent Euler integration of the 

two-phase interface governed by Eq. (2.16).  Explicit modeling of the bubble 
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break-up is required. In the present study, we adopt an assumption that the 

breaking process is followed by the formation of a deformed neck, which is thinned 

by the dynamic local pressure. This scenario is realistic for many physical systems, 

for example, for the microfluidic dynamics of two-phase immiscible flow in T-

junctions [72, 73, 74], and is favorably applied here to simulate bubble break-up 

in buoyant and pure shear flows. A schematic of bubble break-up modeling is 

shown in Fig. 3.7. The distance between all points of the body, with the exception 

of a pair of points in the immediate neighborhood of the break-up, is evaluated 

for every point of the immersed surface at each computational time step. 

 

FIG. 3.7. Schematic bubble break-up modeling. 

Once the absolute minimal distance between any two points of the body 

min
l  is less than a given threshold x  



1 1.5 



1

 

 

 

 

 

1 The described break-up procedure should be empirically rescaled to preserve mass if multiple 

break-up phenomena take place.   

a.  

𝑙𝑚𝑖𝑛 = 𝛼Δ𝑥 
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of the rising initially cylindrical bubble simulated for 

the physical parameters listed in Table 4 is shown in Fig. 3.8 for 1.5, 3, 4.5, 6.t =

Mass conservation of the rising bubble was verified at all the time instances (see 

Table 5). It can be seen that the maximum mass loss does not exceed 0.15% of 

the initial bubble mass. The instantaneous shape of the bubble is superimposed 

with contours corresponding to the absolute values of the velocity vector, u . The 

obtained results are in acceptable agreement with the results of Gaudlitz and 

Adams [65], Wang et al. [66], and Archer and Bai [67] for 1.5t =  and 3t = . For 

these time instances, the symmetry of the flow relative to the vertical centerline 

is preserved. It can also be seen that at 4.5t =  the drop has already undergone 

its primary and secondary break-ups, followed by the slight symmetry breaking 

in the shapes of the major and four small pinched off bubbles. The crescent thin 

arms from both sides of the bubble continue to elongate even more as the bubble 

rises. The flow dynamics after the break-up is somewhat different from that 

observed in the previous studies [65, 66, 67] based on the LS method. One of the 

reasons for the observed discrepancies could be attributed to the different grid 

resolutions: the present results were obtained on a 320 640  grid, while all the 

previously reported results were obtained on a rather dense 40 80  grid. It should 

be noted that when such a dense grid was applied for the present methodology, 

it provided inconclusive results, which can be seen as a drawback of the FT 

approach compared to its LS counterpart. On the other hand, the results obtained 

by the LS method can be under resolved, which can result in mass conservation 

violation. An additional reason for the differences in the post break-up shapes of 

the bubbles could be due to the modeling of the break-up process adopted in the 

present study, which can be further modified by various fine-tuning strategies to 

better comply with existing experimental or numerical results. Recalling that the 

main purpose of this simulation was to demonstrate the capability of the 
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developed algorithm to handle multiple separated boundaries, the development 

of such fine-tuning strategies was beyond the scope of the present study. 

1.5t =  

 

3t =  

 

4.5t =  

 

6t =

 

FIG. 3.8. Time evolution of the rising initially cylindrical bubble obtained on a 320×640 grid for the 

value of 𝛼=1.5 and zero initial velocity. The initial position of the bubble center was (1.25,1.0). The 

colors correspond to absolute values of the velocity vector, |𝒖|. 
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Table 5. Mass discrepancy (%), calculated at every time instance in test case 2.  

Time 1.5 3 4.5 6 

Mass leakage [%] 0.1664 0.2858 0.1141 0.1346 

3.3 Test case 3 - Drop under shear flow  

The initial state of the problem is given in Fig. 3.9. The circular drop 

submerged into fully developed Couette flow is subjected to pure shear stress, 

while the gravity force is neglected. Under the action of shear stresses, the flow 

undergoes deformation until the increasing surface tension forces equalize with 

the shear forces and the drop shape reaches equilibrium. The square box domain 

is of dimensions [2 ,2 ]D D , and the center of the submerged circular drop with 

diameter D  coincides with the geometrical center of the box (point [ , ]D D ). 

Following the works of Kapil & Pozrikidis [63] and Chinyoka et al. [62], the 

simulations were performed for four different values of Reynolds number, 

1, 10, 50Re =  and 100 , two values of viscosity ratio   =
2 1
/ 1  and 10 , and two 

values of capillary number, 0.2Ca =  and 0.4 . Note that the capillary number 

relates between the viscous and surface tension forces and is defined in the present 

study as  

 min
UWe

Ca
Re




= = . (3.6)  

 

FIG. 3.9  Initial state of the circular drop submerged into a fully developed Couette flow. 
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The boundary conditions applied in the above configuration are that the 

top and bottom walls of the cavity for all the velocity components are of the 

Dirichlet type:  

 
( , 2 ) ( , 0) ,

( , 2 ) ( , 0) 0

u x y D u x y U

v x y D v x y

= = − = =

= = = =
. (3.7) 

In addition, periodic boundary conditions were applied for the velocity and 

pressure fields in the horizontal, x , direction. A single Dirichlet point for the 

pressure field, 0p = , was set in the corner of the computational domain. The 

mesh grid = 1/ 300h  and time step 410t − =  were utilized in all the simulations.  

A comparison between the present and the previously published data [62] 

for the drop shapes at steady state as a function of various values of operating 

conditions is presented in Fig. 3.10. An excellent agreement between the results 

is observed for the entire range of parameters. It can be seen that increasing the 

Ca   number results in more pronounced elongation of the drop shape, which can 

be explained by the reduced surface tension force. In contrast, increasing the 

viscosity ratio leads to decreasing the deformation of the drop shape. The mass 

leakage calculated for all the configurations analyzed in test case 3 is summarized 

in Table 6 at the final time t=3. It can be seen that the maximal value of mass 

loss does not exceed 0.023% of the initial drop mass. 
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FIG. 3.10 - Drop shapes at t=3: (a) Ca=0.2, 𝜇𝑟 = 1; (b) Ca=0.2, 𝜇𝑟 = 10; (c) Ca=0.4, 𝜇𝑟 = 1; and (d) 

Ca=0.4, 𝜇𝑟 = 10. Plus markers  Chinyoka et al. [62] results, Lines  the present results. 

 

Table 6. Mass discrepancy (%) at t=3 in test case 3.  

 0.2Ca =  0.4Ca =  

 1
r

 =  10
r

 =  1
r

 =  10
r

 =  

= 1Re  0.0089 0.0038 0.0051 0.0038 

= 10Re  0.0089 0.0064 0.0051 0.0064 

= 50Re  0.0102 0.0178 0.0064 0.0166 

= 100Re  0.0102 0.0228 0.0064 0.0216 
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3.4 Test case 4 - Rosette shape  

This benchmark investigates the dynamics of the relaxation of a rosette-

shaped drop to a circular disc in a quiescent viscous liquid. In this configuration, 

the flow is driven by the surface tension forces, while the momentum of the flow 

is diffused by the viscosity of the fluid. Gravity is neglected. The initial 

configuration in this problem consists of a rosette-shaped drop. The center of the 

drop coincides with the center of a square cavity. The initial shape of the drop is 

defined by  

 
(0.5 cos( ))

, 0 2 ,
(0.5 sin( ))

X D r

Y D r


 



 =  +
=  

=  +
X  (3.8) 

where 0.25 0.1cos( )r n= +  and n  is the oscillation mode. Nonslip boundary 

conditions were applied at all the cavity walls. In addition, a single Dirichlet point 

for the pressure field, 0p = , was set in the corner of the computational domain. 

Following the study of Li et al. [41], the problem was studied for three different 

modes of 3,5n =  and 8 , as shown in Fig. 3.11. 

 

FIG. 3.11  Initial configurations of rosette-shaped drop corresponding to: (a) n=3 modes; (b) n=5 

modes; (c) n=8 modes. 

Since neither the characteristic velocity, nor the Reynolds and Weber 

number values were specified in [42], the present simulations were carried out by 

solving dimensional NS equations on the computational domain (0,1) (0,1) =   

with physical and geometrical parameters provided by [41], as detailed in Table 

7.   
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Table 7. Physical and geometry parameters utilized in test case 4. 


1
 

2
 

1
 

2
 D    

1 1 0.01 0.01 1 130 

 

The problem was solved on 1/ 64,128h =  grids with /16t h = . The time 

evolution of the rosettes is visualized by presenting the rosette shapes at various 

time instances in the range of 0 1t  , as shown in Fig. 3.12. Lagrangian 

markers determining the instantaneous rosette shapes are superimposed with the 

corresponding rosette shapes reported in [41]. In agreement with the Li et al. 

study [41], all the three modes of the rosette drop relax to a disc shape at 1t = . 

However, in some instances, the presently obtained rosette shapes precede the 

corresponding shapes reported in [41]. Such a discrepancy, indicating a higher 

rate of momentum diffusion in our simulations, can be, apparently, a consequence 

of differences in the distribution of Lagrangian markers at each simulation 

instance. Contrary to the study of Li et al. [41], in which a constant number of 

Lagrangian markers is used for determining the two-phase interface, the presently 

developed methodology utilizes a varying number of Lagrangian markers, while 

preserving their even distribution over the interface. It can also be seen that 

higher modes are characterized by higher relaxation rates as a consequence of 

initially higher values of surface tension forces, which are proportional to the 

curvature of the interface separating both phases. Conservation of the area of the 

drop at each time step of the simulation comprises a critical criterion for 

verification of the developed approach, as it is dictated by the flow 

incompressibility. It was also verified (see Table 8) that for all simulations, the 

maximal discrepancy in the area did not exceed 0.5% for h=1/64 and 0.21% for 

h=1/128.  

Table 8. Mass discrepancy (%) at t=0.5 in test case 4. 

Mode 3 5 8 

1/ 64h =  0.4437 0.4720 0.4900 

1/128h =  0.2028 0.2170 0.2075 
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FIG. 3.12. Verification of the time instances of a rosette drop characterized by 3, 5, and 8 modes initial 

shape when relaxing to circular disc in quiescent liquid. 
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Despite implicit representation of the surface stress forces, parasitic 

currents arise with maximum magnitude in the close vicinity of the interface, as 

shown in Fig. 3.13. A reason for the presence of these currents is a slight 

imbalance between stresses in the interfacial region. The source of the unbalanced 

stresses is apparently related to the truncation error associated with the second 

derivative of the Lagrangian coordinate X (see Eq. (2.15)) when calculating the 

local surface tension force.  Nevertheless, the maximal magnitude of the parasitic 

velocity does not exceed 0.6% of the characteristic velocity U , which is too small 

to have any effect on the transient and steady-state dynamics of the flow under 

consideration. 

 

 
FIG. 3.13. The magnitude of parasitic velocities observed for a drop of circular disc shape. 

3.5 Additional capabilities of the algorithm  

In this section, we examine additional capabilities of the algorithm to 

demonstrate that the developed methodology can favorably address both shear 

and buoyancy-driven flows in which multiple break-up phenomena take place. 

We first simulate a multiple break-up phenomenon for the flow configuration 

consisting of a circular drop under the action of pure shear flow. The drop is 

placed in the center of a long 10 1  channel with no-slip velocities Ui  and Ui−  

at the top and the bottom walls, respectively, and periodic boundary conditions 
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in the horizontal direction. Gravity is neglected. The values of the physical 

parameters used in the simulation are given in Table 9. 

Table 9. The values of physical properties and operating conditions used for 10:1 pure shear flow. 

Re  We  Fr   
1 2
/   

1 2
/  

1 7.2 1 1 1 

 

The time evolution of the drop shape is shown in Fig. 3.14. At times 

70 100t   the obtained results qualitatively repeat the instability phenomena 

observed at the central portion of the bubble [75]2. The instability is preceded by 

elongation of the drop, which resembles the shape of a dumbbell at 40t = , and 

is then followed by a detachment of daughter drops via an end-pinching 

mechanism at 40 70.t   It is remarkable that while spreading over the channel, 

the slopes of the elongated drop and a series of its daughter drops further created 

as a result of the drop break-up asymptotically decrease to approximately zero. 

 

 

 

 

 

2 The values of Re and We were multiplied by a factor of 8 to fit the scaling of the present study.   
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FIG. 3.14. Interface evolution of circular drop under pure shear flow undergoing multiple break-up phenomena, 

 𝑅𝑒 = 1, 𝑊𝑒 = 7.2,  10 × 1 channel, on a 50 × 500 grid.  
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We next simulate a multiple break-up phenomenon by analyzing the 

configuration corresponding to the rising air bubble in water. The simulation was 

performed for the physical parameters listed in Table 10. Density and dynamic 

viscosity ratios were chosen to fit the air-water two-phase flow. The relatively 

high value of the We  number was taken to diminish the surface tension effects 

and to ensure that the break-up phenomenon takes place before the bubble 

reaches its terminal velocity.  

Table 10. The values of physical properties and operating conditions utilized for the configuration corresponding 

to the air bubble rising in water. 

Re  We  Fr   
1 2
/   

1 2
/  

300 2.6 1 1000 185 

 

The time evolution of a rising bubble for a number of time instances t=0.5, 

1, 1.5, 2, 2.5, 3 is presented in Fig. 3.15. At the beginning of the motion, the 

bubble undergoes deformation stages similar to those observed for test case 2. 

The crescent shape of the air bubble at 0.5t =  is transformed to the shape of a 

dumbbell, followed by further twisting and thinning at its ends and finally leading 

to flow instability and the multiple break-up phenomenon at 3t = . 
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t=0.5 

 

 

t=1.0 

 

t=1.5 

 

t=2.0 

 

t=2.5 

 

t=3.0 

 

FIG. 3.15. Interface evolution of circular air bubble rising in water. The simulations were obtained for 

𝑅𝑒 = 300, 𝑊𝑒 = 2.6,  𝐹𝑟 = 1 on a 320 × 640 grid. 

3.6 Test case 5  Fiber optic coupler 

In the current study we aim to demonstrate the capabilities of the developed 

numerical tool in order to simulate fusion dynamics of optic fiber couplers to 

further facilitate their fabrication. We start with a comparison of the currently 

obtained numerical results with the corresponding numerical and experimental 

data obtained by Pone et al. [1] for the fusion of two SMF28 fibers of 125 μm 
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diameter, as shown in Fig. 3.16. The fibers were brought into contact and heated 

with a propane micro-torch at a temperature of about 1400  

 

FIG. 3.16. Initial configuration of two SMF28 fibers: A, B, and C represent air, the fused silica fibers, 

and the concentration of dopants, respectively. 

A structure identical to the one tested in ref. [1] was simulated by plugging in 

the same environmental and material conditions and setting the pulling speed 
s

v  

to zero. The degree of fusion and the external shape of the fused fibers were then 

deduced and compared.  

The numerical simulations were performed on a 400 600 m  domain to 

minimize the impact of the boundaries. The physical properties that were used in 

the numerical simulations are given in Table 11. 

 

Table 11. Physical properties of fused silica and air used for the validation procedure. 

 
3[ ] kg m  [ ] Pa s  2[ ]D m s  [ ] N m  

Fused silica 2200  51.15 10 a  141.51 10−  0.272 a  

Air 0.185 56.01 10−    

a
Viscosity and surface tension coefficients of the fused silica were adopted from ref. [1]. 

A comparison between the results obtained in the current work and those 

published in ref. [1] is given in Fig. 3.17. The results depicted in Fig. 3.17 do 

indeed show good agreement between the current simulation and the 

measurements and numerical results presented in [1]. Nonetheless, validation of 
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the numerical method is still needed for more complex situations involving 

asymmetric structures, internal dopant flow, diffusion and pulling, as will be 

discussed in subsequent sections.   

 
f = 0.355 

 

f = 0.6 

 

f = 0.92 

FIG. 3.17. Comparison of the simulation results (solid red line) obtained in the current work (left) to the 

results of Pone et al. [1] (right). The cross-sections are at:  

(a) f = 0.355, (b) f = 0.6, and (c) f = 0.92. 
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Chapter 4: Experimental setup 

 The primary purpose of the experiments reported here was to test and 

validate the numerical methodology in complex situations and to study its 

accuracy and limitations. For this purpose, several fused fiber components were 

fabricated and analyzed. To fabricate the components, a commercial scanning 

hydrogen flame glass-processing workstation (Lighted CW-5000) was used. In all 

the test cases except for one (in which a non-circular fiber was tested), two optical 

fibers were stripped, cleaned, and fixed in a holder, ensuring good physical contact 

between them (see Fig. 4.1). The fibers were then slowly pulled, while the 

scanning hydrogen flame provided the energy required to transform the glass into 

an effective viscous fluid. Scanning the flame back and forth along a preset length 

of the contacting fibers at a much higher rate than the pulling rate provided a 

zone of an effective constant temperature [76], quantitative justification for this 

assumption is given in appendix I. The flame was set to scan a total length of 

10mm at a rate of 500 µm/s. The pulling rate was set to 0.75 µm/s. The process 

was terminated after about two hours when the pulled length had reached 10 

mm. The temperature of the glass was approximated to be 1650 . 

 
FIG. 4.1 Illustration of the glass processing workstation. The main components are: 1 - optical fibers, 

 2 - scanning flame, 3 - pulling holders. 

At the end of each fabrication process, the new optic fiber component was 

inserted into a U-shaped glass ferrule. The ferrule was filled with epoxy resin and 

subjected to UV curing to form a rigid material encapsulating the fiber 
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component, which was then placed in a holder positioned in a micrometer screw. 

Next, the end of the ferrule with its epoxy-immobilized fiber component was sliced 

off (using a turning diamond disc), and the cut end was polished (with a polishing 

sheet), as depicted in Fig. 4.2. The polished end was then examined under a 

microscope, and its cross-sectional shape was recorded with a camera. The process 

was repeated a number of times. Combining the photographs of the fused 

component along its longitudinal axis enabled a 3D reconstruction of its shape. 

To minimize the uncertainty as to the location of each cross-sectional 

measurement, slicing, polishing, and recording was performed using the same 

fixture. Nevertheless, there are a number of uncertainties inherent to the 

experimental setup. A full description of the uncertainties and their consequences 

to the experimental results is given in appendix II.  

 
 

(a) The first step of measurements. The coupler 

was sliced and polished at a precise cross-section. 

(b) The second step of measurements. The 

coupler's cross-section was photographed. 

FIG. 4.2. The measurement setup: 1 - fused coupler, 2- U-shaped glass, 3- epoxy resin, 4- holder, 5- 

micrometer screw, 6- edge of the rotating cutting disk, 7- rotating sandpaper, 8- camera. 

To cover the wide spectrum of the parameters, the simulations and 

experimental analyses were performed and compared for four different types of 

components (see Fig. 4.3). The first most basic component (coupler) was prepared 

from two SMF-28 single-mode fibers (125/8.2 µm cladding/core diameters) and 

was used for examining the fully symmetric configuration. The second type was 

composed of an SMF-28 fiber combined with a 125/106 µm diameter 

(cladding/core) fiber. In this case  referred to as the pump-SMF coupler later in 

the thesis  the external interface of the coupler was symmetric, and the core-

refractive index of the fibers was not symmetric. The large core of the 125/106 

μm fiber facilitated the tracking of the core interface. The third type of coupler 

constituted a fully non-symmetric configuration produced from two fibers, one 
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with a 125 μm outer cladding diameter and the other with a 80.3 μm outer 

cladding diameter. The fourth configuration had the most complex geometry- 

that of non-circular fiber tapering. Our working hypothesis for this study was 

that once the developed numerical methodology had been validated for accurate 

prediction of the characteristics typical of the four above configurations, it could 

also be used for the theoretical analysis of optical fibers having a wide variety of 

external shapes (other than those used here) and internal compositions.  

 
FIG. 4.3. Initial configurations of the analyzed cases, where the black lines represent the external 

interface, and the red line shows the shape of the initial core: (a) fully symmetric case, (b) symmetry only 

of the external interface, (c) non-symmetric case, and (d) complex geometry. 
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Chapter 5: Calibration and similarity 

analysis  

 Prior to describing the series of numerical simulations and experiments 

that were conducted, we point out two major factors that can result in significant 

deviations between the numerical and the experimental results. The first factor 

is the strong dependence of the viscosity of fused silica on the temperature [77, 

78]. This is in contrast to the density (~2200 kg/m3) and the surface tension 

coefficient (~0.3 N/m) of fused silica, known to be only slightly dependent on 

temperature variations [77]. To illustrate this factor, we present the time 

evolution of the degree of fusion, f , calculated for several values of the viscosity 

of the fused silica, as shown in Fig. 5.1. The time evolution was calculated for 

viscosity values lying in the range of μ = (5 50 GPa·s), which corresponds to the 

typical range of working temperatures T = (1800- As can 

be seen from Fig. 5.1, the f  values measured at the same time instance can 

deviate by up to five-fold, which stresses the need for careful calibration of the 

viscosity of the fused silica as a function of temperature. The second factor stems 

from a strong dependency of the viscosity of fused silica on the absorption rate of 

hydroxides (OH) formed on the fiber surface during heating by the hydrogen 

flame [79]. This dependency can result in a significant deviation between the 

numerical and experimental results for long-term heating processes. 

 

FIG. 5.1. Time evolution of the degree of fusion for several values of the viscosity. (vs = 0) 
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Since it is difficult to calculate and measure the OH concentration during 

the fabrication process, the time dependence of the fused silica fibers subjected to 

a constant hydrogen flame at a constant temperature was approximated by the 

following relation:  

 
0

( ) ( ) t

s s
t e    −= − + , (5.1) 

where 
0

 , 
s

 , and   are the initial viscosity, the viscosity at the saturated state, 

and the OH absorption rate, respectively [79].  

Significant variation of the viscosity values and the marked impact of this 

variation on the degree of fusion motivated us to perform a similarity analysis 

that would allow us to cancel out the dependence of the degree of fusion on the 

viscosity of the fused silica. The similarity was achieved by representing the 

degree of fusion as a function of the aspect ratio, /H W  of the coupler, as defined 

in Fig. 5.2. As a result, the simulated degree of fusion was correlated with the 

aspect ratio of the coupler, regardless of the viscosity values (see Fig. 5.3). 

 

FIG. 5.2. Geometric dimensions of a typical coupler. 
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FIG.5.3. Evolution of the degree of fusion for several viscosity values as a function of the aspect ratio 

H/W of the coupler (vs=0). 

In addition, to characterize the evolution of viscosity in the current experiments, 

the problem was simulated with several initial and saturated viscosities and 

different OH absorption rates. It was found that the values of μ
0
 = 50 GPa·s, μs 

= 5 GPa·s, and λ = 6·10-4 s-1 provide the best correlation with the experimental 

results. 

In contrast to the degree of fusion determined by  Eq. (1.2), the pulling 

rate was not equal to zero in the current experiments and simulations, and 

therefore 
0

W  and W

 were not constant during the process and had to be 

evaluated at each time instance for each cross-section. The relationship between 

W  and the cross-sectional area is given by 
0

)([ ( )), ] (tW t W A t


  and hence the 

modified fusion degree (MFD) is expressed by: 

 0

0

( ) ( )

( ) ( )m

W t W t
f

W t W t
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−
=

−
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Where 0

0

0

)
(0

( ) (
)

A t
A

W
W

t =  and 
2

( )( )W t A t



= . In the current experiments, 

the area ( )A t  and the width ( )W t  were measured to evaluate the MFD for each 

cross-section, and the height ( )H t  was measured to calculate the aspect ratio of 

the coupler ( )( ) / ( )H t W t .  
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Chapter 6: Results  

 In this chapter, the numerical simulation and experimental results are 

presented and compared. The experimental results were obtained by the 

methodology described in chapter 4. The numerical simulations were performed 

for initial structures, as shown in Fig. 4.3, while the dynamic properties (density, 

viscosity, and surface tension coefficient) were taken from the literature [77, 78] 

and have been further fine-tuned by adapting them to the currently acquired 

experimental results, as described in the previous chapter. For the sake of 

completeness, we will also introduce the dynamic properties here: the density and 

the surface tension coefficient of silica are approximately equal to  

~2200 3/kg m  and ~0.3 /N m  [77, 78], respectively. The viscosity of the silica in 

the initial and the saturated state for different OH absorption rates were 

evaluated to be 
0

50GPas = , 5
s

GPas = , and 4 16 10 s − −=   [see Eq.(5.1)]. 

Table 12 - The values of dynamic properties and experimental operating conditions.  

X
  

0
  

S
      D  l  s

v  t  

3/kg m  GPas  GPas  -1s  /N m  /m s  mm  /m s  s  

2200 50 5 6E-4 0.3 2.72E-2 10 0.75 10 

 

All the numerical simulations were performed for a computational domain 

of 600 400m m  , while the grid resolution was 675 450 . The boundary 

conditions utilized in the numerical simulations were the Dirichlet boundary 

condition for pressure and a zero gradient value for all the velocity components 

at all four edges of the computational domain. The initial values of the 

concentration in the numerical simulations were set to unity, representing the 

normalized value related to the initial concentration. The experimental analysis 

and the simulation results are presented and discussed in the following sections. 

A number of representative simulations were also performed on a 

1350×900 grid in the framework of a grid independence study. It was found that 

the discrepancy between the degrees of fusion obtained on the two grids did not 

exceed 3%, thus allowing us to perform all the simulations on the 675×450 grid. 
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Remarkably, the maximal discrepancy between the results obtained on the two 

grids was observed at the beginning of the numerical simulations, as a result of 

exceptionally high values of the interface curvature at the point of contact 

between the two fibers. The dimensional computational time step used in all the 

simulations was equal to 10 s, which is sufficient when taking into account that 

the duration of a typical production process in the conducted experiments was 

more than two hours. For shorter durations of the production process, smaller 

values of the computational time step should be used. 

The initial values of the concentration in the numerical simulations were 

set to unity, representing the normalized value related to the initial concentration. 

The experimental analysis, as well as simulation results, are presented and 

discussed in the next section. 

6.1. The numerical simulations and the experimental results 

6.1.1. Symmetric two-SMF coupler 

A qualitative comparison between the experimentally and numerically 

obtained external shapes of the coupler and the spatio-temporal distribution of 

the dopant within the - determining the refractive index profile 

(under the assumption of linear dependence of the dopant concentration on the 

refractive index) is given in Fig. 6.1. Each row is related to a specific cross-section 

of the coupler, corresponding to a given time instance. The first and the third 

columns represent the experimental and the numerical results, respectively, while 

the second column represents a superposition of the two. The fourth column is a 

close-up of the core area of the left fiber. 

As shown in Fig. 6.1, good correlation was found between the 

experimentally and numerically obtained external boundaries of the coupler for 

the entire range of time instances. Additionally, an acceptable qualitative 

agreement between the distribution of the dopants in the core of each fiber 

allowed reliable prediction of their spatio-temporal concentration distribution and 

the refractive index profile. Note that the glare areas clearly visible on the 
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photographs acquired in the course of experiments were generated by an external 

light source. As such, the areas constitute only qualitative characteristics of the 

spatial distribution of the dopants. Nonetheless, the numerical results predict a 

significant (between 4- and 10-fold) decay of the peak concentration values with 

time (see the fourth column in Fig. 6.1).  

A quantitative comparison between the numerically and experimentally 

obtained evolution areas and the MFD [see Eq.(5.2)]  is given in Fig. 6.2. It can 

be seen from the figure that the numerically obtained temporal evolutions of the 

area and the MFD are cross-correlated with the corresponding experimentally 

measured values for the entire range of time instances, which successfully 

validates the developed quasi-3D model. We note in passing that at the beginning 

of the numerical simulations values of the MFD are very small 3(0(10 ))− , but still 

negative values of the MFD were obtained. This unphysical result may be 

attributed to the numerical error resulting from exceptionally high values of the 

interface curvature and could be corrected by applying simple filtering, replacing 

the negative unphysical values by zero.  

We next present the numerically and experimentally obtained results 

correlating the MFD with the height-to-width ratio of the coupler, as shown in 

Fig. 6.3. Good agreement between the numerical and experimental results was 

obtained. Note that the results shown in Fig. 6.3 are invariant to the viscosity 

values. The presented MFD height-width ratio relationship directly affects the 

overall fusion time and indirectly affects the distribution of the core dopants. The 

graph in Fig. 6.3 may assist coupler design by serving as a preliminary tool for 

estimating the MFD from the external dimensions of the fibers  
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FIG. 6.1. Experimentally and numerically obtained cross-sections of a fully symmetric SMF fiber coupler 

at different time instances: (a) 30 s, (b) 1650 s, (c) 3600 s, and (d) 5300 s. Columns 1 and 3 show the 

experimental and simulation results, respectively; column 2 shows a superposition of columns 1 and 3, and 

column 4 shows close-ups of the numerically predicted core area of the left fiber. 

 

FIG. 6.2. Comparison between the numerically and experimentally obtained temporal evolutions of the 

cross-sectional area and the MFD typical of the symmetric coupler. Line  Simulation results, Points  

Experimental results. (a) The decrease in area with time. (b) Temporal evolution of the MFD. 
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FIG. 6.3. Comparison between the numerically and experimentally obtained temporal evolutions of the 

MFD as a function of the coupler dimensions. Line  Simulation results, Points  Experimental results. 

6.1.2. Pump-SMF coupler 

The pump-SMF coupler configuration is characterized by a symmetric 

external shape, while the core of one of the fibers is much bigger than the core of 

its counterpart. This setup allows for more efficient tracking of the experimentally 

acquired data regarding the spatio-temporal distribution of the dopants in the 

cores. A comparison between the simulation and the experimental results acquired 

at four different time instances revealed an acceptable agreement between the 

numerically and experimentally obtained characteristics of the coupler for the 

entire range of time instances (Fig. 6.4). In contrast to the simple configuration, 

the core of the left fiber intersects the vertical centerline crossing the domain at 

0x =  in the course of the fusion process (see Fig. 6.4 (d)). Note that from a 

numerical point of view, the observed spatial expansion of the core of the left 

fiber was attributed to the molecular diffusion resulting from one-way coupling 

between the NS [Eq.(2.5)] and convection-diffusion [Eq. (2.6)] equations. The 

assumption of one-way coupling adopted in the current study was validated by 

the good qualitative agreement obtained between the experimentally and 

numerically obtained spatio-temporal distributions of the dopants in the coupler 

core.  

The obtained results also successfully verified the correctness of the 

implementation of the boundary conditions applied to the coupler boundary, that 

aim to provide zero concentration flux outside of the dopants out of the coupler. 

Figure 6.5 presents a quantitative comparison between the numerically and 

experimentally obtained temporal evolutions of the coupler area and the MFD. It 
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can be seen from Fig. 6.5(a) that for most of the time instances the experimentally 

measured area is slightly larger than that predicted numerically. A possible reason 

for this discrepancy could be that the fibers were not fixed tight enough in their 

holders to avoid slight sliding at the beginning of the fabrication process prior to 

tapering. Note that, despite the discrepancy in the cross-sectional areas, the 

correlation between the coupler aspect ratio /H W  and the MFD was preserved, 

as shown in Fig. 6.6. For this reason, the experimentally acquired photographs 

presented in Figs. 6.4(b) and 6.4(c) were downscaled by up to 5%.  

 

FIG. 6.4. Experimentally and numerically obtained cross-sections of the pump (125/106 μm) and SMF 

(125/8 μm) fiber couplers at different time instances: (a) 210 s, (b) 2100 s, (c) 4400 s, and (d) 7500 s. 

Columns 1 and 3 show the experimental and simulation results, respectively; column 2 shows a 

superposition of columns 1 and 3, and column 4 shows close-ups of the numerically predicted core area of 

the left fiber. 
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FIG. 6.5. Comparison between the numerically and the experimentally obtained temporal evolutions of the 

cross-sectional area and the MFD typical of the second test case.  Line  Simulation results, Points  

Experimental results. (a) The decrease in area with time. (b) Temporal evolution of the MFD. 

 

FIG. 6.6. Comparison between the numerically and experimentally obtained temporal evolutions of the 

MFD as a function of the coupler dimensions for the second test case. Line  Simulation results, Points  

Experimental results. 

6.1.3. Non-Symmetric coupler 

The non-symmetric coupler was prepared by fusing fibers with outer 

cladding diameters of 125 μm and 80 μm. Comparisons of the experimental and 

numerical results demonstrated good qualitative agreement for both the outer 

shape and the spatial distribution of the dopants (see Fig. 6.7) and the temporal 

evolution of the cross-sectional areas (see Fig. 6.8a). Agreement between the 

experimentally and numerically obtained time evolutions of the MFD were not 

as good as that for the areas (see Fig. 6.8a vs. 6.8b): the discrepancies between 

the values were particularly marked at the beginning and end of the fusion 
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process, reaching 70% and 10%, respectively. This observation may indicate an 

overestimation of the viscosity values utilized in the numerical simulations 

compared to the actual viscosities in the experiments, which resulted in a 

smoother evolution of the MFD in the numerical simulations. Remarkably, the 

above notwithstanding, an acceptable agreement was obtained between 

experimentally and numerically obtained values of the MFD as a function of the 

coupler cross-section size (see Fig. 6.9). These results indicate that the temporal 

evolution of the cross-sectional area is primarily determined by the initial 

geometry of the fibers, while the values of the viscosity and the pulling rate affect 

the duration of the overall process. 

 

FIG. 6.7. Experimentally and numerically obtained cross-sections of the non-symmetric coupler at different 

time instances: (a) 30 s, (b) 1350 s, (c) 4300 s, and (d) 7000 s. Columns 1 and 3 show the experimental 

and simulation results, respectively; column 2 shows a superposition of columns 1 and 3, and column 4 

shows close-ups of the numerically predicted core area of the left fiber. 
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FIG. 6.8. Comparison between the numerically and experimentally obtained temporal evolutions of the 

cross-sectional area and the MFD typical of the non-symmetric coupler.  Line  Simulation results, Points 

 Experimental results. (a) The decrease in area with time. (b) Temporal evolution of the MFD. 

 

FIG. 6.9. Comparison between the numerically and experimentally obtained temporal evolutions of the 

MFD as a function of the coupler dimensions for the non-symmetric coupler. Line  Simulation results, 

Points  Experimental results. 

6.1.4. Fiber with a non-circular cross section 

The custom-made fiber investigated in this section was characterized by a 

non-circular cross-section along its entire longitudinal axis (see Fig. 6.10a). In 

contrast to the previous configurations, the viscosity values at the initial and 

saturated states were equal to 
0

20GPas = , 2
s

GPas = , respectively, while the 

value of the OH absorption rate was equal to 4 16 10 s − −=   (the same as that for 

the previous configurations).  Generally speaking, this kind of fiber fulfills its 

optical purpose in its present form and should not be tapered. Nonetheless, the 

current test case was processed for the purpose of validation of the developed 

numerical tool. A comparison between the numerically and experimentally 
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obtained results revealed good qualitative agreement between the temporal 

evolutions of the outer shapes of the fiber for all the time instances (see Fig. 6.10). 

Good agreement for all the time instances was also apparent in a comparison 

between the numerical and experimental spatio-temporal evolutions of the 

concentrations of the dopants. Fig. 6.11 shows good correlation between the 

numerical and experimental results of the cross-sectional area and the MFD time 

evolutions. Moreover, in this configuration, the time required to obtain full fusion   

( 1f
m

= ) is much shorter than that for the other test cases, where the viscosity 

values were higher. Fig. 6.12 also shows the excellent compatibility between the 

experimentally and numerically obtained values for the temporal evolution of the 

MFD as a function of the coupler dimensions.  

 

FIG. 6.10. Experimentally and numerically obtained cross-sections of the non-circular tapered fiber 

coupler at different time instances: (a) 10 s, (b) 1320 s, (c) 2500 s, and (d) 5000 s. Columns 1 and 3 show 

the experimental and simulation results, respectively; column 2 shows a superposition of columns 1 and 3, 

and column 4 shows close-ups of the numerically predicted core area of the left fiber. 
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FIG. 6.11. Comparison between the numerically and experimentally obtained temporal evolutions of the 

cross-sectional area and the MFD typical of a fiber with a non-circular cross section during tapering.  

Line  Simulation results, Points  Experimental results. (a) The decrease in area with time. (b) 

Temporal evolution of the MFD. 

 

FIG. 6.12. Comparison between the numerically and experimentally obtained temporal evolutions of the 

MFD as a function of the coupler dimensions for a fiber with a non-circular cross-section. Line  

Simulation results, Points  Experimental results. 

Fig. 6.13 shows the full 3D shapes of the four types of optical components 

by superpositioning several cross-sections simulated at a number of consecutive 

time instances. This kind of data may serve as input for optical numerical 

simulation packages, such as Opticwave, Rsoft, and Comsol, which can predict 

the optical performance of the component (such simulations are beyond the scope 

of this study). Note that the smaller the initial cross-sectional area of the core, 

the more rapid is the decay of the corresponding concentration peak values of the 

dopants. 
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FIG. 6.13. Simulated 3D structure of: (a) a symmetric coupler, (b) a coupler composed of pump (125/106 

μm) and SMF (125/8 μm) fibers, (c) a non-symmetric coupler, and (d) a tapered non-circular fiber. 

Each cross-section was obtained at different time instances. 

 

6.2.  Characterization of the non-symmetric couplers 

In the course of the simulations, it was found that the viscosity values 

have a considerable effect on the overall time required to achieve the complete 

fusion between the fibers and to provide diffusion of the dopants. It was also 

found that the values of the aspect ratio H/W and the MFD are almost not 

affected by variations in the viscosity. For this reason, we simulated several 

configurations of non-symmetric couplers characterized by various H/W aspect 

ratios.  Fig. 6.14 presents seven curves, each related to a different initial value of 

H/W, starting from the symmetric case characterized by a value of H/W=0.5 and 

ending with the strongly non-symmetric coupler characterized by a value of 

H/W=0.8. As mentioned above, the mapping so obtained can be used as a 

preliminary tool used for the design of couplers, as it facilitates the evaluation of 

the MFD by simple measurements. As can be seen from Fig. 6.14, for all the 

cases, the MFD started from zero and increased up to unity. It may also be seen 

that a higher initial value of H/W resulted in faster growth of the MFD, 
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apparently as a consequence of the higher surface tension forces prevailing 

throughout the fusion process, in turn, as a result of higher curvature values 

typical of fibers with smaller cross-sections.   

 

FIG. 6.14. Simulation results of the MFD related to the height-width (H/W) ratio of the coupler for 

several initial ratios. 

6.3. Advanced modeling of multi-fiber combiners 

 

The developed numerical tool can also successfully handle the time 

evolution of much more complex multi-fiber configurations, incorporating many 

contact points for each fiber and also including the non-negligible amount of air 

trapped between the boundaries of adjacent fibers. A representative example of 

such a simulation is demonstrated in Fig. 6.15, for an optical combiner composed 

of seven fibers arranged as six fibers circling a central fiber; each fiber touches its 

neighbor at a single contact point, such that the central fiber has six contact 

points with all the surrounding fibers, and each external fiber has three contact 

points with its immediate neighbors. The physical properties of the fiber material 

are the same as those utilized for the first three configurations (see Chapter 5). 

In the course of the numerical simulation, the area of air trapped between the 

boundaries of the neighboring fibers decreases until the total termination of the 

air regions. The process is simulated explicitly by controlling the air pull-out rate 

implemented as a distributed sink (Eq. (2.3)) for each air-trapped region. The 

time evolution of the air-trapped regions and the external interface of the 



 

Results  62 

combiner is governed by the solution of the continuity and NS equations (Eqs. 

2.4, 2.5). 

 

FIG. 6.15. Simulation results for a combiner composed of 7 fibers at times: (a)-Initial state, (b) 

900 s, (c) 2500 s, and (d) 5000 s. 

It can be seen that in the first stage of the production process, the 

peripheral fibers evolve non-axisymmetrically (although the periodicity is 

preserved) due to the initially non-axisymmetric geometry of the air-fiber 

interface and the air regions trapped between the peripheral and the central fibers. 

As the tapering progresses, the regions of trapped air are eliminated, and the 

external shape of the component is smoothed out by the surface tension force, 

causing the shape of the component to eventually approach a circular 

configuration. Similar component shapes were obtained experimentally by [80] 
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Chapter 7: Summary and conclusions 

  

In the framework of the present study, a novel generic numerical 

methodology was developed for the prediction of the structural features of fiber 

optical components fabricated by the heat-and-pull  technique. It was also 

shown that this methodology can serve to solve a wide range of physical problems 

involving two-phase flow. The numerical model was based on extending the 

Immersed Boundary method and the FT approach, as well as on the distributed 

Lagrange multiplier approach for the configuration of the relevant two-phase 

immiscible flows. The capabilities of the developed method were demonstrated by 

utilizing a full pressure velocity coupled direct solver (FPCD) [50] as a 

computational platform. The idea underlying the developed approach was that 

the initial system of fully pressure-velocity coupled continuity and NS equations 

is extended by including additional relationships implicitly linking the Euler flow 

fields and the distributed Lagrange multipliers. This linkage enforces kinematic 

constraints of the impermeability of both fluids on the interface separating the 

two phases. The fully coupled formulation enables controlling mass conservation 

(with source) of both phases without the need for any additional correction 

procedure, which is of significant computational advantage.  

The developed method was extensively verified for three typical two-phase 

flow benchmark cases. In the context of optic fiber components, the quasi-3D 

approximation was successfully validated by comparing numerical predictions 

with four different and real optical couplers, representing a wide spectrum of 

diversity. It was thus demonstrated that the tool could be applied to achieve a 

reliable spatio-temporal prediction both of the external shape of the fiber 

components and of the dopants' concentration distribution inside them.  

A comparison of the numerical and experimental results also revealed that 

the viscosity of the fused silica dropped during the fabrication process, despite 

insignificant temperature variations. This observation may be attributed to the 

absorption of OH (hydroxyl) in fused silica when the last is exposed to a hydrogen 
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flame. It is thus essential that the change in the viscosity of the fused silica due 

to OH absorption will be considered when a hydrogen flame is used to fabricate 

fused optical components.  

The numerical characterization of the structural evolution of couplers was 

also performed for several non-symmetrical cases, showing that it is possible to 

evaluate the degree of fusion of a given optical coupler by only measuring its 

height and width. Finally, a numerical simulation predicting the spatio-temporal 

evolution of a fused seven-fiber-combiner was presented. This simulation showed 

that the numerical tool can handle complex geometries and may be used to 

develop a wide range of fused optic fiber components. 
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Appendix I 
 

Heat transfer problems that involve surface convection effects are governed 

by the Biot number, which provides a measure of the temperature drop in the 

solid relative to the temperature difference between the solid surface and the fluid. 

The Biot number may be interpreted as a ratio of thermal resistances: 

 ,
fs

hL
Bi

k
=  (7.1) 

where , ,
fs

k h  and L  are the thermal conductivity, convection heat transfer 

coefficient, and characteristic length, respectively. In particular, if 1Bi , the 

assumption of a uniform temperature distribution within the solid is reasonable 

[81]. For the case of optical fibers (fused silica), the fibers are the cylinders 

interacting with the surrounding air. The characteristic length of a typical fiber 

is 
4

fiber

s

V D
L

A
= = , while the convection coefficient h  for the natural convection 

heat transfer  between the horizontal cylinder and the surrounding air can be 

assessed by [81]: 
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Where the Prandtl (Pr ) and Rayleigh ( D
Ra ) numbers are: 

 ,
C

Pr
k


=  (7.3) 

where  - fluid viscosity, C - fluid specific heat, and k - fluid thermal 

conductivity. 
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D

Ra Gr Pr=   (7.4) 

 
3 2 2/ ,

D
Gr D g T  =    (7.5) 

where  - fluid density,  g - gravitational acceleration, and   - fluid thermal 

expansion coefficient. Substitution of characteristic length 31.25D m= , 

29.81 /g m s= , and 1900T K =  with the values of dynamic properties of air 

given in Table 13 in Eq. (7.2) yields 
2

357
W

h
m K

=


. 

Table 13- The values of dynamic properties of air.    

  C  k      Pr  Gr  Ra  

/kg ms  /J kgK  /W mK  3/kg m  1 / K     

58E-6 1.25E3 106E-3 0.1885 3400E-6 0.68 2.07E-5 1.41E-5 

 

The thermal conductivity of fused silica is  1.4
fs

W
k

m K
=


.  Substitution into 

Eq. (7.1) yields 
358 31.25 6

0.008
1.4

E
Bi

 −
=  , which justifies the assumption of 

uniform temperature of the fibers during the process. 

Moreover, comparison of the heat transfer by conductiom, by convection and by 

radiation indicate that heat flux by convection is 2" 6.6 5 /q h T E W m=  =  while 

the heat flux by radiation is 4 4 2" ( ) 7 5 /
a b

q T T E W m= − = . Thus, both heat 

transfer mechanisms are of the same order of magnitude and can be safely 

neglected compared to the conduction heat transfer. 
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Appendix II 
 

The error bars shown in the graphs in chapter 6 reflect uncertainties of 

the experimental measurements. The horizontal error bars attached to the fusion 

time measurements express uncertainty of the specific location of the cross-section 

along the coupler axis. We estimate the uncertainty of the slicer (the micrometer 

screw with the polish paper) to be bounded by 100 m =  . This value is related 

to the corresponding time interval estimated by / 2 66
s

t v s =  =  . 

The vertical error bars correspond to uncertainties inherent to 

measurements of the cross-section characteristic length and area. Prior to 

recording the cross-section of each coupler, a fiber picture with an a priori known 

reference diameter was taken, in order to calculate the number of pixels per 100 

micrometers. Thus, the estimated uncertainty of the calculated ratio is 3 ,Px =   

due to the boundary thickness of the fiber. The measurements of H and W (see 

Eq. (5.2)) were sampled with the same error. The error bars in the graphs in 

chapter 6 correspond to maximum and minimum values yielded by combinations 

of these values.  

 



 

 

 

 תקציר

. אופטיותמצמדים ורכיבים מבוססי סיבים אופטיים נמצאים בשימוש נרחב במערכות 

או לאגד ולפצל אור ממספר סיבים   בין שני סיבים )מצמד דו סיבי(,אור  אלו מאפשרים לצמד  רכיבים  

המשותף לכל רכיבים אלו הוא תהליך הייצור הכולל חימום, . )מחבר סיבי( לתוך סיב אחד מרכזי

תפקודו  )הצמדה( של הסיבים המשיקים זה לזה עד לכדי קבלת הרכיב האופטי. משיכה והיתוך

האופטי של המצמד נקבע על ידי המבנה הגיאומטרי החיצוני ופרופיל מקדם השבירה הפנימי 

. קיימות שיטות חישוביות ותוכנות רבות בתוך הסיביםריכוז מאלחים פילוג המוגדר על ידי 

צורתו החיצונית ופרופיל מקדם אופטית של המצמד בהינתן המאפשרות לחזות את ההתנהגות ה

, הכלים הקיימים אינם יחד עם זאת  .יבהציעו מודלים לחיזוי מבנה הסמחקרים קודמים   השבירה.

מכל סוג לא תהיה ות לחיזוי ההתנהגות האופטית ולכך תוצאות סימולצימספקים דיוק מספק, 

ציה מתאימה, פיתוחם של רכיבים ומצמדים בהיעדר יכולת סימול מדויקת ללא הקלט הנכון.

  אופטיים מצריכים נסיונות חוזרים בשיטת ניסוי וטעיה, שהופכים את תהליך הפיתוח לארוך ויקר.

התפתחות ושינוי ישובים נומריים לחיזוי מטרת מחקר זה היא לתת מענה גנרי, מבוסס ח

 ה. בנוסף, הכלי הנומריכל תצורמספר רב של סיבים וב יםוללהכהמבנה של רכיבי סיבים אופטיים 

ריכוזי  המגדירים את(convection-diffusion) דיפוזיה -ההסעההיכלול מרכיב לפתרון משוואת 

הנומרי פותח כך שיתאפשר לבצע בו  . בנוסף, הפותרןבתהליך הייצור בתוך הסיביםהמאלחים 

 שימוש אפליקטיבי לפתרון בעיות שונות המשלבות זרימה דו פאזית מתחומים פיזיקליים שונים.

 והכלי לביצוע הסימולציות, נומרית התשתית הפותחה  -אבשני שלבים: בוצע המחקר 

ורם. ובוצעה השוואה בוצעו ניסויים ואפיון ההתפתחות הדינמית של רכיבים אופטיים במהלך ייצ  -ב

 בין תוצאות הניסויים לתוצאות הסימולציות הנומריות לחיזוי מבנה הרכיבים.

בשילוב עם  Immersed Boundaryחדשנית המבוססת על שיטת תחילה, פותחה גישה 

Front Tracking method גישה זו מאפשרת לפתור את משוואות שימור מסה ושימור תנע עבור .

באופן מצומד כך שהלחץ ומתח הפנים בין הפאזות משמשים ככופלי  י דחיסהזרימה דו פאזית בלת

לאגרנג'. אחד היתרונות הבולטים של שימוש זה הוא קיום משוואת שימור מסה )עם או ללא מקור( 

implicit .ומניעת זליגה של חומר מהגוף הנע , 

ן מעמיק על ידי הגישה הנומרית שפותחה יושמה לכדי פותרן דו מימדי ממשי ונבחנה באופ

השוואה לארבעה בעיות ידועות הנבדלות זו מזו בכח המניע של התנועה. בעיות הבוחן שנבחנו כללו 

גוף העולה ומשנה את צורתו כתוצאה מכוחות ציפה, גוף הנמצא תחת השפעת גזירה, גוף בצורת 



 

 

 

ות שכללו פיצול רוזטה שמשנה את צורתו לעיגול כתוצאה מכוחות מתח הפנים. בנוסף, נבחנו גם בעי

של הגוף בעקבות יחס צפיפויות ושדה מהירויות גבוה. פתרונות והשוואת כל בעיות הבוחן לתוצאות 

חלק זה של המחקר  הידועות בספרות העידו על התאמה טובה ופתרון נכון ומדויק של הבעיה.

 . בכתב העת  2019פורסם ב 

בוצעו ניסויים לייצור ומיפוי מצמדים ובו  שני  השלב  היסודות הנומריים, החל הלאחר הנחת  

השוואה האופטיים, ביצוע סימולציות ובחינת תוצאות הסימולציה אל מול תוצאות הניסויים. 

. SMFבוצעה עבור ארבעה מצמדים מסוגים שונים: הראשון סימטרי לחלוטין ומורכב משני סיבי 

איזור בו בעלי קוטר חיצוני זהה, אך לאחד הסיבים קוטר הליבה גדול )ההשני מורכב משני סיבים 

קוטר חיצוני שני הסיבים באינו סימטרי כלל, כלומר מצמד השלישי הריכוז המאלחים גבוהה(. 

ת היא בעלת המבנה המסובך ביותר, וכללה רביעיהקונפיגורציה ה .שונהופרופיל מקדם שבירה 

, בהשוואה דיקוק לסיב בעל חתך לא אופייני )לא עגול(. עבור כל המקרים התקבלו התאמות טובות

, שדה המהירויות . בכל המקריםהנומרית בין תוצאות הניסוי לסימולציה איכותית וכמותית

, (continuity and Navier-Stokes)ידי פתרון משוואות הרציפות ומשוואות המומנטום  -התקבל על

, בוצעה התייחסות בנוסף דיפוזיה.-והשינוי בריכוז המאלחים התקבל על ידי פתרון משוואה הסעה

המחקר הניב  שלחלק זה    .במהלך ייצור המצמדים  OHמבליעת  כתוצאה  לירידה בצמיגות הסיבים  

 . Physical Review Eלכתב העת  התקבלמאמר נוסף, ש

נוספות  לניסויים, בוצעו סימולציותין תוצאות הסימולציות הנומריות בפרט להשוואה 

על מנת לאפיין את הקשר בין יחס ביחסים שונים  ותלא סימטריבקונפיגורציות לאפיון מצמדים 

 רוחב של המצמד, לבין מידת ההיתוך של המצמד.-אורך

הכוללים מספר בנוסף, הכלי הנומרי מסוגל לתת המענה לסימולציות של מבנים מורכבים 

סימולציה נומרית רב של סיבים ונקודות מגע בניהם, הכוללים אויר כלוא בין הסיבים. דוגמה ל

בניהם,   נקודות מגע לכל סיב ואזורים בהם נכלא אויר  מספרעם      למבנה מורכב הכולל שבעה סיבים

 מוצגת בעבודה.

 מילות מפתח: 

פאזית, שיטת 'גוף טבול' -ייצור רכיבי סיבים אופטיים, איחוי סיבים, סימולציות נומריות, זרימה דו

(Immersed Boundary method). 
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