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An extended formulation of the immersed boundary method, which facilitates simulation 
of incompressible isothermal and natural convection flows around immersed bodies and 
which may be applied for linear stability analysis of the flows, is presented. The Lagrangian 
forces and heat sources are distributed on the fluid–structure interface. The method treats 
pressure, the Lagrangian forces, and heat sources as distributed Lagrange multipliers, 
thereby implicitly providing the kinematic constraints of no-slip and the corresponding 
thermal boundary conditions for immersed surfaces. Extensive verification of the developed 
method for both isothermal and natural convection 2D flows is provided. Strategies for 
adapting the developed approach to realistic 3D configurations are discussed.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Since the immersed boundary (IB) method was first introduced by Peskin [1], the IB method and its modifications have 
become very popular numerical tools for describing the flow around moving or deformable bodies with complex surface 
geometry [2,3]. An arbitrary immersed object, whose geometry does not, in general, have to conform to an underlying 
spatial grid, is typically determined by a set of Lagrangian points. At the Lagrangian points, appropriate volumetric (or 
surface) forces are applied to enforce no-slip velocity boundary conditions on the body surface. These forces appear as 
additional unknown variables, whose values – along with those for the pressure and velocity fields – are obtained by 
solving the Navier Stokes (NS) equations. Since the location of the Lagrangian boundary points does not necessarily coincide 
with the underlying spatial discretization, interpolation and regularization operators must be defined to convey information 
to and from the body surface.

An accurate calculation of the Lagrangian forces, precisely enforcing the no-slip constraint on the surface of the immersed 
body, is the key issue in any IB formulation. Lagrangian forces acting on rigid bodies (as well as on bodies with a prescribed 
surface motion) can be treated explicitly or implicitly. Historically, explicit treatment of Lagrangian forces has received the 
most attention, giving rise to the direct forcing approach, introduced by Mohd-Yusof [4] and coauthors [5], and to the 
immersed interface method (IIM), introduced by Lee and LeVeque [6] and revisited by Linnick and Fasel [7]. The direct 
forcing approach has recently been extended to thermal flow problems, see e.g. [8–11], by adding an energy equation along 
with the appropriate volumetric heat sources at the Lagrangian points. The direct forcing approach is not a standalone 
solver; rather, it may be viewed as a feature that can be easily plugged into an existing time marching solver, typically 
developed for the solution of NS equations on structured grids in rectangular domains. The procedure does not require 
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any significant modifications to the existing time marching solver, which explains why the direct forcing approach is so 
popular. However, the direct forcing approach has a number of drawbacks. First, the no-slip condition is explicitly enforced 
on the intermediate non-solenoidal velocity field, whereas the divergence-free velocity field is calculated afterwards, after a 
projection–correction step. Second, it should be stressed that even if the NS equations are exactly solved by the projection 
method, resulting in a solenoidal velocity field on the Eulerian grid, the velocity interpolated to the Lagrangian points is 
not necessarily divergence free, which may result in a local mass leakage through the boundaries of the immersed body. 
Third, a pointwise local calculation of the Lagrangian forces and heat sources does not take into account their mutual 
interaction, which contradicts the elliptic character of the NS equations. A number of techniques have been developed in 
the past decade to improve the accuracy of the direct forcing approach. Worth mentioning here are the works of Ren et al. 
[9,10], who proposed an implicit evaluation of all the Lagrangian forces and heat sources by assembling them into a single 
system of equations. Another approach is due to Kempe et al. [12,13], who introduced additional iterations to enhance 
Euler–Lagrange coupling, thereby providing a substantially more accurate imposition of the boundary conditions on the 
immersed body surface.

A coupled scheme in which the momentum equations are implicitly coupled with the Lagrangian forces and heat sources 
and simultaneously solved as a whole system offers an alternative to the direct forcing approach. The closure of this new 
system is achieved by adding equations interpolating the Eulerian velocity and the temperature fields on the surface of the 
immersed body to enforce the prescribed boundary conditions. In this setup, the Lagrangian forces and heat sources dis-
tributed on the fluid–structure interface can be seen as distributed Lagrange multipliers, enforcing velocity and temperature 
constraints on the surface of the immersed body similarly to the pressure comprising distributed Lagrange multiplier that 
acts to enforce the solenoidal constraint on the velocity field. The power of the coupled Lagrange multiplier approach is 
that it can be straightforwardly adapted to various numerical methods and applications in fluid mechanics, providing accu-
rate and physically substantiated results. Chronologically, the idea was first expressed in the distributed Lagrange multiplier 
method (DLM) of Glowinski et al. [14], who used a variational principle framework for discretization of the NS equations 
and applied it for the simulation of 2D flow around moving disc [14]. More recently, the method was successfully extended 
to the simulation of particulate flows [15–17] and to the simulation of fluid/flexible-body interactions [18]. An additional 
impact on the active development of the coupled Lagrange multiplier approach was due to the work of Taira and Colonius 
[19], who combined the coupled IB method with a projection approach to satisfy the divergence-free and no-slip kinematic 
constraints. That study was further successfully implemented for the investigation of steady blowing into separated flows 
behind low-aspect-ratio rectangular wings [20]; for prediction of the natural convection heat transfer and buoyancy of a 
hot air balloon [21]; for the simulation of rigid-particle-laden flows [22]; for investigation of the forces and unsteady flow 
structures associated with harmonic oscillations of an airfoil [23]; and recently for simulating the dynamic interactions 
between incompressible viscous flows and rigid-body systems [24]. The latest theoretical developments of the coupled La-
grange multiplier approach can be found in two recent studies: Kallemov et al. [25] developed a novel (IB) formulation for 
modeling flows around fixed or moving rigid bodies suitable for a broad range of Reynolds numbers, including steady Stokes 
flow, and Stein et al. [26] established immersed boundary smooth extension (IBSE) method, which demonstrates fourth- and 
third-order pointwise convergence for Dirichlet and Neumann problems, respectively.

The present paper reports on our ongoing effort aimed at extension of the coupled Lagrange multiplier approach to prob-
lems involving buoyancy-driven flows, steady-state non-Stokes flows and linear stability analysis of the flows in the presence 
of immersed bodies of arbitrary shape. To demonstrate the new capabilities of the coupled Lagrange multiplier approach, we 
utilize the previously developed fully pressure–velocity coupled direct solver (FPCD) [27] as a computational platform. The 
idea is similar to that established by Taira and Colonius [19], the only differences being that the pressure–velocity coupling 
is implemented by LU-decomposition of the full Stokes operator instead of by the projection approach. This allows us to 
formulate a full Jacobian operator to compute the steady-state solution and then to conduct a linear stability analysis by a 
shift-invert Arnoldi iteration. To the best of our knowledge, to date the only available approach embedding IB functionality 
into a linear stability analysis is that due to Giannetti and Luchini [28], who utilized an adjoint NS operator (in addition to 
the direct one) to couple between the immersed body and the surrounding isothermal flow. The present approach does not 
involve an adjoint NS operator, which is an advantage for computational efficiency.

The paper is organized as follows. In section 2, the numerical formulation of the developed methodology is presented. 
The section includes an introductory description of the previously developed FPCD solver (section 2.1), the concepts of IB 
formalism, based on the Lagrange multipliers approach (section 2.2), a detailed description of the time marching solver 
developed in this work (section 2.3), the steady-state solver (section 2.4) and the linear stability solver (section 2.5). An 
extended discussion of the pros and cons of the presented approach, including the general strategies for the further en-
hancement of the established methodology, is presented in section 2.6. Section 3 presents a detailed verification of all the 
developed solvers for incident and natural convection incompressible 2D flows. The final section presents a summary and 
the main conclusions of the study.

2. The numerical formulation

The developed numerical methodology, based on the implicit formulation of the IB method and a fully pressure–velocity 
coupled approach, incorporates three solvers: a time marching solver for the time integration of the NS equations; a steady-
state solver based on the full Newton iteration; and a linear stability solver for calculating the necessary part of the whole 
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spectrum of the flow by utilizing the Arnoldi iteration method. All three solvers are based on the previously developed fully 
pressure–velocity coupled direct (FPCD) solver [29,27] briefly described here for the sake of completeness.

2.1. The FPCD solver

We consider the 2D NS equations for isothermal incompressible flow:

∇ · u = 0, (1a)

∂u

∂t
+ (u·∇)u = −∇p + 1

Re
∇2u, (1b)

where u(u, v), p, and Re are the non-dimensionalized velocity vector, the pressure field, and the Reynolds number, re-
spectively. By applying a second-order backward finite difference scheme for time discretization, Eqs. (1) can be rewritten 
as:

∇ · un+1 = 0, (2a)

[ 1

Re
∇2u − 3

2�t
u]n+1 − ∇p = [(u · ∇)u − 2

�t
u]

n

+ 1

2�t
un−1. (2b)

Note that all the non-linear terms are taken from the previous time step and moved to the right hand side (RHS) of Eqs. (2). 
The system of vector Eqs. (2b) can be compactly rewritten in a block-matrix form as:⎡⎣ Hu 0 −∇x

p

0 H v −∇ y
p

∇x
u ∇ y

v 0

⎤⎦⎡⎣un+1

vn+1

p

⎤⎦ =
⎡⎣ R H Sn−1,n

u

R H Sn−1,n
v

0

⎤⎦ , (3)

where ∇x and ∇ y are the first derivatives with respect to the x and y coordinates, respectively, H = 1
Re � − 3I/2�t are 

the corresponding Helmholtz operators acting on u and v velocity components, I is the identity operator, and � is the 
Laplacian operator. The lower indices correspond to the scalar fields on which an operator acts. The left hand side (LHS) 
of Eqs. (3), known as the Stokes operator, is further discetized with a standard staggered mesh second-order conservative 
finite-volume formulation [30]. Non-linear terms, moved to the RHS of Eqs. (3), are approximated by the conservative central 
differencing scheme to exclude the appearance of artificial viscosity (see Ref. [29] for the discretization details). Following 
Refs. [29,27], the fully pressure–velocity coupled solution of Eqs. (3) can be obtained by LU-factorization of the Stokes 
operator with a set of suitable boundary conditions for all the velocity components and a single Dirichlet reference point 
for the pressure field. The discrete Stokes operator remains unchanged during the solution, reducing the time integration 
of the NS equations to two backward substitutions at each time step. The efficiency of the above approach (see Ref. [29]
for the characteristic computational times) is boosted by utilizing a modern multifrontal direct solver for sparse matrices 
(MUMPS1), exploiting the sparseness of the discrete Stokes operator at both LU-factorization and back substitution stages. 
The FPCD approach formulated in Eqs. (3) can be straightforwardly adjusted to the simulation of natural convection flows, 
with buoyancy effects being introduced by the Boussinesq approximation and governed by:

∇ · u = 0, (4a)

∂u

∂t
+ (u·∇)u = −∇p + Gr−0.5∇2u + θ

−→e y , (4b)

∂θ

∂t
+ (u·∇)θ = Pr−1Gr−0.5∇2θ, (4c)

where u, θ , and p correspond to the non-dimensionalized velocity, the temperature and the pressure fields respectively, 
Gr is the Grashof number, Pr is the Prandtl number, and −→e y is the unit vector in the opposite direction to gravity. Discretiz-
ing the time by a second-order backward finite difference scheme leads to:

∇ · un+1 = 0, (5a)

[Gr−0.5∇2u − 3

2�t
u + θ

−→e y ]n+1 − ∇p = [(u · ∇)u − 2

�t
u]

n

+ 1

2�t
un−1, (5b)

[Pr−1Gr−0.5∇2θ − 3

2�t
θ]n+1 = [(u · ∇)θ − 2

�t
θ]

n

+ 1

2�t
θn−1. (5c)

Then, using the same notations as for Eqs. (3), the compact block-matrix form of the vector Eqs. (5) reads:

1 http :/ /mumps .enseeiht .fr/.

http://mumps.enseeiht.fr/
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Fig. 1. Schematic representation of a staggered grid discretization of a two-dimensional computational domain D with a segment of an immersed boundary 
of a body B . A virtual shell, whose thickness is equal to the grid cell width, is shaded. The horizontal and vertical arrows (→, ↑) represent the discrete ui

and vi velocity locations, respectively. Pressure p j and temperature T j are applied at the center of each cell (×). Lagrangian points ξk(ξk, ηk) along ∂B

are shown as black circles • where volumetric boundary forces F k = (F k
x , F k

y) and volumetric boundary heat sources Q k are applied.

⎡⎢⎢⎣
Hu 0 0 −∇x

p

0 H v
−→e y −∇ y

p
0 0 Hθ 0
∇x

u ∇ y
v 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

un+1

vn+1

θn+1

p

⎤⎥⎥⎦ =

⎡⎢⎢⎣
R H Sn−1,n

u

R H Sn−1,n
v

R H Sn−1,n
θ

0

⎤⎥⎥⎦ , (6)

where Hu = H v = Gr−0.5� − 3I/2�t are the Helmholtz operators for the scalar momentum equations, and Hθ =
Pr−1Gr−0.5� − 3I/2�t is the Helmholtz operator for the energy equation. All the other notations and the spatial dis-
cretization are the same as in Eqs. (3). The discrete differential operators in the LHS of Eqs. (3) and (6) can contain different 
boundary conditions, and therefore for the general case Hu �= H v , and ∇x

u �= ∇x
p , ∇ y

v �= ∇ y
p .

2.2. The immersed boundary formalism

The IB method can be viewed as a “philosophy” for enforcing boundary conditions on the surface of an immersed body of 
an arbitrary shape. The boundary of an immersed body is typically preset by a series of Lagrangian points X k , whose location 
does not necessarily coincide with the underlying Eulerian grid. Each Lagrangian point is associated with the corresponding 
discrete volume �V k , such that an ensemble of these volumes forms a thin shell (see Fig. 1). The boundary conditions are 
enforced by introducing additional functions in the form of volumetric forces, F k , and heat sources, Q k , each associated 
with the corresponding volume �V k . The values of the above functions are not known a priori and are an inherent part 
of the overall solution in the present implicit formulation. To exchange information between the Eulerian grid and the 
Lagrangian points, regularization R and interpolation I operators are defined:

R(F k(Xk), Q k(Xk)) =
∫
S

(F k(Xk), Q k(Xk)) · δ(xi − Xk)dV k
S , (7a)

I(u(xi), θ(xi)) =
∫
�

(u(xi), θ(xi)) · δ(Xk − xi)dV�i, (7b)

where S corresponds to all the cells belonging to the immersed body surface, � corresponds to a group of flow domain 
cells located in the close vicinity of the immersed body surface, dV k

S corresponds to the virtual volume surrounding each 
Lagrangian point k, and dV�i is the volume of the corresponding cell of the Eulerian flow domain, whose velocity and tem-
perature values are explicitly involved in enforcing the boundary conditions at point k of the immersed body. The purpose 
of the regularization operator R is to smear the volumetric forces, F k , and heat sources, Q k , on the nearby computational 
domain by embedding them as sources into the corresponding momentum/energy equations. At the same time, the interpo-
lation operator I imposes no-slip/thermal boundary conditions on the Lagrangian points of the body surface by adding the 
equations necessary to achieve closure of the overall system. Both operators use convolutions with the Dirac delta function 
δ to facilitate an exchange of information between the Lagrangian points of the body surface and the Eulerian grid. The 
discrete delta function introduced by Roma et al. [31] was used in the present study:
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d(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
6�r

[
5 − 3 |r|

�r −
√

−3
(

1 − |r|
�r

)2 + 1

]
for 0.5�r ≤ |r| ≤ 1.5�r,

1
3�r

[
1 +

√
−3

( |r|
�r

)2 + 1

]
for |r| ≤ 0.5�r,

0 otherwise,

(8)

where �r is the cell width in the r direction. The chosen delta function was specifically derived for use on staggered grids, 
and it has been successfully utilized in a number of previous studies [32,19,12]. The delta function involves only three 
cells in each computational direction, which is an advantage for computational efficiency. To provide the best accuracy, 
the method utilizes a uniform grid in the vicinity of the immersed body surface. In this region, the distance between the 
neighboring points of the immersed body surface �l and the width of a grid cell should be approximately the same (i.e., 
�l ≈ �x = �y and dV k

S ≈ dV�i ). Away from the body, non-uniform discretization can be used. The general discrete forms 
of the regularization and interpolation operators for 2D geometry are governed by Eqs. (9):

( f i,qi) = �x�y
∑

k

(F k, Q k)d(εk − xi)d(ηk − yi), (9a)

(U k,
k) = �x�y
∑

i

(ui, θi)d(xi − εk)d(yi − ηk), (9b)

where f i , qi are the discrete volumetric force and heat source, respectively, defined on a staggered grid (xi , yi ) and U k , 

k are the discrete boundary velocity and temperature, respectively, defined at the k-th Lagrangian point (εk , ηk). Following 
Peskin [1] and Beyer and LeVeque [33], we used the same delta functions for interpolation and regularization operators. 
The contour of the immersed body should not contain repeating Lagrangian points. In addition, if a certain Lagrangian point 
moves with velocity U, its location should be updated at each time step by time integration of the corresponding velocity.

2.3. Implicit immersed boundary FPCD time stepper

The discrete pressure p appearing in Eqs. (2)–(6) does not actively participate in time propagation and therefore can be 
viewed as the Lagrange multiplier that constrains the solenoidal velocity field (see e.g. [34,19]). It is therefore reasonable to 
augment the existing Stokes operators (see Eqs. (3) and (6)) with the IB functionality by adding an additional set of Lagrange 
multipliers to enforce the appropriate boundary conditions at the Lagrangian points. Formally, the extended block-matrix 
form of the Stokes operator for 2D isothermal incompressible flow (see Eqs. (3)) is formulated as:⎡⎢⎢⎢⎢⎣

Hu 0 −∇x
p R Fx 0

0 H v −∇ y
p 0 R F y

∇x
u ∇ y

v 0 0 0
Iu 0 0 0 0
0 I v 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

un+1

vn+1

p
Fx

F y

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
R H Sn−1,n

u

R H Sn−1,n
v

0
Ub
Vb

⎤⎥⎥⎥⎥⎦ . (10)

Here, the vertical and horizontal dashed lines separate between the original Stokes operator, located at the top left corner 
of the matrix, and the additional entries related to the embedded immersed boundary functionality. These additional en-
tries can be formally divided into two types. The first type corresponds to the weights of the unknown non-dimensional 
volumetric forces, Fx and F y , obtained by applying the regularization operator R , smearing the forces over the vicinity of 
the Lagrangian points. The second type corresponds to the weights of the Eulerian velocity components. To impose no-slip 
boundary conditions, the sum of the above weights, each multiplied by its Eulerian velocity component, should be equal 
to the velocities Ub and Vb of the corresponding Lagrangian points. In other words, entries of the second type are nothing 
more than the additional equations necessary to achieve closure of the whole system of Eqs. (10), after the unknowns Fx

and F y have been added. It should be noted that as a result of the utilization of the same Dirac delta functions in both the 
interpolation I and regularization R operators and the uniform staggered grid in the near vicinity of the immersed body 
surface, the interpolation and regularization operators are transposed to each other, R F = I T

u . Note also that for all rigid 
stationary immersed bodies the values of Ub and Vb are all equal to zero and the extended Stokes operator in Eqs. (10)
does not vary in time. As a result, LU-factorization of the extended Stokes operator should be performed only once at the 
beginning of the computational procedure. For moving/deforming bodies, the location of the Lagrangian points is updated at 
each time step, requiring modification of the extended Stokes operator (see Eqs. (10)) with its subsequent LU-factorization. 
The factorization can be efficiently performed on a massively parallel machine, taking advantage of the high scalability 
parallelization built-in into the MUMPS solver [35].

Using the same notations as for Eqs. (6) and (10), an extended immersed boundary formulation for the natural convection 
flow can be written as:
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hu 0 0 −∇x
p R Fx 0 0

0 H v
−→e y −∇ y

p 0 R F y 0
0 0 Hθ 0 0 0 R Q

∇x
u ∇ y

v 0 0 0 0 0
Iu 0 0 0 0 0 0
0 I v 0 0 0 0 0
0 0 Iθ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

un+1

vn+1

θn+1

p
Fx

F y

Q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R H Sn−1,n
u

R H Sn−1,n
v

R H Sn−1,n
θ

0
Ub
Vb



⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Similarly to the Eqs. (10), the original Stokes operator located at the top left corner of the block-matrix form is separated 
by the vertical and horizontal dashed lines from the immersed boundary entries. The R Q entries correspond to the weights 
of the unknown non-dimensional volumetric heat sources smeared over the vicinity of the corresponding Lagrangian points 
by the regularization operator R , whereas the Iθ entries are the weights of the Eulerian temperatures, imposing Dirichlet 
boundary conditions at the neighboring Lagrangian points.

In most thermal problems, precise estimation of the average Nu number is of significant practical importance and is 
particularly critical for the present implementation of the IB method, which relies on a uniform Cartesian grid. As a result, 
a further refining of the Eulerian grid adjacent to the immersed boundary for a more precise resolution of the thinnest 
boundary layers is not practical. An alternative way to obtain an accurate estimation the Nu number is to express the 
unknown Lagrangian non-dimensional volumetric heat sources in terms of the temperature gradients in the direction normal 
to the immersed boundary as:

Q = 1

Pr
√

Gr�x

∂θ

∂n
, (12)

where �x = �y is the dimension of the uniform Eulerian grid in the vicinity of the immersed surface. Following [9], the 
Nu value averaged over the surface of the immersed body reads:

Nu = 1

2

( M∑
k=1

∂θ

∂n

x

)
k
, (13)

where the local ∂θ
∂n values at every point 1 ≤ k ≤ M of the immersed body are provided by the solution of Eqs. (11), refor-

mulated in terms of the temperature gradients in the direction normal to the body surface. Following the same principle, 
the drag Cd and the lift Cl coefficients can be obtained by:

(Cd, Cl) = −2
M∑

k=1

(Fxk , F yk )/ρU∞d, (14)

where Fxk and F yk are an intrinsic part of the overall solution obtained at every point k of the immersed body and 
ρU∞d = 1 for the presently used normalization.

The above immersed boundary formulation embedded into the FPCD time stepper can be seen as an extension of the 
algorithm recently developed by Taira and Colonius [19], who coupled unknown volumetric forces acting at the Lagrangian 
points with an intermediate non-solenoidal velocity field, which was then be further projected to the divergence free sub-
space by a projection–correction step. Based on the full pressure–velocity coupling, the present direct method does not 
require the projection–correction step.

2.4. Steady-state immersed boundary FPCD solver

A steady isothermal incompressible flow with an embedded immersed boundary functionality is governed by the follow-
ing continuity and momentum equations:

∇ · u = 0, (15a)

(u·∇)u + ∇p − 1

Re
∇2u − R F = 0, (15b)

I(u) − U b = 0, (15c)

where R F and I(u) are additional entries resulting from applying the regularization R and interpolation I operators. Note 
that the steady-state formulation formally treats the flow around an immersed body in the same way as its unsteady analog 
given by Eqs. (10). All the differential operators of Eqs. (15) are subsequently discretized in space by the standard staggered 
grid second-order conservative finite-volume method (in the same way as in the corresponding unsteady formulation). All 
the additional entries related to the IB formulation are discretized by using discrete Dirac delta functions. The discretized 
Eqs. (15) summarized in a compact block-matrix form in Eqs. (16) are then solved by the Newton–Raphson method.
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⎡⎢⎢⎢⎢⎣
J x 0 J p R Fx 0
0 J y J p 0 R F y

Ju J v 0 0 0
Iu 0 0 0 0
0 I v 0 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

δ(u)

δ(v)

δ(p)

δ(Fx)

δ(F y)

⎤⎥⎥⎥⎥⎦ = −

⎡⎢⎢⎢⎢⎢⎣
Fnx ��

� − ∑
k RkFx

Fny ��
� − ∑

k RkF y

Fnp∑
i I iux − Ubx∑
i I iu y − Uby

⎤⎥⎥⎥⎥⎥⎦ , (16)

where J x , J y , J p , Ju , J v entries of Jacobian J correspond to the discrete linearized terms of the original (without IB 
functionality) momentum and continuity equations, with the corresponding discrete right-hand sides Fnx , Fny , Fnp being 
calculated at the iteration n. The additional entries R F and Iu of the Jacobian operator, related to the embedded IB for-
mulation, are separated by the horizontal and vertical dashed lines. The IB entries also contribute to the RHS of Eqs. (16). 
The sums of smeared volumetric forces F k and interpolated velocities ui , both calculated at iteration n, are added to the 
corresponding right hand sides of the momentum equations and to the complementary interpolation relations. Here, the 
indexes i and k represent the total number of Eulerian and Lagrangian points, respectively, participating in the summation.

The developed steady-state IB solver can be straightforwardly adjusted to the steady-state solution of the natural con-
vection flow, governed by:

∇ · u = 0, (17a)

(u·∇)u + ∇p − Gr−0.5∇2u − θ
−→e y − R F = 0, (17b)

(u·∇)θ − Pr−1Gr−0.5∇2θ − R Q = 0, (17c)

I(u) − U b = 0, (17d)

I(θ) − 
b = 0, (17e)

where the Boussinesq approximation is utilized for simulating the buoyancy effects, and again R F , R Q , I(u), I(θ) are 
the additional entries stemming from applying the regularization R and interpolation I operators. Utilizing the same spatial 
discretization and Dirac delta functions as for Eqs. (16), the discretized Eqs. (17) are solved by the Newton–Raphson method, 
whose compact block-matrix form reads:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

J x 0 0 J p R Fx 0 0
0 J y

−→e y J p 0 R F y 0
0 0 Jθ 0 0 0 R Q

Ju J v 0 0 0 0 0
Iu 0 0 0 0 0 0
0 I v 0 0 0 0 0
0 0 Iθ 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

δ(u)

δ(v)

δ(θ)

δ(p)

δ(Fx)

δ(F y)

δ(Q )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fnx ��
� − ∑

k RkFx

Fny ��
� − ∑

k RkF y

Fnθ ��
� − ∑

k RkQ

Fnp∑
i I iux − Ubx∑
i I iu y − Uby∑

i I iθ − 
b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

The compact block-matrix form of Eqs. (18) bears a striking resemblance to that determined by Eqs. (16) (corresponding to 
the isothermal flow), the only exceptions being the additional entries related to the energy equations and to the Dirichlet
temperature boundary conditions applied to the immersed surface. As was done in the time integration analysis, the vol-
umetric heat sources Q can be expressed in terms of the normal temperature gradients ∂θ

∂n (see Eq. (12)) required for the 
precise estimation of the Nu value. Note that all the entries related to the IB functionality (i.e., Iu , I v , Iθ , R F x , R F y , R Q ) 
are linear and therefore have the same form both in the Stokes operator (see Eqs. (10) and (11)) and in the corresponding 
Jacobian operator (see Eqs. (16) and (18)).

2.5. Linear stability immersed boundary FPCD solver

For the sake of conciseness, only equations for the linear stability analysis of the natural convection flow will be derived 
in this section. The equations for the linear stability of the isothermal flow can be obtained by a straight-forward omission 
of the energy equations and the temperature terms in the corresponding momentum equations. The linear stability eigen-
problem is formulated by assuming infinitesimally small perturbations in the form of {̃u(x, y), θ̃ (x, y), p̃(x, y), F̃ (x, y),

Q̃ (x, y)}eλt around the steady state flow U , 
, P , F , Q , as follows:

λũ = −(U · ∇)ũ − (ũ · ∇)U − ∇ p̃ + Gr−0.5∇2ũ − θ̃
−→e y + R F̃ , (19a)

λθ̃ = −(U · ∇)θ̃ − (ũ · ∇)
 + Pr−1Gr−0.5∇2θ̃ + R Q̃ , (19b)

0 = ∇ · ũ, (19c)

0 = I(ũ), (19d)

0 = I(θ̃ ), (19e)
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or in a block-matrix form as:

λB

⎡⎢⎢⎢⎢⎣
ũ
θ̃

p̃
F̃
Q̃

⎤⎥⎥⎥⎥⎦ = J

⎡⎢⎢⎢⎢⎣
ũ
θ̃

p̃
F̃
Q̃

⎤⎥⎥⎥⎥⎦ , (20)

where J is the Jacobian matrix calculated from the RHS of Eqs. (19), and B is the diagonal matrix whose diagonal elements, 
corresponding to the values of ũ, θ̃ are equal to unity, and whose diagonal elements, corresponding to p̃ , F̃ , Q̃ , are equal 
to zero. Note that for Cartesian coordinates and the staggered uniform grid in the vicinity of immersed body surface, the 
discrete Jacobians, J of Eqs. (18) and (20) are the same. The generalized eigenproblem (20) cannot be directly transformed 
into a standard eigenproblem, since det(B) = 0; instead it is solved in a shift-invert mode:

( J − σ B)−1 B

⎡⎢⎢⎢⎢⎣
ũ
θ̃

p̃
F̃
Q̃

⎤⎥⎥⎥⎥⎦ = μ

⎡⎢⎢⎢⎢⎣
ũ
θ̃

p̃
F̃
Q̃

⎤⎥⎥⎥⎥⎦ , μ = 1

λ − σ
(21)

The solution is based on a standard Arnoldi iteration implemented within an open source ARPACK package,2 providing 
the dominant eigenvalue (i.e., the eigenvalue with the largest modulus). In a linear stability analysis, we are typically inter-
ested in finding the critical value of the control parameter (e.g., Grcr or Recr numbers) at which Real(λ) = 0 (to a prescribed 
precision), where λ is the leading eigenvalue. The dominant eigenvalue μ can be related to the leading eigenvalue λ (i.e., 
that of a zero real part) when the approach is applied to a shift-invert problem, where σ is a complex shift (see Eqs. (21)). 
To converge, the approach requires that the complex shift σ 3 be close to the λ value, whose imaginary part Im(λ) corre-
sponds to the critical angular oscillating frequency, ωcr . The value of ωcr is either known a priori (for benchmark problems) 
or can be estimated by a series of successive direct numerical simulations of the slightly bifurcated flow.

The present linear stability approach extends the algorithm presented by Gelfgat [36], with an IB functionality. Theoreti-
cally, no specific restrictions are imposed either on the number of bodies or on their shape. However, the method requires 
that the body boundaries do not touch or intersect and that the minimal distance between neighboring bodies is at least 
the size of a single grid cell. The solution procedure is as follows. First, the steady-state solution is calculated by the Newton 
method for the given value of the control parameter (Gr or Re numbers). Then, the linear stability analysis is performed by 
utilizing a shift-invert Arnoldi iteration (see Eqs. (21)). The corresponding eigenvalue problem is solved by a secant method, 
providing a precise value for the critical control parameter. The overall process requires numerous solutions of large systems 
of linear equations, which should be performed at each step of the Newton method and while building the Krylov basis for 
the Arnoldi iteration. Typically, no more than ten iterations are required for the calculation of the steady-state solution (by 
the Newton method), while the shift-invert Arnoldi iteration needs O (103–104) iterations to converge, thus comprising the 
key issue determining the computational efficiency of the whole process.

Next, to efficiently implement the product of the operator ( J − σ B)−1 B by the vector [ũ, θ̃ , p̃, F̃ , Q̃ ]T required at each 
Arnoldi iteration step, we exploit the fact that the operator ( J − σ B)−1 B does not change during the building of the 
Krylov basis for the Arnoldi iteration (see Eqs. (21)). The product implementation is simply a solution X of the linear 
system ( J − σ B)X = B[ũ, θ̃ , p̃, F̃ , Q̃ ]T . By utilizing the direct solver MUMPS, the LU-decomposition of the operator ( J −
σ B) is performed once at the beginning of the process, and then each vector of the Krylov basis is obtained by just 
two subsequent back substitutions, whose complexity is comparable to that of matrix–vector multiplication. Note also that 
the overall performance is additionally boosted by being a ( J − σ B) sparse matrix. The advantage of the above approach 
over algorithms utilizing modern Krylov-subspace-based iteration methods (e.g., preconditioned GMRES and BiCGstab) for 
building the Krylov basis for the Arnoldi iteration was extensively discussed in [36] for natural convective flows in cavities. 
In the present study, we successfully extended the approach by embedding the IB functionality and applied it to a linear 
stability analysis of both open and confined flows.

2.6. Pros and cons of the developed method

The methodology underlying the present study is based on direct LU-factorization of the Stokes operator (for the time 
integration of the NS equations) or its Jacobian (for the computation of steady state flow fields and their subsequent linear 
stability analysis) – all extended by the distributed Lagrange multiplier introduced to provide the kinematic constraints of 
no-slip and the corresponding thermal boundary conditions for immersed surfaces. The resulting linear system of equations 

2 http :/ /www.caam .rice .edu /software /ARPACK/.
3 Typically σ is a pure imaginary number, since Real(λ) → 0 at Gr ≈ Grcr , or Re ≈ Recr .

http://www.caam.rice.edu/software/ARPACK/
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is of the saddle point type, the solution of which represents a significant challenge due to the indefiniteness and poor spec-
tral properties of the system. The LU-decomposition of such systems is typically performed by multifrontal direct solvers, 
e.g., MUMPS, PARDISO4 and codes from the Harwell Subroutine Library (HSL),5 intelligently exploiting the sparseness of the 
discretized operator at the factorization and back substitution stages. The attractiveness of the direct solvers applied to the 
solution saddle point type system was reported by Perugia et al. [37] when performing analysis of magnetostatic fields and 
by Gelfgat and coauthors when conducting the linear stability analysis of convective flows in 2D cavities and performing 
three-dimensional stability calculations for axi-symmetric [29,38] and periodic [39] flows. While direct sparse solvers can 
be quite competitive for 2D (or quasi-3D) configurations, including those discretized on dense grids, they are not suitable 
for realistic three-dimensional problems. Recalling that the primary focus of the present paper is to demonstrate exten-
sion of the distributed Lagrange multiplier approach to new classes of problems (i.e., problems involving buoyancy-driven 
flows, steady non-Stokes flows and linear stability analysis), we elaborate only a set of 2D configurations demonstrating the 
viability of the developed method for up to 20002 grids.

Solution of saddle point systems arising from 3D Stokes operator should adopt iterative methods employing fractional-
step or projection approaches. For excellent discussions regarding the methods specifically designed to solve this kind of 
problem, the book of Toselli and Widlund [40] (Chapter 9) and the review of Benzi et al. [41] should be consulted. Here, we 
restrict ourselves to presenting a brief discussion on the strategies that can be adopted for extension of the IB Lagrange mul-
tiplier approach to the solution of steady-state NS equations and to performing linear stability analysis in the presence of 
immersed bodies. As already mentioned, the family of fractional-step and projection methods, which typically benefit from 
definiteness and sparseness of the resulting operators, provides a natural choice for the flow configurations where the direct
LU-factorization of the Stokes operator fails. To be more precise, the projection approach is, in itself, a block-LU-factorization 
of the same operator, the only difference being that at each fractional step the individual sub-operators retain their identity 
and each resulting system is solved sequentially [42]. This property of the projection approach was exploited by Taira and 
Colonius [19] when extending the projection method with IB functionality by utilizing the distributed Lagrange multiplier 
approach. Generally speaking, any time stepping scheme can be used for the linear stability (bifurcation) analysis without 
further modification. Steady state flow can be obtained by time integration until flow convergence is reached. Then, the 
steady state can be perturbed by variation of a control parameter until a transition to unsteadiness takes place. However, 
these techniques are often inefficient, since they require high computational effort and do not formally yield leading eigen-
vectors of the flow field. In contrast, any existing time-stepping code can be adapted to perform the linear stability analysis 
[43], providing a driver for inverse power or exponential methods that can be used to extract the values of growth rates, 
control parameters and the leading eigenvectors of the investigated flow. The inverse power method relies on the Stokes 
preconditioning providing the fastest convergence at �t , which is 10–1000 times the �t used for the time integration of 
NS equations [43]. As a result, the method cannot be utilized by the projection or fractional step approaches, which require 
small time increments to satisfy the divergence free constraint. This limitation can be remedied by utilizing the exponential 
power method, which can be easily implemented, is very reliable, and has been successfully used to compute leading eigen-
pairs in many problems of hydrodynamic stability [44–47]. The main drawback of the method is its slow convergence, which 
can, however, be substantially relaxed by parallelizing the code and running it on massively parallel HPC (High Performance 
Computing) platforms.

3. Results

3.1. Unsteady flow: periodic incident flow around two horizontally aligned circular cylinders

Verification of the developed implicit IB FPCD time stepper was first performed for simulation of the secondary instabili-
ties in the flow around a tandem arrangement of two equal horizontally aligned cylinders of diameter d, as shown in Fig. 2. 
All the simulations were performed in a square computational domain of size 44 d in each direction. The two cylinders 
were centered in the vertical direction, while a distance equal to 15 d was set between the center of the forward cylinder 
and the inlet boundary of the domain. The computational domain was discretized by a non-uniform 1400 × 1400 mesh in 
the following manner: a square subregion of size 10 d in each direction, confining the pair as shown in Fig. 2, was dis-
cretized by a uniform 1000 × 1000 mesh with a grid step equal to �x = �y = 0.01. The mesh was built out of the square 
subregion (see Fig. 2) by gradually increasing �x and �y grid steps, which finally attain the values of �x ≈ �y ≈ 0.22 at all 
boundaries of the computational domain. Three configurations, each corresponding to a different center-to-center distance 
of κ = Lx/d = [1.5, 2.3, 5] between the cylinders, were simulated for the value of Re = U∞d/ν = 200, thus representing 
three different vortex shedding scenarios, as shown in Fig. 3. Here, ν is the kinematic viscosity of the fluid. The solutions 
were obtained with the following set of boundary conditions:

ux(x = 0, y) = ux(x, y = 0, y = 44d) = 1, (22a)

u y(x = 0, y) = u y(x, y = 0, y = 44d) = 0, (22b)

4 http :/ /www.pardiso-project .org.
5 http :/ /www.hsl .rl .ac .uk.

http://www.pardiso-project.org
http://www.hsl.rl.ac.uk
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Fig. 2. Schematic representation of the geometrical model and discretization of the computational domain for the flow around two horizontally aligned 
cylinders arranged in tandem.

Table 1
Comparison between the values of oscillating frequencies fCL and fC D obtained for the lift and drag coefficients and the average value of the drag coefficient 
C D measured on the downstream cylinder at Re = 200. All the reference values were obtained by digital scanning.

κ 1.5 2.3 5

Present Ref. [49] Present Ref. [49] Present Ref. [49]
fCL 0.338 0.332 0.263 0.264 0.360 0.355
fC D 0.169 0.166 0.132 0.132 0.181 0.178
C D −0.196 −0.194 −0.173 −0.172 0.423 0.401

p(x = 44d, y) = 0, (22c)
∂u

∂t
+ ∂u

∂x
(x = 44d, y) = 0. (22d)

Note that Eq. (22d) determines the convective boundary condition at the outlet, allowing the vorticity to exit the domain 
freely [19]. The obtained results are in good qualitative (see Fig. 3) and quantitative (see Table 1) agreement with the 
corresponding flow characteristics obtained by Carmo et al. [48], who made a distinction between the three observed 
shedding scenarios, classifying them as SG (symmetric in the gap) for κ = 1.5, AG (alternating in the gap) for κ = 2.3, 
and WG (wake in the gap) for κ = 5. Note the interesting phenomenon of the drag inversion, extensively elaborated in [49]
and characterized by a negative to positive change in the value of drag coefficient when the shedding regime changes from 
AG to WG.

3.2. Unsteady flow: periodic natural convection flow around two vertically aligned circular cylinders

The next verification study of the developed time stepper was related to the simulation of unsteady natural convection 
flow around two cylinders confined by a square cavity (see Fig. 4). The ratio between the cylinder diameter, d, and the cavity 
side length, L, is equal to d/L = 0.2. The cylinders are aligned along the cavity’s vertical centerline and are symmetrically 
distanced from the cavity’s horizontal centerline. The distance δ between the cylinder centers, normalized by the cavity 
side length L, is equal to δ = 0.5. Both cylinders are held at a constant hot temperature θH = 1, whereas all the cavity 
boundaries are held at a constant cold temperature, θC = 0. The force of gravity acts in the − ŷ direction. Fig. 5 presents the 
flow characteristics of the periodic flow simulated at Ra = 106. A grid independence study was performed by comparing 
the velocity and temperature fields obtained on 400 × 400 and 500 × 500 grids. The maximum difference for all the flow 
characteristics obtained on the two grids did not exceed 0.5%, thereby successfully verifying the grid independence of 
the results. Figs. 5(a)–(b) present the time evolution of the amplitude, A (A = Nul − mean(Nul)), where mean(Nul) is the 
time averaged (Nul) of the fluctuation of the average Nul number obtained for the lower cylinder and the corresponding 
frequency spectrum of A. Note that in agreement with the recent study of Park [50] the flow at Ra = 106 is governed by 
the single harmonics and its multipliers resulting from the flow non-linearity. The value of the angular frequency ω = 0.665
is in a good agreement with the corresponding reference value, ωref = 0.656, reported in [50].6 Instantaneous streamlines 
and isotherms shown in Figs. 5(c)–(e) for the four representative times [P1, P2, P3, P4], (see Fig. 5(a)) evenly distributed 
over the single oscillating period agree with the corresponding patterns reported in [50].

6 Rescaled equivalent. Values reported in [50] were multiplied by the factor 1√ to fit the scaling adopted in this study.

Pr Gr
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Fig. 3. Instantaneous vorticity contours, with drag coefficient, C D (solid line) and lift coefficient CL (dashed line), measured on the downstream cylinder at 
Re = 200 for: (a) κ = 1.5 – regime SG; (b) κ = 2.3 – regime AG; (c) κ = 5 – regime W G .

Fig. 4. Schematic representation of a geometrical model of the computational domain for the natural convection flow around vertically aligned cylinders 
confined by a square cavity.
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Fig. 5. Characteristics of periodic natural convection flow developing around two vertically aligned cylinders located inside a square cavity with all cold 
boundaries at Ra = 106 for δ = 0.5: (a) time evolution of the fluctuation, A, of the Nusselt number Nul averaged over the surface of the lower cylinder 
(A = Nul − mean(Nul)); (b) frequency spectrum of A; (c)–(f) instantaneous streamlines and isotherms at the selected time instances [P1, P2, P3, P4].

Fig. 6. Typical geometrical definitions of the steady state wake structure.

3.3. Steady-state flow: steady incident flow around a circular cylinder

This section presents a verification study of the fully implicit pressure–velocity coupled IB steady solver, based on the 
full Newton iteration, as defined by Eqs. (15)–(18). The characteristics of the wake structure, typical of isothermal steady 
state flow around a circular cylinder are defined in Fig. 6. The steady flow was simulated at Re = 20 and Re = 40, and 
the obtained results were compared with previously published data. The simulations were performed utilizing the same 
computational set up (including the geometry and the boundary conditions) as for the tandem arrangement of two cylinders 
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Fig. 7. Streamlines of the steady-state flow around a circular cylinder obtained for: (a) Re = 20; (b) Re = 40.

Table 2
Comparison of the wake characteristics and drag coefficients for steady-state flow over a cylinder for Re = 20 and Re = 40. Experimental results are denoted 
by a � symbol.

l/d a/d b/d θ C D

Re = 20 Present 0.95 0.37 0.43 42.9◦ 2.09
Coutanceau and Bouard� [51] 0.93 0.33 0.46 45.0◦ –
Taira and Colonius [19] 0.94 0.37 0.43 43.3◦ 2.06
Linnick and Fasel [7] 0.93 0.36 0.43 43.5◦ 2.06
Dennis and Chung [52] 0.94 – – 43.7◦ 2.05

Re = 40 Present 2.13 0.76 0.59 53.3◦ 1.56
Coutanceau and Bouard� [51] 0.93 0.33 0.46 53.8◦ –
Taira and Colonius [19] 2.30 0.73 0.60 53.7◦ 1.54
Linnick and Fasel [7] 2.28 0.72 0.60 53.6◦ 1.54
Dennis and Chung [52] 2.35 – – 53.8◦ 1.52

(see the previous section) by omitting the back cylinder. Figs. 7(a) and (b) demonstrate the typical steady flow patterns 
developing around a horizontal cylinder at Re = 20 and Re = 40, respectively. As expected, the flow is symmetric relative 
to the horizontal centerline with two recirculating bubbles, located behind the cylinders. The geometrical characteristics of 
the bubbles for the two different values of Re were compared with the literature data (see Table 2).

Good quantitative agreement was observed between all the wake characteristics simulated in this study and those re-
ported in the literature, thus verifying the developed steady-state solver for isothermal incompressible flows.

3.4. Steady-state flow: steady natural convection confined flow

Simulation of natural convection confined flow was the focus of the next verification study. A configuration comprising 
an isothermal hot circular cylinder located at the center of a square cavity with all isothermal cold boundaries was chosen. 
Distributions of the isotherm contours and the stream function for three different R/L ratios, R/L = 0.1, 0.2, 0.3, as shown 
in Fig. 8, agree with the corresponding data reported by Seta [53]. Table 3 presents a quantitative comparison of the Nu
numbers, averaged over the cylinder surface, and of the absolute maximum values of the stream function |�max| with the 
corresponding literature values. Acceptable agreement was found between our values and those reported in the literature 
for the entire range of Ra and R/L ratio values, thus verifying the developed steady-state solver applied to the simulation 
of natural convection flows.

3.5. Linear stability analysis: incident flow around a circular cylinder

The developed IB FPCD linear stability solver was verified by conducting a linear stability analysis of the incident base 
flow around a circular cylinder. The base flow was calculated by the steady-state solver, which was verified in the previous 
section. The same computational domain and grid resolution as for the case of steady-state flow analysis around a circular 
cylinder were utilized. Perturbation values of all the flow fields were set to zero at all the boundaries. Figs. 9(a) and 9(b)
present the contours of vorticity of the real and imaginary parts of the leading eigenmode, respectively. Both patterns are 
symmetric relative to the Y = 0 line and are characterized by alternating minima and maxima values in the streamwise 
direction. Contours of the vorticity of the imaginary part of the leading eigenmode (Fig. 9(b)) bear a striking resemblance 
to the corresponding pattern reported by Barkley [56]. Figs. 9(c) and 9(d) present a quantitative comparison between the 
obtained and reference [56] values for the frequency and growth rate, calculated in the range of 30 ≤ Re ≤ 180 by the 
linear stability analysis. It can be seen that both quantities are in good agreement for the entire range of Re values, thereby 
successfully verifying the developed linear stability solver.

3.6. Linear stability analysis: incident flow around two horizontally aligned circular cylinders

Fig. 10 presents values of the critical Reynolds number, Recr and the critical oscillating frequency, fcr as a function 
non-dimensional distance between the cylinder centers, l/d. The simulations were performed by utilizing the same setup 
(size of the computational domain and grid resolution) as for the analysis of unsteady flow, detailed in Section 3.1. As can 
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Fig. 8. Flow characteristics, obtained for Ra = 106, and R/L = 0.1,0.2,0.3: (a) isotherm contours; (b) stream function.

Table 3
Comparison of the Nu number averaged over the cylinder surface and of the maximum absolute values of the stream function (rescaled equivalent, the 
calculated values of stream function were multiplied by the Pr

√
Gr factor). All the results for the current study were obtained on a 400 × 400 grid.

Ra = 104 Ra = 105 Ra = 106

Nu |�max| Nu |�max| Nu |�max|
R/L = 0.1 Present 2.083 1.768 3.803 10.05 6.146 20.78

Seta [53] 2.206 1.743 3.987 10.11 6.542 21.05
Moukalled and Acharya [54] 2.071 1.73 3.825 10.15 6.107 25.35
Shu and Zhu [55] 2.08 1.71 3.79 9.93 6.11 20.98

R/L = 0.2 Present 0.95 0.997 0.43 8.271 8.949 23.92
Seta [53] 3.461 0.981 5.253 8.267 9.547 24.23
Moukalled and Acharya [54] 3.331 1.02 5.08 8.38 9.374 24.07
Shu and Zhu [55] 3.24 0.97 4.86 8.10 8.90 24.13

R/L = 0.3 Present 5.402 0.494 6.246 5.046 11.967 20.23
Seta [53] 5.832 0.486 6.685 5.023 12.87 20.33
Moukalled and Acharya [54] 5.826 0.50 6.107 5.10 11.62 21.30
Shu and Zhu [55] 5.40 0.49 6.21 5.10 12.00 20.46

be seen from Table 4, the obtained Recr values agree with the independent results reported by Carmo et al. [49] for the 
entire range of l/d values. Note the non-homogeneity of the Re − l/d functionality for the investigated range of l/d values. 
The non-homogeneity can be explained by the existence of three different vortex shedding regimes SG, AG, and WG. It is 
noteworthy that the fcr − l/d functionality, shown in Fig. 10(b), exhibits a different trend. The value decays continuously for 
the range of 1.5 ≤ l/d < 4. Thereafter, the trend is reversed, and the value of fcr grows continuously, attaining a maximum 
at l/d ≈ 4.9. Finally, a rapid decrease of the fcr value is observed at l/d = 5.

Additional evidence for the existence of three different vortex shedding regimes for the incident flow around two hor-
izontally aligned cylinders as a function of the distance between the cylinder centers is provided by the contours of the 
corresponding leading eigenvectors obtained for Re = Recr . In fact, both the real and imaginary parts of the leading eigen-
vectors of vorticity exhibit different patterns for the three different values of l/d distance, as shown in Fig. 11. As expected, 
the largest differences in the perturbation fields are observed in the intermediate region between the cylinders and in 
the wake in the close vicinity of the trailing cylinder. Further away from the trailing cylinder, all the patterns correspond-
ing to the leading eigenvectors of vorticity attain similar sign-alternating petal structures, symmetrically aligned along the 
horizontal centerline.
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Fig. 9. Results of the linear stability analysis of incident flow over the cylinder at Re = 100: (a) real part of the leading eigenmode of vorticity; (b) imaginary 
part of the leading eigenmode of vorticity; (c) comparison of the critical frequency values (bold line) obtained in this study with the reference values (black 
squares, scanned from [56]) as a function of the Re number; (d) comparison of the growth rate values (bold line) obtained in this study with the reference 
values (black squares, scanned from [56]) as a function of the Re number.

Fig. 10. Values of critical Reynolds number, Recr and critical frequency, fcr versus non-dimensional distance, l/d, obtained for the flow around two circular 
cylinders in tandem.

Table 4
Values of the critical Reynolds number, Recr versus the non-dimensional 
distance, l/d obtained for the flow around two circular cylinders in tandem. 
Comparison of the presently obtained and reference values as scanned from 
Carmo et al. [49].

l/d Present Ref. [49]
2.5 86.55 85.41
3.0 77.19 76.89
3.5 71.35 71.07
3.6 70.76 70.41
3.7 70.72 70.01
3.8 70.68 69.83
4.0 70.06 70.07
4.3 73.10 74.35
4.7 78.71 77.66
5.0 67.80 68.52
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Fig. 11. Results of a linear stability analysis of the incident flow over the two horizontally aligned cylinders at Re = Recr . Left and right columns correspond 
to the contours of real and imaginary parts of the vorticity of the leading eigenmode, respectively, for: (a) l/d = 1.5 and Recr = 73.1; (b) l/d = 2.5 and 
Recr = 86.86; (c) l/d = 5 and Recr = 68.51.

Table 5
Grid convergence for the critical Racr and ωcr values, δ = 0.5.

Grid Racr × 105 ωcr

400 × 400 5.073 0.2816
600 × 600 5.035 0.2842
800 × 800 5.026 0.2855
1000 × 1000 5.022 0.2866
1200 × 1200 5.018 0.2871
1400 × 1400 5.015 0.2873
1600 × 1600 5.012 0.2874
1800 × 1800 5.011 0.2875
2000 × 2000 5.011 0.2875

3.7. Linear stability analysis: confined natural convection flow

This section focuses on the linear stability analysis of the confined natural convection flow around two hot vertically 
aligned circular cylinders located inside a square cavity with all cold boundaries. For this configuration, unsteady periodic 
flow was observed at Ra = 106 (see section 3.2), thereby providing the lower value of Racr for the first Hopf bifurcation. The 
contours of the absolute values of the leading eigenmode of the temperature |θ ′| and the x- and y-velocity components, 
|u′| and |v ′|, obtained at Racr = 5.011 × 105 on a 1800 × 1800 grid are shown in Fig. 12. For all quantities, the region 
characterized by the highest amplitude of perturbation can be clearly recognized above the top cylinder. All amplitude 
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Fig. 12. Contours of absolute values of the leading eigenmode obtained at Racr = 5.011 × 105 and δ = 0.5 on a 1800 × 1800 grid for: (a) temperature, |θ ′|; 
(b) x-velocity component, |u′|; y-velocity component, |v ′|).

distributions are not symmetric and are biased to the right (but could also be biased to the left with the same probability) 
relative to the vertical centerline. The obtained patterns are consistent with the structure of supercritical flow at Ra = 106

(see Fig. 5), clearly indicating the interaction between two counter rotating vortices as the primary source of the observed 
instability. A summary of the grid convergence study with respect to the obtained values of the critical Rayleigh number, 
Racr , and the oscillating frequency ωcr is presented in Table 5. It can be seen that for the 2000 × 2000 grid the results 
have converged up to the fourth decimal place, thereby verifying the independence of the obtained Racr and ωcr values 
on the resolution of the grid. Fig. 13 presents the requirements for CPU time and computer memory, respectively, for the
LU-decomposition of the real and complex Jacobian matrices involved in the Newton and in the shift and invert Arnoldi 
iterations. All the statistics were acquired for the presently discussed confined natural convection flow. The calculations were 
performed on a standard Unix server equipped with 4 AM D OpteronT M processors (64 cores in total) and 256 GB shared 
RAM. We used the default MUMPS settings which activate openMP parallelization on 32 processors (half of the overall 
computational capacity) for performing LU-decomposition. It can be seen that the CPU time required for the LU-factorization 
of both real and complex Jacobian matrices scales approximately as N2.5, where N is the number of grid points in a single 
spatial direction. The RAM requirement scales as N2.2 when performing LU factorization of both real and complex Jacobian 
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Fig. 13. Scaling characteristics of LU-decomposition versus number of grid points in terms of: (a) consumed time in seconds; (b) consumed RAM in 
gigabytes.

matrices. It is remarkable that similar trends for CPU time and memory consumptions were reported in [36], were the 
MUMPS solver was used for the linear stability analysis of confined natural convection 2D flows but only on a single 
processor. It may thus be concluded, that the openMP parallelization applied to the LU-decomposition of large indefinite 
matrices has a small impact on its scaling characteristics. It should also be noted that for all the linear stability calculations 
the number of Arnoldi iterations varied between 5000 and 7500 and was almost independent of the grid resolution.

4. Summary and conclusions

An approach demonstrating an extension of the IB method based on the distributed Lagrange multiplier approach in 
the context of time integration of buoyancy flows, calculation steady non-Stokes flows and linear stability analysis of con-
fined and open flows around immersed bodies was presented. The new capabilities of the method were demonstrated by 
utilizing the fully pressure–velocity coupled direct solver (FPCD) [27] as a computational platform. The developed method 
facilitated an efficient linear stability analysis of the incompressible flows in the presence of a variety of arbitrarily ori-
ented immersed bodies of various shapes. The method was extensively verified for both isothermal and natural convection 
flows. The independence of the obtained results on the resolution of the computational grid was established by an accept-
able quantitative agreement with independent numerical and experimental results available in the literature and from the 
current convergence study.

The specific choice of a direct solver (FPCD) [27] as a computational platform implies LU-decomposition of a large 
indefinite system (known also as a Stokes operator). For this reason, the present study was restricted to 2D incompressible 
flows. It was shown that the method is viable for a grid resolution up to 2000 × 2000, which makes it attractive for the 
most kinds of 2D and 3D flows with periodic boundary conditions. The new methodology can also be efficiently applied 
to the mesoscale linear stability analysis of quasi-3D flows in porous media and to the analysis of two-phase flows in 
which the curvature of the interface between the two phases plays the role of Lagrange multipliers (both applications are 
covered in our current research). An extended discussion regarding strategies for adapting the developed methodology to 
realistic 3D flows was presented. In light of increasing interest in the distributed Lagrange multiplier approach, we believe 
that the present study will contribute to the further extension of the presented methodology to various applications in fluid 
dynamics.
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