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Abstract

An extended immersed boundary methodology utilizing a semi-implicit direct forcing approach was formulated for the
imulation of incompressible flows in the presence of periodically moving immersed bodies. The methodology utilizes a
chur complement approach to enforce no-slip kinematic constraints for immersed surfaces. The methodology is split into
n “embarrassingly” parallel pre-computing stage and a time integration stage, both of which take advantage of the general
arallel file system (GPFS) for efficient writing and reading of large amounts of data. The methodology can be embedded
traight forwardly into the whole family of pressure–velocity segregated solvers of incompressible Navier–Stokes equations
ased on projection or fractional step approaches. The methodology accurately meets the no-slip kinematic constraints on
he surfaces of immersed oscillating bodies. In this study, it was extensively verified by applying it for the simulation of a
umber of representative flows developing in the presence of an oscillating sphere. The capabilities of the methodology for the
imulation of incompressible flow generated by a number of bodies whose motion is governed by general periodic kinematics
ere demonstrated by simulation of the flow developing in the presence of two out-of-phase oscillating spheres. The physical

haracteristics of the generated flows in terms of the time evolutions of the total drag coefficients were presented as a function
f Reynolds values. The vortical structures inherent in the generated flows were visualized by presenting the isosurfaces of the
2 criterion.

c 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The periodic movement of bodies immersed in an incompressible Newtonian fluid is ubiquitous in various
iological systems and in many engineering and industrial applications. Indeed, undulatory propulsion (i.e., the
equential periodic activation of different segments of a body) forms the basis of the locomotion of many elongated
quatic animals (see the extensive review of [1] for details) and also of other cellular organisms [2–5]. In engineering,
he periodic external actuation of small rigid bodies is a commonly used mechanism for providing locomotion of
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rigid synthetic micro- and nano-swimmers [6–8]. In this type of application, propulsion is typically provided by the
symmetry-breaking excitation of the surrounding flow by the periodically moving body of the swimmer. Importantly,
the periodic movement of externally activated immersed bodies in the form of rotating or oscillating stir-bars of
various shapes is the basic mechanism driving the micro- and macromixers [9–12] that are widely used in the
chemical and medical industries.

To simulate the fluid flow developing in the presence of periodically moving immersed bodies, it is necessary to
erform moving boundary simulations. The idea underlying these simulations is to determine the kinematics of the
mmersed body and then to impose no-slip boundary conditions on the body surface at each computational time
tep. The major challenge in performing such simulations by utilizing a traditional body-conformal grid approach
ies in the generation of a high-quality mesh that should, first, be capable of handling complex body geometries and,
econd, be rebuilt in each computational time step. Although the task can be successfully handled by using novel
igh-order sliding mesh methods [13–15], the ever-increasing demand in the analysis of the flow typical of realistic
omplex engineering systems can lead to a serious deterioration of the computational efficiency of the simulations.

promising alternative to this body-conformal grid approach is the immersed boundary method (IBM). Initially
eveloped by Peskin [16], the method has become very popular over the years and is currently widely used for
ow simulations in the presence of stationary and moving immersed bodies of complex geometry, as extensively
eviewed in [17–21].

An additional rapidly developing field employing IBM for simulating two-way coupled fluid–structure interaction
FSI) problems is related to embedding the IBM within the framework of isogeometric analysis (IGA), originally
ormulated by Hughes et al. [22]. The key idea is to integrate the stand alone computational tools performing the
nite element analysis (FEA) with available computer aided design (CAD) software to facilitate the design and

esting of new models by using a common data set. Following the originally established IGA concept [22], new
igh order immersed methods using b-splines and other related interpolation functions, commonly used in computer
ided design (CAD), have emerged over recent years. These formulations offer a powerful simulation strategy for
SI problems and a possible gateway for dealing with complex engineering parts and assemblies directly using
AD, as reported in [23–28].

Among the currently available methodologies for simulating the fluid flow developing in the presence of
eriodically moving immersed bodies, the present study focuses on the direct forcing approach, initially introduced
n [29]. According to this approach, the impact of the immersed body – determined as a set of discrete Lagrangian
oints – on the surrounding flow is expressed by introducing additional unknowns in the form of volumetric forces,
ach associated with a corresponding Lagrangian point. The forces act as Lagrange multipliers that enforce a no-slip
inematic constraint on the surface of the immersed body without involving any dynamical process. In the most
eneral case, the Lagrangian points on the body surface do not coincide with the underlying Eulerian Cartesian grid.
nformation is exchanged between the Eulerian grid and the Lagrangian points by two adjoint operators, namely, the
nterpolation operator, which interpolates the velocity values from the Eulerian grid to the Lagrangian points, and the
egularization operator, which smears the volumetric forces from the Lagrangian points onto the underlying Eulerian
rid. Chronologically, the implementation of the direct-forcing IBM was first based on an explicit calculation of
he Lagrangian forces. The explicit formulation gained great popularity due to the fact that it did not require the
ntroduction of any modifications to the original solver of the Navier–Stokes (NS) equations. In practice, to equip any
xisting NS solver with the immersed boundary functionality, the solver should be used twice: first, without taking
nto account the existence of the immersed body, and, second, by employing the same differential operator, but with
ts right hand side (RHS) modified by explicitly calculated Lagrangian forces reflecting the impact of the immersed
ody on the surrounding flow. The high flexibility of the explicit direct-forcing IBM is quite impressive. It has been
uccessfully employed over the past two decades in a broad spectrum of fields, particularly in the simulation of
articulate flows [30–35], thermally driven confined flows [36–39], and two-phase immiscible flows [40] and in the
henomenological modeling of the mobility and growth of cancerous tumors [41–43].

There are, however, two major drawbacks in the explicit calculation of the Lagrangian forces. The first of these
s the requirement for running the simulations with very small time steps, as is required to satisfy the no-slip
inematic constraints with acceptable accuracy. A number of attempts have thus been made to relax the small time
tep limitation; these have included solving the coupled system of the boundary forces [37,38] and introducing an
dditional forcing loop for more accurate imposition of the interface velocity [32,33]. However, despite the evident

uccess of the aforementioned studies in imposing no-slip kinematic constraints, none of the proposed strategies can
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be seen as an ultimate remedy to the second – and most important – drawback related to the explicit calculation of the
Lagrangian forces, namely, the violation of the elliptic character of the NS equations. The problem is encountered
in the simulation of flows characterized by low and moderate Reynolds numbers (Re), but it can be solved by
employing the fully coupled formulation. The key idea is to express the Lagrangian forces as additional unknowns
in the form of distributed Lagrange multipliers (DLM) implicitly embedded into the corresponding NS equations.
In this case, the kinematic constraints of no-slip are imposed with zero machine precision. Recent progress in this
direction may be attributed to the studies of [44–49], which successfully established the DLM approach as a powerful
tool for investigating incompressible flows for a wide range of Reynolds numbers, including linear stability analysis
of pressure- and thermally driven flows [50] and analysis of two-phase immiscible flows [51]. Unfortunately, a
purely implicit implementation of the IBM typically involves substantial modification of the original solvers, which
are not initially equipped with the IBM capability. For this reason, a semi-implicit implementation of the IBM, in
which the Lagrangian forces are implicitly coupled with a non-solenoidal velocity field subsequently projected onto
a divergence free subspace has attracted increasing interest in recent years [52–54]. The semi-implicit formulation
of the IBM can be straight forwardly embedded into the whole family of pressure–velocity segregated NS solvers
based on projection or fractional step algorithms, while maintaining the accuracy of the imposed constraints of
no-slip bounded by the discretization error of the numerical scheme [54].

The key idea underlying the semi-implicit implementation is to analytically decompose the operator coupling
the NS equations with the constraints of no-slip and to pre-compute the contribution of the latter at the beginning
of the computational process. It was shown in our previous study [54] that, after the pre-computing is completed,
the efficiency of the time integration performed by the algorithm based on the semi-implicit implementation of
the IBM is comparable with that of its explicit counterpart in the case of stationary immersed bodies. The present
paper extends the previously developed methodology to flow simulations in the presence of periodically moving
immersed bodies whose kinematics is governed by periodic functions and can therefore be split into a finite number
of discrete states. Then, by taking advantage of the general parallel file system (GPFS), every pre-computed
state can be saved, and, most importantly, read later very efficiently, making it possible to perform this kind of
simulation in a reasonable amount of time. The current article presents the extended methodology, including a
detailed description of the algorithm, a verification study of the obtained results, and the efficiency characteristics
in terms of memory and time consumption. Last but not least, the most time-consuming pre-computing stage of the
developed methodology is “embarrassingly” parallel, which allows for its efficient acceleration without introducing
any significant modifications in the original solver. The developed method was extensively verified by comparison
of the flow characteristics obtained for the simulation of confined flows developing in the presence of an oscillating
sphere with the results available in the literature. The capability of the developed methodology to resolve the flows
developing in the presence of bodies characterized by more complicated periodic kinematics is demonstrated by
performing simulations of the flow generated by a pair of out-of-phase oscillating spheres for different values of
the Reynolds number.

2. Theoretical background

The methodology presented here is a straight-forward extension of our previous study [54], incorporating the
semi-implicit IBM into any generic solver of incompressible NS equations based on the projection approach. For the
sake of completeness, we revisit the basic steps of the previously developed algorithm [54], with emphasis on the
steps relevant to the efficient simulation of incompressible flows in the presence of periodically moving immersed
bodies.

2.1. Governing equations

Following the IBM formalism, the incompressible flow developing in the presence of an immersed body whose
parameterized surface X(ξ,η) moves in accordance with a priori determined kinematics, giving the surface velocity

Γ (X), is governed by non-dimensional incompressible NS equations:

∇· u = 0, (1)

∂u
+ (u· ∇)u = −∇ p +

1
∇

2u + f , (2)

∂t Re
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Fig. 1. Schematic representation of the major principles of the IBM. The immersed body is described by a set of Lagrangian points indicated
y the full black circles. A dashed shell of thickness equal to one grid step attached to the immersed body corresponds to the set of discrete
olumes surrounding each Lagrangian point. The dashed and dotted circles show the range of action of the regularized Dirac delta functions
mearing the Lagrangian forces over the Eulerian grid and interpolating the Eulerian velocities on the Lagrangian points, respectively.

here the force field f (x) reflects the impact of the moving boundary of the immersed body on the surrounding
ow. The value of f (x) is typically unknown, and it is therefore necessary to introduce a kinematic constraint of
o-slip:

u(X) = UΓ (X), (3)

roviding closure of the overall system of Eqs. (1)–(3). Note that Eqs. (1)–(2) are formulated on the whole Cartesian
rid, while Eq. (3) holds only for the domain (X), which includes the surface of the immersed body. We distinguish
etween the variables related to each of the grids by assigning them either lowercase or uppercase fonts, where
ll the lowercase variables are related to the Cartesian grid, and all the uppercase variables are related to the grid
oinciding with the surface of the immersed body. In accordance with the IBM formalism, all the variables related
o the Cartesian grid are called Eulerian variables, while the Cartesian grid is called an Eulerian grid. The surface
f the immersed body is determined by a set of discrete points, which are called Lagrangian points, and all the
ariables related to these points are called Lagrangian variables.

An example of a uniform structured staggered 2D Eulerian grid underlying a set of Lagrangian points determining
he surface of an immersed body is shown in Fig. 1. In general, the Lagrangian points do not coincide with the
nderlying Eulerian grid. As a result, two adjoint operators, namely, the interpolation operator, I, interpolating
he Eulerian velocities to the locations of the Lagrangian points, and the regularization operator R, smearing
he volumetric Lagrangian forces on the adjacent Eulerian grid, must now be introduced to allow exchange of
nformation between the two grids:

I(u(xi)) =

∫
Ω

(u(xi )) · δ(Xk − xi)dVΩi , (4a)

R(Fk(Xk)) =

∫
S
(Fk(Xk)) · δ(xi − Xk)dVSk , (4b)

here the indexes i and k run for the whole discrete range of Eulerian and Lagrangian coordinates, respectively, and
he indexes Ω and S correspond to the Eulerian and Lagrangian grid cells, respectively, thus determining dVΩi as

the i th volume of the Eulerian flow domain and dVSk as the virtual volume confining the kth Lagrangian point. To
achieve the best accuracy, a uniform grid in the vicinity of the immersed body surface is utilized. The surface of the

immersed body is determined by a set of equi-spaced Lagrangian points, and the distance between the neighboring
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Lagrangian points is approximately the same as the cell width of the underlying Eulerian grid, also yielding dVΩi

≈ dVSk . Eqs. (4a) and (4b) utilize the regularized Dirac delta function δ of the form:

δ(r ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

6∆r

[
5 − 3 |r |

∆r −

√
−3

(
1 −

|r |

∆r

)2
+ 1

]
for 0.5∆r ≤ |r | ≤ 1.5∆r ,

1
3∆r

[
1 +

√
−3

(
|r |

∆r

)2
+ 1

]
for |r | ≤ 0.5∆r ,

0 otherwise,

(5)

ntroduced by Roma et al. in [55]. Here, ∆r is the cell width in the r direction, which means that the above delta
unction supports three grid cells in each spatial direction while interpolating Eulerian velocities and regularizing
agrangian forces, since we utilize the same delta function in both the interpolation and regularization operators.
he chosen delta function was specifically designed for performing calculations on staggered grids; this function
as gained popularity in recent years [30,32,44,50,54] due to its compact kernel (only 3 cells in each direction of
he computational domain). Interpolation of the discrete Eulerian velocities ui and regularization of the discrete
agrangian forces Fk for the 3D configuration is performed by employing the following formulas:

UΓ
k = ∆x3

∑
i

uiδ(xi − ϵk)δ(yi − ηk)δ(zi − ζk), (6)

fi = ∆x3
∑

k

Fkδ(ϵk − xi )δ(ηk − yi )δ(ζk − zi ), (7)

ielding the resultant discrete boundary velocity at the kth Lagrangian point, UΓ
k and the discrete volumetric force

t the i th point (xi , yi , zi ) of the Eulerian staggered grid. According to the SIMPLE method [56], NS equations
Eqs. (1)–(3)), equipped with the IBM capability are transformed into:

1
Re

L(u∗) −
3u∗

2∆t
+ R(Fk(Xk)) =

−4un
+ un−1

2∆t
+ N(un) + ∇ pn, (8)

I(u∗(xi)) = UΓ (Xk), (9)

△(δp) =
3

2∆t
∇ · u∗, (10)

un+1
= u∗

−
2∆t

3
∇(δp), pn+1

= pn
+ δp, (11)

here Eqs. (8), (9) play the role of predictor, yielding a non-solenoidal velocity field u∗ by taking the values of
he pressure field pn from the previous time step, and Eqs. (10), (11) are used to correct the pressure field and to
roject the predicted velocity onto a divergence-free subspace. The linear terms L entering the momentum equation
8) and corresponding to the Laplace operator are treated implicitly, while the nonlinear convective terms N are
aken explicitly from the previous time step. A second-order backward finite difference scheme is used for time
iscretization, and a standard second-order finite volume method [56] is used for the discretization of all the spatial
erivatives.

.2. Domain decomposition

Explicit treatment of the nonlinear terms allows us to solve Eqs. (8)–(9) successively for each component of
he predicted velocity vector u∗ and then to continue with a standard projection-correction step determined by Eqs.
10)–(11). We then rewrite Eqs. (8)–(9) in a compact block-matrix form:[

H R
] [

u∗
]

=

[
RH Sn−1,n

Γ

]
, (12)
I 0 F U

5
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where H =
1

Re L−
3

2∆t I is the Helmholtz operator acting on each component of the predicted velocity vector u∗;
I is a unity matrix; R and I are rectangular matrices that contain terms resulting from applying the regularization
and interpolation operators, respectively; and RH Sn−1,n is the RHS vector containing the pressure gradient and
nonlinear convective terms known from the previous time steps. We note in passing that the matrices R and I are
transpose to one another if the same Dirac delta function is utilized in both the interpolation and regularization
operators. This property is, however, not explicitly exploited in the present study.

We next focus on the strategy for the solution of the system of Eqs. (12) by utilizing the domain decomposition
technique. Suppose that a generic package capable of solving the Helmholtz equation is available:

[H][u∗] = [RH Sn−1,n]. (13)

Assume also that the above package can be used as a black box driver (i.e., without introducing any modifications
into the package itself) to obtain u∗. In general, such a driver can be one of two types: either a standalone solver
capable of solving the Helmholtz equation (e.g., FISHPACK [57]) or a whole CFD package for simulation of
incompressible flows from the family of projection or fractional step solvers (e.g., OpenFoam [58]). When utilizing
a driver of the first type, one should explicitly build and provide the driver with the matrix H and the vector
RH Sn−1,n with appropriate boundary conditions, while utilizing a driver of the second type will require only proper
etermination of the boundary conditions. Furthermore, drivers of both types can also be used for calculating the
roduct of H−1 and any generic vector Z. For a driver of the first type, the product is obtained by providing the
ackage with an already existing matrix H and with a modified RH S vector whose values are now equal to the
alues of the Z vector. For a driver of the second type, the only requirement is modification of the RH S vector. To
emonstrate the capabilities of the developed methodology, the solver of the second type developed in [59] is used
s the driver. Keeping in mind the above capabilities, we perform an analytic transformation of the system of Eqs.
12) known as a Schur complement decomposition:

F = [IH−1R]−1[IH−1RHSn−1,n
− UΓ ], (14a)

u∗
= H−1[RHSn−1,n

− RF]. (14b)

he idea is to first find the values of the DLM, F, providing the kinematic constraints of no-slip, and thereafter to
se them to find the values of the predicted velocity vector, u∗. Note that despite the fact that the process is separated
nto two stages, the obtained F and u∗ values are fully coupled, as the solution procedure is implicit. Obtaining the
olution of the whole problem by a straight-forward application of Eqs. (14a) and (14b) would require us to invert the
atrices [H] and [IH−1R], which is computationally prohibitive. Instead, the solution can be obtained by calculation

f a series of matrix–vector products for the matrix [H−1] and subsequent lower-upper (LU ) decomposition of the
mall matrix [IH−1R]. Moreover, most calculations required to complete the stages described in Eqs. (14a) and
14b) can be pre-computed once at the beginning of the computational process and then reused throughout the
imulation. The details of implementation of the developed methodology are given in the next section.

. Implementation details

Prior to describing the numerical procedure developed for the solution of Eqs. (14a) and (14b), we make a
umber of observations regarding the structure of matrices I and R. We recall that the matrices contain the terms
hat were obtained by employing the interpolation and regularization operators, respectively, to enforce the kinematic
onstraints of no-slip on the surface of the immersed body. The characteristic property of these two matrices is their
xtreme sparseness, resulting from the compact kernel of the utilized discrete delta function. In fact, considering a
ypical 3D problem characterized by [106 – 107] degrees of freedom for each velocity component, a row of matrix
(or alternatively a column of matrix R) contains only order of 102 non-zero values. As a result, both the I and R
atrices can be stored in compressed sparse row (CSR) format, while their matrix–vector product can be efficiently

alculated by employing standard routines from the Intel Math Kernel Library (MKL). Next, we give a detailed
escription of both the pre-computing and time integration stages of the developed methodology.

.1. Pre-computing stage

Recalling that the present methodology was developed for flow simulation in the presence of periodically moving
mmersed bodies, we divide a single period into an integer number of cyclically repeated time steps. All the
rocedures described in this section are thus performed for each time step entering into a single period.
6
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3.1.1. Calculation of matrix [IH−1R]
The matrix [IH−1R] is a square matrix of dimensions (m ×m), where m is the total number of Lagrangian points

determining the surfaces of all the immersed bodies involved in the simulation. For a typical 3D problem, m lies
within the range of m ∈ [103 – 104]. Note also that according to [54] an absolute value of the sparsing threshold,
s, is set to s = 10−21. Consequently, only entries with an absolute value higher than the value of s are stored in
the matrix [IH−1R]. The matrix itself is stored in a row-column-value (RCV) format, as follows:

• For each column [R]k , 1 ≤ k ≤ m of the matrix R:

– Employ a generic driver of either the first or second type, with a modified right hand side [RH Sn−1,n] =

[R]k to calculate the product H−1[R]k ;
– Multiply the matrix I stored in the CSR format by the obtained vector, employing standard routines from

the Intel MKL;
– Fill the kth column [IH−1R]k of the matrix [IH−1R] in RCV format while using the

sparsing threshold, s.

Note that the above process allows us to avoid the creation of intermediate matrices of large dimensions and to
directly build the matrix [IH−1R] of dimensions (m×m). An additional important observation is that all three stages
of the above algorithm are independent of both the column number k and the time step ∆t , which makes the whole
pre-computing stage “embarrassingly” parallel. This parallelism can be exploited on two levels: first, while building
the matrix [IH−1R], i.e., the columns of the matrix can be calculated separately and then collected into the whole
matrix for performing the calculation stage,1 and second, while calculating the matrices [IH−1R] corresponding to
the different time steps in a single period.2

3.1.2. Factorization of matrix [IH−1R]
Instead of direct calculation of the inverse of the matrix [IH−1R], we perform LU factorization, which then

allows us to obtain the product of [IH−1R] and any generic vector of appropriate length. LU factorization was
performed by utilizing the open-source MUMPS solver [60,61], and the LU factors calculated for each time step
were stored on a hard disk.3

3.2. Time integration stage

After completing the pre-computing stage, the time integration stage can be initiated. Implementation details of
all the steps required to complete the solution of Eqs. (14a) and (14b) for one time step are as follows:

• Calculate [IH−1RHSn−1,n]:

– Employ a generic driver, of either the first or the second type, with its original RHS to calculate the
product [H−1RHSn−1,n];

– Multiply the matrix I stored in CSR format by the obtained vector, employing standard routines from
the Intel MKL;

• Calculate [IH−1RHSn−1,n
− UΓ ] simply by subtracting two vectors;

• Calculate F4 (See Eq. (14a)):

– Retrieve the LU factors of the matrix [IH−1R], which had been calculated in the pre-computing stage
and stored on a hard disk for every time step;

– Assign [IH−1RHSn−1,n
− UΓ ] to the RHS of Eq. (14a);

– Perform standard backward and forward substitutions of the factorized matrix [IH−1R] with respect to
the RHS built in the previous step;

1 This strategy is preferable for stationary immersed bodies.
2 This strategy is preferable for periodically moving immersed bodies and was utilized in the present study.
3 A still not released version of MUMPS allowing for the storage and reconstruction of LU factors was provided by the MUMPS

developers, who can be contacted through the software website http://mumps.enseeiht.fr/.
4 All the stages of this bullet are automated in MUMPS.
7
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• Calculate u∗ (See Eq. (14b)):

– Multiply the matrix R stored in CSR format by the calculated DLM vector F, employing standard routines
from the Intel MKL;

– Calculate [RH Sn−1,n
− RF] simply by subtracting two vectors;

– Employ a generic driver, of either the first or the second type, with a modified RHS equal to [RH Sn−1,n
−

RF].

Note that after completing the pre-computing stage, the time integration of the current methodology is based on a
double implementation of the original generic driver (of either the first or the second type), namely, for the first time
when calculating H−1RHSn−1,n and for the second time when calculating H−1[RH Sn−1,n

− RF] products exactly
the same procedure as that for any fully explicit formulation of the direct forcing IBM. As a result, the developed
semi-implicit methodology not only provides a more accurate imposition of the kinematic constraints of no-slip
on the surfaces of the periodically oscillating immersed bodies, but it is also as time efficient as its fully explicit
counterpart.

4. Results and discussion

4.1. Flow around a transversely oscillating sphere

An oscillating sphere of diameter D in an otherwise quiescent fluid confined by a rectangular prism of dimensions
4D × 4D × 6D is considered (see Fig. 2). The sphere oscillates in the z direction with periodic velocity Uz given
by:

Uz = Umax sin(ωT ), (15)

where ω is the angular oscillating frequency, and T is dimensional time. By setting the location of the center of the
coordinates in the middle of the prism, the vertical coordinate of the center of the sphere can be obtained directly
by integrating Eq. (15) over time to yield:

Z = −
Umax

ω
cos(ωT ). (16)

o-slip boundary conditions are applied to the surface of the sphere and all the walls of the computational domain.
fter the values of D, Umax , Umax/D and ρU 2

max have been used for scaling the length, velocity, time and pressure
elds, respectively, the kinematics of the oscillating sphere is governed by the following non-dimensional equations:

uz = sin
(

D
A

t
)

, (17)

z = −
A
D

cos
(

D
A

t
)

, (18)

where A = Umax/ω corresponds to the oscillation amplitude of the sphere. The flow is governed by two non-
dimensional parameters, namely, Re = Umax D/ν and the ratio of the oscillation amplitude to the sphere diameter,
A/D. We now focus on the force balance equation of an accelerating sphere in an otherwise quiescent fluid. Note
hat in accordance with the IBM formalism the sphere is filled with the same fluid as that outside the sphere; the
orce balance equation may thus be expressed as [33]:

d
dt

∫
Vsph

udV = fD +

∫
Vsph

fdV . (19)

he first term of the RHS of Eq. (19) represents the instantaneous drag force exerted on the sphere by the fluid,
hile the second term corresponds to an instantaneous external force that should be exerted on the body to provide

ts prescribed kinematics. This term can be directly calculated by summing all the IBM forces in accordance with:∫
V

fdV =

∑
fi jk∆x∆y∆z. (20)
sph i jk

8
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Fig. 2. Schematic representation of the physical model. A sphere of diameter D is confined by a prismatic enclosure of dimensions
D × 4D × 6D. The sphere oscillates in the z direction with amplitude A.

qs. (19), (20) enable computation of the drag force, fD . To perform this calculation, we assume rigid-body motion
f the whole sphere interior [30], which allows us to approximate the LHS term of Eq. (19) as:

d
dt

∫
Vsph

udV =
duc

dt
Vsph, (21)

here duc/dt is the acceleration of the center of mass of the sphere, which can be obtained analytically by taking
he time derivative of Eq. (17). For purposes of comparison, the drag force, fD , can also be expressed in terms of
he drag coefficient determined for a spherical geometry as:

CDi =
8FDi

ρU 2
maxπ D2 , (22)

here FDi is the value of the i th component of the dimensional drag force FD . Utilizing the scaling of the current
tudy, the drag coefficient may be expressed in terms of the non-dimensional drag force FD as CDi = 8Fdi /π .

.1.1. Verification study
The developed methodology was verified by comparison of the results obtained for a transversely oscillating

phere with the corresponding data available in the literature. We started with a comparison of the presently
alculated time evolutions of the non-dimensional drag forces in the z direction with the corresponding values
eported in [62] for two sets of Re and A/D values, namely, (Re, A/D) = (40, 5) and (Re, A/D) = (40, 0.3125),
s shown in Fig. 35. The calculations were performed on 200 × 200 × 300 uniform grid with a time step ∆t equal
o 10−3 of the oscillation period. An acceptable agreement between the present and previously reported FD values
as obtained for the entire length of the oscillation period, while the existing insignificant deviation between the

FD values can be attributed to the assumptions of an infinite computational domain, and an axi-symmetric flow
egime made in [62].

5 The non-dimensional time t and drag force F were multiplied by the factors A and 3π , respectively, to match the scaling used in [62].
D D Re

9
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Fig. 3. Comparison between the time evolutions of the non-dimensional drag forces FD obtained for: (a) (Re, A/D) = (40, 5), and, (b)
Re, A/D) = (40, 0.3125). Solid lines correspond to the currently obtained results, while open circles correspond to the values that were
igitally scanned from [62].

We then further verified the developed methodology by comparison of the values of the peak drag coefficient,
Dmax , with the corresponding values reported in [63] as shown in Fig. 4. The CDmax values were calculated on the

basis of the drag force in the z direction exerted by the flow on the vertically oscillating sphere. The characteristics
of the computational set up in terms of the grid resolution and the time step value were the same as those used in
the previous verification test. In agreement with the available data [63], our current results successfully reproduce
two general trends: first, for a given value of the A/D ratio, the CDmax values decreased with increasing values of
the Re number; and second, for a given value of the Re number, the CDmax values decreased with increasing A/D.
The first trend can be attributed to the fact that the value of the drag coefficient is inverse to Re, while the second
trend is related to the inertia effects of the flow, which are inverse to the A/D ratio.6

It can be seen that there is acceptable agreement between the current and previously reported CDmax values
for the entire range of Re and A/D values. As a general trend, the discrepancy between the results increased
with increasing Re and decreasing A/D values. The maximal discrepancy (not exceeding 7%) was observed for
Re = 100 and A/D = 0.5. The discrepancies between the results of the current study and those reported in [63]
an be explained by differences in the size of the computational domains and the basic assumptions made when
erforming the numerical simulations. In particular, the results reported in [63] were obtained on the assumption
f axi-symmetric flow in the computational domain extending 50 diameters in both the radial and axial directions,
hile the present simulations were performed for a much smaller (4D × 4D × 6D) non-axi-symmetric domain.
he higher values of the peak drag coefficient obtained in the current study can be attributed to the increased

6 This statement becomes obvious after taking the time derivative of Eq. (17).
10
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Fig. 4. Comparison of the peak drag coefficient, CDmax , obtained for Re = 10 (⋄), Re = 20 (×), Re = 50 (∗) and Re = 100 (•) as a
unction of the A/D ratio with the corresponding CDmax values reported in [63].

mpact of the no-slip boundaries of the prism. Another possible reason for the observed discrepancies could be the
ssumption, in the current study, of rigid-body motion of the sphere interior in the calculation of the instantaneous
rag force FD . This assumption is a good approximation when the flow inertia is low, i.e., for high values of the

A/D ratio, but it may not be entirely true for low A/D values, a notion that is also consistent with the slightly
igher value of the presently obtained peak drag compared with the corresponding value from [62] obtained for
Re, A/D) = (40, 0.3125) (see Fig. 3-b). However, this deviation is evident only in the post-processing stage and
as no impact on the accuracy of the calculated flow field characteristics.

.1.2. Grid and time step convergence
The sensitivity of the developed methodology to the grid size and time step values was also investigated. For

his purpose, the convergence of the values of the peak drag coefficients obtained the coarse (100 × 100 × 150)
nd fine (200 × 200 × 300) grids was studied. The results obtained on the two grids were then further extrapolated
o their zero-grid-size asymptotic values, by employing the Richardson extrapolation, and thereafter compared with
he numerical results reported in [63]. A detailed comparison of all the obtained results is summarized in Table 1. It
an be seen that the CDmax values decreased monotonically with mesh refinement, while the deviation between the
ne grid and the zero-grid-size asymptotic values did not exceed 3%. An additional important observation is related

o the time evolution of the CDmax obtained on different grids. Spurious high-frequency oscillations (in the form of
aw teeth) were observed for the time evolution of CDmax values calculated on the coarse grid. These oscillations
ere, however, completely smoothed out with mesh refinement. For this reason, all further results obtained in the

ourse of the present study were obtained on a 200 × 200 × 300 grid. An extensive investigation of the sensitivity
f the obtained results to the time step value revealed that sustainable numerical stability of the developed method
as achieved for Courant number values C ≤ 0.2, while a time step independence of the obtained results (including

moothing out of the spurious saw teeth oscillations) was achieved for the values of ∆X ≤ 2 × 10−2, ∆t ≤ 10−3

nd Re ≤ 200. In addition, we were able to show that throughout the entire oscillation period the maximal absolute
iscrepancy between the sphere velocity determined by its kinematics and the velocities obtained by interpolation
rom the Eulerian grid to the sphere surface was within a truncation error of the numerical scheme (i.e., O(∆X2)),
hich verifies accuracy of the imposition of no-slip kinematic constraints on the surface of the sphere.

.1.3. Efficiency characteristics
We now focus on the efficiency characteristics of the developed methodology. In the first stage, we focus on

btaining trends for memory consumption and averaged wall clock time taken to compute a time step in the pre-
omputing and time integration stages, both utilizing the MUMPS solver. The trends were obtained by performing
ll the simulations on a standard Unix server equipped with 2 Intel Xeon 12C Processors (Model E5-2697v2, 24
ores in total), 128 GB RAM. We used the default MUMPS settings, which activate OpenMP parallelization on all
he cores for performing LU -decomposition. It should be noted that the current study used only the shared memory
i.e., OpenMP) parallelization version of the driver for the solution of the NS equations [59]. During this stage, the
umber of cores used was kept constant and equal to 24, which means that all the available cores of the server

ere used. The purpose of the current stage was to predict the RAM consumption and the averaged wall clock time

11
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Table 1
Comparison between current and previously published CDmax values.

Peak drag coefficient

Re = 10 Re = 20

A/D 100 × 100 × 150 200 × 200 × 300 Richardson Ref. [63] A/D 100 × 100 × 150 200 × 200 × 300 Richardson Ref. [63]
0.5 8.88 8.59 8.49 8.14 0.5 6.26 6.01 5.93 5.7
1 6.77 6.62 6.57 6.32 1 4.58 4.47 4.43 4.27

1.5 6.02 5.92 5.89 5.8 1.5 3.98 3.93 3.91 3.83

Re = 50 Re = 100

A/D 100 × 100 × 150 200 × 200 × 300 Richardson Ref. [63] A/D 100 × 100 × 150 200 × 200 × 300 Richardson Ref. [63]
0.5 4.27 4.04 3.96 3.82 0.5 3.44 3.18 3.09 2.97
1 2.93 2.85 2.82 2.74 1 2.33 2.13 2.06 2.06

1.5 2.51 2.47 2.46 2.39 1.5 1.89 1.82 1.8 1.77

at both the pre-computing and time integration steps, which will be required for solving problems with an even
denser grid resolution than those presently utilized, given that the same hardware and the OpenMP parallelization
are used.

The trends for both efficiency characteristics were obtained by utilizing a power law best fit of the corresponding
easurements of the efficiency characteristics made for three grid resolutions and four values of the Re number, as

shown in Fig. 5(a) – (c). It is noteworthy that the pre-computing stage was characterized by higher absolute values
of consumed RAM than the time integration stage. This difference can be explained by the extra memory consumed
by the MUMPS solver while performing LU factorization. Once the factorization stage is completed, only the LU
actors are stored on the hard disk,7 while all the dynamically allocated auxiliary memory is automatically released.
he finding that the configurations characterized by lower Re numbers typically consumed more memory can be

explained by the more pronounced elliptical character of the low-Reynolds flows, which led to a higher number of
non-zero entries in the [IH−1R] matrix, thereby satisfying the pre-determined sparsing threshold s = 10−21. We note
hat the exponent values of the memory consumption best fits built for both the pre-computing and time integration
tages are significantly lower than unity, indicating efficient exploitation of the sparseness of the matrices involved
n both stages.

The efficiency of the developed methodology in terms of the averaged wall clock time taken to compute a time
tep in both pre-computing and time integration stages can be assessed by examining the corresponding best fits
hown in Fig. 5(c). It can be seen that the exponent value corresponding to the best fit built for the time integration
tage is very close to unity, indicating the high efficiency of the developed methodology, whose time consumption
rows almost linearly with increasing grid resolution. We note here that the best fit corresponding to the time
onsumption in the pre-computing stage is characterized by a much higher slope than that corresponding to the
ime integration stage. This observation can be explained by the fact that an increasing grid resolution actually
as a dual effect on the number of calculations to be performed in the pre-computing stage. First, it increases the
imensions of the matrix [H], corresponding to the Helmholtz operator of original solver, which is not equipped
ith the immersed boundary functionality and second, it increases the number of Lagrangian points so as to meet

he requirement of approximately the same distance between the neighboring Lagrangian points and the cell width
f the underlying Eulerian grid, which is prerequisite for achieving high accuracy of the obtained results.

In the next stage we focus on the strong scaling characteristics of the developed methodology. The speed up S
was obtained for pre-computing and time integration steps on 100 × 100 × 150 and 200 × 200 × 300 grids by
employing 1, 2, 6, 12 and 24 processors on a single server. The speed up values for both stages averaged over the
entire set of Re numbers are shown if Fig. 6. Remarkably, that the speed up values obtained for the pre-computing
tage on both grids and approximated by the power fit law are characterized by about the same (≈ 0.6) value of
xponent. The superiority of the speed up values obtained for the denser grids is due to the coefficient multiplying the
xponent. The coefficient value is apparently correlated with the ratio between the time spent on the operations run
n parallel and the total time spent also on sequential parts of the algorithm and including overheads. As expected,
he ratio value increases with the grid resolution resulting in about 1.5 higher speed up obtained for 200 × 200 × 300

grid compared to that obtained for 100 × 100 × 150 when running the simulation of 24 cores.

7 The stored factors are later retrieved cyclically during the time integration stage.
12
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Fig. 5. Efficiency characteristics: (a) memory consumption in the pre-computing stage; (b) memory consumption in the time integration
tage; (c) averaged wall-clock time taken to compute a time step in the pre-computing and time integration stages.

The time integration step is characterized by a much lower speed up values compared to the pre-computing
tep which is a consequence of intrinsically sequential character of backward and forward substitution procedures
onstituting the major part of calculations performed at this step. Despite significant scattering of the speed up
alues, the same trend as that observed for the pre-computing stage, i.e. the higher speed up values typical of the
enser grids is evident. After approximating S − N p functionality by the power law best fit it can be seen that the
pproximation made for the denser grid is characterized by both higher coefficient and exponent values, compared
o its coarse grid counterpart.

.1.4. Flow around a transversely oscillating sphere
Fig. 7 presents the time evolution of the drag coefficient, CD , obtained for the values of Re = 100, 200, 150 and

200 and A/D = 1. The trend observed here was already evident in Fig. 4, i.e., the inverse growth of the peak drag
coefficient with Re is also preserved for the higher values of Re number. Noteworthy also is the presence of non-
negligible inertia effects of the flow, which are expressed in a clearly visible phase lag between the time evolution
of the position of the sphere z − z and the C curves, indicating that the fluid driven by an oscillating sphere
0 D
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Fig. 6. Speed up values S calculated for the problem simulated on 100 × 100 × 150 grid (marked by black squares ■) and on
200 × 200 × 300 grid (marked by black diamonds ♦) as function of employed cores: (a) pre-computing step; (b) time integration step.

Fig. 7. Time evolution of the drag coefficient, CD , obtained for Re = 50, 100, 150, and 200 (solid line) and A/D = 1 superimposed on the
ime evolution of the position of the sphere, z − z0 (dashed line).

ontinues to move even after the sphere has completely stopped moving. The flow patterns developing in different
arts of the sphere trajectory may be visualized by examining the isosurfaces of the λ2 criterion corresponding to

the value of λ2 = −0.1, as shown in Fig. 8. According to [64], the isosurfaces characterize the vortical structures
f the flow. As a result of the flow inertia, annular vortical structures form at the lowest and highest points of the
phere trajectories and are then shed from the sphere surface. It is also remarkable that the lifetime of the annular
ortices increases with increasing values of the Re number. In fact, for Re = 100, the vortical structure dissipates

almost immediately after separation from the surface of the sphere, while for Re = 200, the structure continues to
evolve within about half a period of the sphere oscillation.

It should be noted here that attempts were made to simulate the flow developing at an even higher value of Re,
namely, Re = 300. Unfortunately, however, when the simulations were performed on a 200 × 200 × 300 grid,
the time evolution of CD was again polluted by the spurious high-frequency oscillations similar to those previously
observed for simulations on a 100 × 100 × 150 grid. For stationary setups, it would be possible to eliminate

this numerical artifact by performing simulations on even finer grids, but for configurations containing oscillatory

14
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Fig. 8. Visualization of the vortical structures generated by a transversely oscillating sphere over a single oscillation period, calculated for
Re = 100, 150 and 200 and A/D = 1.

moving immersed bodies it becomes prohibitively expensive. Motivated by this constraint, our future research will
be focused on developing a second-order sharp interface formulation of the developed methodology that will allow
us to implicitly impose no-slip kinematic constraints with the second-order accuracy while keeping the method’s
15
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Fig. 9. Time evolution of the drag coefficient, CD , obtained for Re = 50, 100, 150 and 200 (solid line) and A/D = 0.5 for: (a) the lower
phere superimposed on the time evolution of the position of the sphere, z − z̃l (dashed line); and (b) the upper sphere superimposed on
he time evolution of the position of the sphere, z − z̃u (dashed line).

ntrinsic portability, i.e., without introducing any modifications into the existing efficient time steppers of the NS
quations.

.2. Flow around a pair of transversely out-of-phase oscillating spheres

To further demonstrate the capabilities of the developed methodology, the configuration of a pair of out-of-phase
scillating spheres was considered. Similarly to the previous configuration, the flow was calculated for the values
f Re = 100, 200, 150 and 200. Both spheres oscillate with a value of A/D = 0.5, each around its own oscillation
enter placed at distance of 1.25D from the top and the bottom boundaries of the prism for the upper and lower
pheres, respectively. As a result, the minimal distance between the spheres of 0.5D is reached when the velocity
f the two spheres is zero. This setup was chosen carefully with the aim to use the same prismatic enclosure of
imensions 4D × 4D × 6D as that utilized in previous simulations. The time evolution of the drag coefficient
D calculated for the upper and lower spheres as a function of the Re number is presented in Fig. 9(a) and (b),

espectively. The time evolution of CD is superimposed on the time evolution of the position of each sphere relative
o its oscillation center, as indicated by dashed lines in the Figures.

Similarly to the previous configuration, there is a clearly distinguishable phase lag between the time evolutions
f CD and the corresponding position of the sphere, which again confirms the existence of the non-negligible inertia
ffects of the surrounding flow. By virtue of the symmetry of the initial and boundary conditions, it can be seen that
he time evolutions of CD of both spheres are symmetric relative to the corresponding oscillation centers for the
ntire range of Re numbers up to a slight bias reflected in a difference between the maximal and minimal absolute
alues for CD of each sphere. In particular, the absolute CD values are consistently higher when the spheres are close

o each other for the entire range of Re values, as follows from the data acquired over a single oscillating period for
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Table 2
Absolute values of the minimum and maximum CD acquired for the upper sphere
as a function of the Re number.

Re Max Min

50 4.1 4.25
100 3.24 3.37
150 2.89 3
200 2.69 2.8

the upper sphere,8 as detailed in Table 2. It is noteworthy that the CD time evolutions acquired for the two spheres
are equal to each other up to multiplication by minus unity i.e., the mutual effect of the spheres is independent
of the direction of their motion and is a function only of their acceleration and the distance between them. As
the spheres move away from each other, their mutual effect decreases and eventually tends to zero, resulting in
smaller absolute values of the CD extrema. This observation is supported by a comparison of the current extremum
values of CD with the corresponding values of peak drag coefficients calculated for a single oscillating sphere (at
A/D = 0.5) and for Re = 50 and 100, as detailed in Table 1. It can be seen that for the case when the two spheres
are at the maximal distance from one another the current extremum values of CD are fairly close (1.5% deviation)
to the peak drag coefficient values acquired for a single oscillating sphere.

It should be mentioned, that, although significantly alleviated, the insignificant non-physical high-frequency
oscillations can again be recognized in the time evolution of the CD values of the two spheres for Re ≥ 100.
These high-frequency oscillations are a numerical artifact, reappearing as a result of the acceleration of the two
spheres9 being twice as high as that characterizing the previous configuration. As has already been mentioned, the
observed high-frequency oscillations can be eliminated either by utilizing grids that are even more dense or by
employing a second-order sharp interface formulation of the developed methodology, which will be the focus of
our future work.

The obtained results were visualized by utilizing the same technique as that used for the previous configuration,
i.e., by presenting vortical structures recognized by isosurfaces of the λ2 criterion corresponding to the value of
λ2 = −0.1. The isosurfaces are presented for four representative time instances taken over the oscillation period, as
shown in Fig. 10. Surprisingly, the inertia of the surrounding flow does not have a strong effect on the intensity of
the shedding phenomenon. In fact, despite the higher acceleration characterizing the flow regime of the flow under
consideration, the intensity of shedding of the annular vortex structures from the sphere surface is significantly less
pronounced, as can be seen in Fig. 10. This is apparently a consequence of the half length of the trajectory of the
spheres, which leads to lower peak values of the local fluid flow rate generated by the spheres.

5. Summary and conclusions

A novel semi-implicit immersed boundary formulation based on the Schur complement approach was developed
for the simulation of incompressible flows in the presence of periodically moving immersed bodies. The developed
formulation was successfully verified for the flow generated by an oscillating sphere for the entire range of Re values
and for the values of A/D = 0.5, 1, and 1.5. Being a continuation of our previous study [54], the developed approach
comprises a generic methodology that allows us to equip any existing time marching solver of NS equations based
on a segregated pressure–velocity coupling (e.g., SIMPLE, fractional step, projection methods and their derivatives)
with the IBM functionality. The developed method was applied for simulation of the flows generated by a pair of
out-of-phase oscillating spheres. The results of the analysis were presented in terms of the major flow characteristics,
including the time evolution of the total forces exerted on the oscillating bodies by the surrounding flow and the
qualitative structure of the vortical structures generated by the bodies.

A distinctive feature of the developed methodology is that it is composed of two stages, namely, a pre-computing
stage and a time-integration stage. The pre-computing stage of the algorithm is “embarrassingly” parallel, which
allows us to boost the computational efficiency without investing any significant additional effort. The parallelism
can be intelligently adopted for configurations with stationary or periodically moving immersed bodies. The

8 There is no difference in the maximal and minimal absolute values of CD acquired for the two spheres.
9 A direct consequence of a double reduction of the A/D value.
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Fig. 10. Typical pattern of vortical structures characterized by the isosurfaces of λ2 = −0.1, generated by a pair of out-of-phase transversely
scillating spheres over a single oscillation period calculated for Re = 100, 150 and 200 and A/D = 0.5.

fficiency of the time integration stage can be further increased taking advantage of the GPFS allowing for extremely
ast reading of LU factors pre-computed and saved on a hard disk for each time step over a single oscillation period.
verall, the performance characteristics of the developed methodology for all the configurations simulated in the
18
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framework of the present study can be summarized in terms of the following quantitative data: RAM consumption
– no more than 10 GB; hard disk space required for storing LU factors for all the flow fields for 103 time steps
over a single period – no more than 1.5 TB; typical wall-clock time required for pre-computing a single time step
on a single standard Linux server containing 24 cores – order of one hour on 200 × 200 × 300 grids; and typical

all-clock time required for performing time integration of a single time step on a single standard Linux server
ontaining 24 cores – less than 2 s. The strong scaling study was performed and revealed that the pre-computing
nd time integration stages of the currently developed methodology scale as ∼ N p0.63 and ∼ N p0.27, respectively,
hen the simulations are run on 200 × 200 × 300 grid.
Although the numerical simulations performed in the framework of the current study were restricted to

onfigurations containing a single sphere and a pair of out-of-phase oscillating spheres, it should be stressed that the
ethodology can be used to simulate a wide spectrum of incompressible flows in the presence of immersed bodies
ith any periodic kinematics. For example, the method can be straight forwardly applied for the simulation of
ows in the presence of bodies characterized by any kind of periodic (including rotating) or undulatory kinematics.
his capability is of significant importance for high-fidelity simulations of flows driven by various kinds of rotor
achinery, for the undulatory motion of tiny sea creatures and miniaturized robots, and for various biomedical

pplications in which the flow is driven by peristaltic contraction of the surrounding tissues. All the above
pplications will be the focus of our future studies, which will include (i) development of a second-order sharp
nterface formulation of the methodology to enable relaxation of the high grid resolution requirement, and (ii)
mplementing more efficient parallelizing of both pre-computing and time marching stages by employing hybrid
nd distributed memory paradigms.
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