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Abstract The instability mechanism of fully three-dimensional, highly separated, shear-driven confined flow
inside a diagonally lid-driven cavity was investigated. The analysis was conducted on 1003 and 2003 stretched
grids by a series of direct numerical simulations utilizing a standard second-order accuracy finite volume code,
openFoam. The observed oscillatory instability was found to set in via a subcritical symmetry breaking Hopf
bifurcation. Critical values of the Reynolds number Recr = 2320 and the non-dimensional angular oscillating
frequency ωcr = 0.249 for the transition from steady to oscillatory flow were accurately determined. An
oscillatory regime of the bifurcated flow was analyzed in depth, revealing and characterizing the spontaneous
symmetry breaking mechanism. Characteristic spatial patterns of the base flow and the main flow harmonic
were determined for the velocity, vorticity and helicity fields. Lagrangian particle tracers were utilized to
visualize the mixing phenomenon of the flow from both sides of the diagonal symmetry plane.

Keywords Diagonally lid-driven cavity · Oscillatory instability · Critical Reynolds number Recr ·
Critical oscillation frequency ωcr · Spontaneous symmetry breaking · Subcritical Hopf bifurcation

1 Introduction

Investigation of bifurcated shear-driven flows in confined enclosures is important for the understanding major
instability mechanisms. The performed studies have included precise determination of critical values of the
Reynolds number, Recr, and of the angular oscillating frequency, ωcr, at which the flow transition to unsteadi-
ness occurs, determination of the character of the bifurcation (supercritical or subcritical) and investigation
of the spontaneous symmetry breaking phenomenon. The lid-driven cavity is perhaps the most popular set up
traditionally used for modeling confined shear-driven flows. Due to its simple geometry, the incompressible
lid-driven cavity flow has been the focus of extensive theoretical and numerical research for many decades. Be-
gun early with theoretical works [1,2] and continued with numerical studies [3,4], state-of-the-art lid-driven
flow research covers the entire range of fluid transport phenomena, including longitudinal vortices, corner
eddies, non-uniqueness, transition to unsteadiness and turbulence [5].

Today, the two-dimensional lid-driven cavity is a recognized fluid-mechanics benchmark, providing exten-
sive theoretical results for both steady and bifurcated flows [5–7]. However, the two-dimensional flow stability
limit is strongly (about 8 times) overstimulated compared with three-dimensional configurations (see, e.g., [8]
and [9]). This discrepancy is a result of the complexity of realistic three-dimensional flow, which cannot be
explained in terms of its two-dimensional counterpart. Two-dimensional flow results are therefore non-suitable
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for quantitative comparison with the three-dimensional experimental data, and this lack of comparability mo-
tivated efforts aimed at conducting linear stability analysis for the three-dimensional flow. The first accurate
instability analysis results for three-dimensional lid-driven cavity flowwith spatially periodic spanwise bound-
ary conditions were reported by Ding and Kawahara [10]. The results were confirmed and extended in the
studies of Albensoeder and Kuhlmann [11] and Theofilis [9], who independently determined the prevalence of
the stationary leading mode followed by three different traveling modes. The numerical results obtained by the
above authors comprised an important milestone in the investigation of realistic three-dimensional flows, but
they could not be straightforwardly verified by experiments. This was because a typical experimental setup has
a finite length in the spanwise direction, which necessarily leads to an essentially three-dimensional character
of the base flow. For this reason, considerable effort has been put into numerical and experimental investigation
of shear-driven flow instability in realistic three-dimensional fully confined enclosures (see eg. [12–14]).

A global instability analysis (with all no-slip boundaries) can in principle be performed either by LU
factorization of the Jacobian operator corresponding to a linearized set of Navier-Stokes equations [15] or by
providing restricted subsets of the full eigenvector spectrum obtained in a matrix-free form [16,17]. In both
approaches, the corresponding eigenproblem is solved by a standard Arnoldi iteration. For complex three-
dimensional flows, storage and factorization of the Jacobian operators are prohibitively expensive, which
makes the second approach the only viable choice. In this case, the required matrix-vector products are
typically provided by time integration of the original or linearized Navier-Stokes equations [18]. Exponential
or inverse power methods can then be used to extract the leading eigenvectors of the investigated flow, taking
advantage of either in-house developed or available standard CFD time steppers. To the best of our knowledge,
the global (with all no-slip boundaries) instability eigenproblem for three-dimensional lid-driven cavity flow
was originally solved only by Giannetti et al. [19] and more recently by Gómez et al. [20]. The later group
utilized a standard finite volume openFoam package as an integral part of the Arnoldi iteration.

Linear stability analysis is, however, not the ultimate way for the determination of flow instability mech-
anisms. Feldman and Gelfgat [12] and more recently Kuhlman and Albensoeder [14] successfully utilized a
series of direct numerical simulations (DNS) for precise determination of both Recr and ωcr values. Moreover,
conducting a series of DNS for bifurcated flows comprises a convenient way of distinguishing the character
of the observed bifurcation (supercritical or subcritical) and of verification of the spontaneous breaking of the
flow symmetry [12]. A major advantage of DNS-based analysis is that without a need for the time-consuming
Arnoldi iterations whose convergence deteriorates with increasing the grid resolution, it provides a good ap-
proximation for the major instability characteristics. It should be noted that the critical value of the oscillating
frequency ωcr estimated by DNS can be used as a complex shift for an Arnoldi iteration in the shift-and-invert
mode with no need for a time-intensive trial-and-error search if the value is not known a priori.

The main objective of the present study was to demonstrate the potential of DNS conducted with the
standard available CFD code openFoam for investigation of the instability of complex, shear-driven and highly
separated flows. For this purpose, the flow inside a diagonally lid-driven cavity with the lid moving at 45◦ to
the vertical cavity (see Fig. 1) was chosen. This configuration was first simulated by Povitsky [22–24], who
investigated the steady flow characteristics for Re up to 2 × 103. The diagonally lid-driven cavity essentially
hosts a fully three-dimensional, highly separated vortical flow,whose steady state is characterized by a diagonal
plane of reflection symmetry. The precise values of the pressure and velocity components of the steady flow
along the cavity centerlines at different Re values can be found in [21].

Fig. 1 Flow path lines in a cubic lid-driven cavity whose lid moves at an angle of 45◦ to the x axis, Re = 1000. The arrows
indicate the direction of lid movement. Reprinted with permission from [21]
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During the past decade, steady diagonally lid-driven flow has become a popular benchmark for verification
of state-of-the-art numericalmethods [25–28]. Surprisingly, neither themechanismof transition to unsteadiness
nor the classification of the complex bifurcated flow has so far been addressed. The present paper reports on
ongoing effort to characterize the oscillatory instability observed for the diagonally lid-driven cavity. The paper
focusses on the precise determination of critical Reynolds number Recr and the angular oscillating frequency
ωcr values. It also presents an extended discussion on spontaneous symmetry breaking mechanism of the
bifurcated solution, formally proves the subcritical character of the observed Hopf bifurcation, and discusses
the main spatial characteristics of the flow instability. The study also includes visualization, based on the
Lagrangian particle tracers, demonstrating the mixing phenomenon of the flow from both sides of the diagonal
symmetry plane.

2 Computational details and verification

A cubic lid-driven cavity with a side of length L is considered. The top lid of the cavity moves with a constant
velocity U at an angle of 45◦ to the cube’s vertical walls (see Fig. 1). All other boundaries of the cavity
are stationary. The flow is governed by the incompressible continuity and momentum equations with no-slip
boundary conditions applied on all the boundaries:

∇ · u = 0, (1a)

∂u
∂t

+ (u· ∇)u = −∇ p + 1

Re
∇2u, (1b)

where velocity vector u(u, v, w), pressure p, time t and all length scales are normalized by U , ρU2 (ρ is
the fluid density), L/U and L , respectively. The Reynolds number is defined as Re = UL/ν, where ν is the
kinematic viscosity of the fluid. The governing equations (1a and 1b) were solved with the icoFoam solver,
which is part of the open-source parallelized code openFoam [29]. Simulations, performed on a standard
unix cluster, involved up to 512 cores running in parallel. The SIMPLE algorithm (see, e.g., [30]) was used
for pressure–velocity coupling, and a conservative, second-order finite volume scheme was utilized for the
spatial discretization in accordance with the openFoam formalism. The time derivative in the momentum
equations was approximated by the second-order backward finite difference. An algebraic multigrid algorithm
was used for solving iteratively the Navier-Stokes and Poisson pressure correction equations. A maximum
value of 10−6 for all residuals was set as the convergence criterion. The results from the icoFoam solver were
compared with the results previously published by Feldman and Gelfgat [21] for the same flow configuration.
Table 1 summarizes the results of the two studies for the velocity and pressure fields obtained for Re = 1000
along the vertical centerline of the cavity. Deviations between the corresponding velocity and pressure values
did not exceed 1%, thus verifying the present results. Note also that the same values (up to the sixth decimal
place) were obtained for the velocity components ux and uz , which indicates that the steady-state flow obtained
possess reflectional symmetry in agreement with Povitsky [24] and Feldman and Gelfgat [12].

Table 1 Pressure and velocity values along the cavity centerline (0.5, y, 0.5), Re = 1000: comparison between the reference [21]
(1523 grid) and the present (1003 grid) results

y ux , uz × 103 uy × 103 p × 104

Ref. Pres. Ref. Pres. Ref. Pres.

0.9766 417.7 417.8 5.378 5.458 51.59 51.42
0.9531 226.6 226.5 16.07 16.14 46.67 46.60
0.8516 76.74 76.39 30.36 30.36 35.18 35.00
0.7344 62.50 62.00 22.59 22.50 21.85 21.73
0.6172 41.78 41.22 5.790 5.561 9.711 9.664
0.5000 −1.398 −1.395 −33.95 −34.08 0.000 0.000
0.4531 −31.54 −31.33 −64.70 −64.35 −2.517 −2.4525
0.2813 −130.7 −129.0 −160.2 −158.0 28.24 28.03
0.1719 −134.7 −133.6 −137.9 −135.9 107.0 106.0
0.1016 −143.1 −142.5 −86.78 −85.41 186.5 184.5
0.0547 −162.2 −161.1 −35.52 −34.49 232.9 230.6
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Fig. 2 Values of the amplitude of the uy component of perturbed flow, monitored at control point A(0.66, 0.42, 0.56) as a function
of Reynolds number (marked by circles). The trendline was obtained by a least square fit in accordance with Eq. 3. An estimated
saddle-node bifurcation point is indicated with an asterisk. The linear stability boundary, characterized by a zero amplitude, is
distinguished by a filled circle

3 Results

3.1 Transition to unsteadiness

The transition to unsteadiness was investigated by simulating the flow just below the critical Reynolds number,
Recr over small increments of Re until at Re > Recr the steady flow broke down and was superseded by
periodic flowmotion. Given that this periodic secondary flow is dictated by small amplitude (linear) dynamics,
the value of Recr can be regarded as the Hopf bifurcation point. Mathematically, this means that the spectrum
of a linearized set of equations has only a single pair of complex eigenvalues σ ± iω, whose real part, σ ,
crosses the axis of neutral stability [31]. In that case, the dynamics of the periodic flow close to the bifurcation
point is described by the Hopf theorem [32]:

u(t, Re) = u0(Recr) + εReal(Veiωt ) + O(ε2),
∂σ

∂Re
|Recr �= 0, (2)

where u0 is the base (steady) flow at Re = Recr, andV is the leading eigenvector corresponding to the leading
eigenvalue iωcr. If the observed Hopf bifurcation is supercritical, then a stable continuously growing limit
cycle exists in the very vicinity of the critical point, and both the oscillation amplitude ε and the deviation of
the oscillation frequency from its critical value ω−ωcr are proportional to

√
Re − Recr (see, e.g., [32]). Then,

a sequence of ε and ω values acquired for two bifurcated flows would provide convenient approximations for
Recr and ωcr.

In contrast, the subcritical bifurcation involves an unstable limit cycle, which cannot be directly reproduced
by a time integration close to the bifurcation point. It is distinguished by an abrupt, discontinuous increase in
the oscillation amplitude ε from zero (at Re < Recr) to some finite value (at Re > Recr). It can also have
a hysteresis region that is characterized by different critical Reynolds number values, Recr1 > Recr2, where
Recr1 and Recr2 are related to stationary–oscillatory and oscillatory–stationary transitions, respectively. Both
of the above characteristics were observed in our numerical simulations. Moreover, applying the Hopf theorem
(Eq. 2) to two consequent solutions located on a stable branch of the limit cycle resulted in a considerable
(about 10%) underestimation the value of Recr compared with that tracked by small Re increments. The
subcritical type of the observed bifurcation was further verified by a bifurcation diagram obtained for a 1003

grid by carrying out a series of simulations of bifurcated flow and measuring the amplitudes of the uy velocity
component monitored at control point A(0.66, 0.42, 0.56) as a function of the Reynolds number (see Fig. 2).
The specific control point was chosen due to the large values of the uy oscillation amplitudes observed in its
vicinity. The simulations were performed by starting with Re = 2335 and proceeding below the predicted
Recr value, to finish with Re = 2305.1 Close to the critical Recr value, the simulations were carried out by
using smallΔRe = 3 decrements. In each case, the equilibrium amplitude was verified by measuring the same
value (up to the forth decimal place) for at least the 30 last periods. To reduce computational times, asymptotic

1 The procedure for determining the critical value of the Reynolds number, Recr, is detailed in the two last paragraphs of the
section
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pressure and velocity fields obtained for a specific Re were then used as initial condition for performing the
simulation with the subsequent Re value.

Following the recent work of Kuhlmann and Albensoeder [14], the bifurcation diagram was obtained
according to

Re − Recr = −a0A
2 + a1A

4, (3)

with a0 = 2.146×104 and a1 = 4.211×106, where the saddle-node bifurcation point Re∗ ≈ 2302 is denoted
by an asterisk. The hysteresis depth is equal to �Re = Recr − Re∗ = 27, comprising 1.16% of Recr. The
estimated Re∗ value was consistent with the results obtained by simulating the flow with Re = 2300 < Re∗
(not shown here) and exhibiting a qualitatively different, typical of subcritical flow trend characterized by an
exponential decay of all the velocity components to their steady-state values.

Adapting an approach recently applied by Feldman and Gelfgat [12], the critical values were estimated
by analyzing a time series corresponding to the flow regimes simulated for a Reynolds number just below the
value of Recr and characterized by decaying oscillation amplitudes. The approach is based on the observation
that, after a sufficiently long time, the subcritical flow close to the bifurcation point is dictated only by the
most unstable mode, while the flow oscillations f (t) decay proportionally to eσ+iωt , σ < 0, and the value of
σ is calculated by:

σ = ln( f (tk)/ f (tk−1))

tk − tk−1
, (4)

where tk (k = 1, 2, 3, . . .) corresponds to the instantaneous times when the flow oscillations f (tk) attain their
local maxima. The values of Recr and ωcr are then calculated by extrapolation of σ to zero. Time evaluations
of the ux component of the velocity monitored for the values of Re = 2300 and Re = 2325 within the region
with the largest oscillation amplitudes (control point A(0.66, 0.42, 0.56)) are shown in Fig. 3. As expected, a
lower decay ratio corresponds to the higher Re, which was chosen to be very close to the bifurcation point.

The same calculations were repeated for a refined grid containing 2003 finite volumes. The critical values
calculated for the two grid resolutions are given in Table 2. For all cases, the values of σ and ω were calculated
by basing on at least ten different pairs of the local maxima and verified up to the third decimal place. We
also used Fourier analysis (not shown here) to verify that the frequency spectrum of all the signals contains
only a single value corresponding to a leading mode, while the disturbances introduced by other modes have
already adequately decayed. Following theworks of Feldman andGelfgat [12] andGelfgat [17], theRichardson
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Fig. 3 Time evaluation of the ux velocity component monitored at a control point A(0.66, 0.42, 0.56), 1003 grid: a Re = 2300;
b Re = 2325

Table 2 Estimation of Recr and ωcr values

Grid resolution Recr ωcr

1003 2329 0.2495
2003 2321 0.2488
Richardson extrapolation 2320 0.249
Highest precision values are in bold
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extrapolation was applied to further improve the grid-dependent Recr and ωcr results to their zero-grid-size
asymptotic values, yielding Recr = 2320 and ωcr = 0.249 values.

3.2 Global and local characteristics of the steady flow

To verify the value of the critical Reynolds number, simulations for Re = 2310 < Recr were performed,
taking the steady flow obtained for Re = 2300 as the initial condition. As expected, the results showed a rapid
convergence to the steady-state solution, similar to that previously observed for the Re = 2300 (see Fig. 3a).
The steady-state flow patterns shown in Fig. 4 were calculated by time averaging of the decaying velocities
at each point of the computational domain over fifty periods. We next define a new right-handed cartesian
coordinate system X′(X ′,Y ′,Z ′) “naturally” associated with the direction of the flow: The X ′ axis coincides
with the direction of lid motion, the Y ′ axis is the same as Y , and the Z ′ axis is perpendicular to the diagonal
plane of the cavity. In the new coordinate system, the velocity components udir and uperp in the X ′ and Z ′
directions, respectively, are obtained by projections of the ux and uz velocity components as follows:

udir = (uz + ux )
√
2/2, (5a)

uperp = (uz − ux )
√
2/2. (5b)

As can be seen from Fig. 4a and b, the flow driven by the lid motion recirculates inside the cavity in the
clockwise direction. The spatial distribution of both udir and uver components is symmetric relative to the main
diagonal plane. In contrast, the spatial distribution of the uperp component is antisymmetric, and its values are
equal to zero on the plane itself. The values of the ūx , ū y and ūz velocity components along the horizontal
(x = z, 0.5, z = x) and vertical (0.5, y, 0.5) centerlines are given in Table 3. For both centerlines, it was verified
that the values of ūx and ūz are equal up to the fifth decimal place, verifying the flow symmetry relative to the
diagonal plane.

Fig. 4 Distribution of the steady-state velocity components obtained for Re = 2310 on a 2003 grid. The arrows indicate the
direction of the lid movement: a udir velocity component in the main diagonal plane; b uy velocity component in the main
diagonal plane; c udir velocity component in the span midplane; d uperp velocity component in the span midplane; e uy velocity
component in the span midplane
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Table 3 Values of the steady flow velocity components along the cavity centerlines (0.5, y, 0.5) and (x = z, 0.5, z = x) obtained
for Re = 2310 on a 2003 grid

y(x = z = 0.5) ūx , ūz × 103 ū y × 103 x, z(y = 0.5) ūx , ūz × 103 ū y × 103

0.9766 303.6 8.370 0.6906 −221.9 −292.0
0.9531 130.1 19.74 0.6739 −299.9 −217.1
0.8516 82.64 17.67 0.6022 −14.41 −53.06
0.7344 75.23 14.44 0.5193 43.66 15.16
0.5000 48.21 19.26 0.3536 68.29 43.14
0.4531 41.59 16.12 0.3204 66.30 51.35
0.2813 −152.7 −193.5 0.1989 22.77 111.1
0.1719 −169.0 −173.4 0.1216 6.518 174.4
0.1016 −136.0 −119.5 0.0718 6.637 191.4
0.0547 −126.8 −63.51 0.0387 5.365 102.5

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 5 Time evaluations of the udir , uperp, and uy velocity components and the corresponding frequency spectra, Re = 2335: a–f
solid line—control point A(0.66, 0.42, 0.56), dashed line—control point B(0.56, 0.42, 0.66); g–l control point C(0.1, 0.14, 0.1)

Table 4 Maximum and minimum values of the velocity components monitored for Re = 2325 (bifurcated flow) at control points
A(0.66, 0.42, 0.56), B(0.56, 0.42, 0.66) and C(0.1, 0.14, 0.1)

Control points A and B Control point C
max min max min

udir −0.5667 −0.2164 −0.1075 −0.1181
uperp 0.07237 0.010026 0.02266 −0.02266
uy −0.1015 −0.2474 0.1026 0.08791

3.3 Bifurcated flow: monitoring discrete control points

A bifurcated oscillatory flow field in the very vicinity of the subcritical Hopf bifurcation point, Re = 2335
(Re > Recr), is considered. After a sufficiently long time, the spectrum of this flow consists solely of a single
frequency value (and its multipliers caused by nonlinear effects) corresponding to the unstable mode, while all
the disturbances initially introduced into the system are damped to the machine zero [12]. This is true for every
flow property monitored at any internal point of the confined volume. Figure 5 shows the time evaluations and
the corresponding frequency spectra of the udir and uperp and uy components monitored at three control points:
a pair of reflectional symmetric points A(0.66, 0.42, 0.56) and B(0.56, 0.42, 0.66) with respect to the main
diagonal plane of the cavity and pointC(0.1, 0.14, 0.1) independently chosen on the main diagonal plane. The
maximum and minimum values of the velocity components monitored for Re = 2325 (bifurcated flow) at the
control points A(0.66, 0.42, 0.56) and B(0.56, 0.42, 0.66) symmetrically located from both sides of the main
diagonal plane and at the control point C(0.1, 0.14, 0.1) located on the main diagonal plane are detailed in
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Table 4. Note that instantaneous values of the uperp velocity component at the control point C are not equal to
zero, in contrast to its mean value (max(uperp) = −min(uperp), see Table 4).

Signals monitored in a pair of reflectional symmetric points A and B (see Fig. 5a–c) are characterized by
the same udir and uy and by the opposite uperp mean velocity values, respectively. Their spectra (see Fig. 5d–f)
contain the frequency of the main harmonic and its multipliers caused by nonlinear flow dynamics. Given an
arbitrary choice of all three control points, the observations made can be explained by the global reflectional
symmetry of the bifurcated flowbase velocity ū(X′)with respect to themain diagonal plane,KX′ ū(X′) = ū(X′),
where the spatial reflection KX′ reads: X ′ → X ′, ūX ′ = ūX ′ ;Y ′ → Y ′, ūY ′ = ūY ′ ; Z ′ → −Z ′, ūZ ′ = −ūZ ′ .
The spatial reflection symmetry of the base velocity of perturbed flow originates from that of the steady flow
reported by [21,24] and preserves during transition to unsteadiness. In contrast, transition to unsteadiness of
the “classical” lid-driven cavity flow is characterized by the symmetry breaking of the base flow [12] with the
subsequent energy bursts of the bifurcated flow [14]. It is clear that the instantaneous velocity fields monitored
at symmetric points A and B are equal (or with the opposite sign for the transverse component) half a period
apart, up to a small temporal offset persisting in all the signals (see Fig. 5a–c). The offset observed is critical for
understanding the symmetry breaking Hopf bifurcation and the symmetries of the bifurcated solution. Without
an offset, a bifurcated periodic solution would be invariant under the action of spatiotemporal symmetry H
half a period apart, preserving the Z2 symmetry group [33] and formally reading:

Hu(X′, t) = KZ′(X, t + T/2) = (uX′, uY′, −uZ′)(X ′, Y ′, −Z ′, t + T/2), (6)

with H -symmetric base flow Hū′(X′) = KZ ′ ū′(X′), where KZ ′ is the spatial reflection: Z ′ → −Z ′, uZ ′ →
−uZ ′ and T is period of the perturbed flow oscillations dynamically determined by the corresponding Re
number. A representative example of this symmetry is the von Karman street wake, whose symmetries are
discussed in detail in [34,35]. The existence of the offset, however, alters the above scenario, since in that
case, the bifurcated velocities monitored from both sides of the symmetry plane are not precisely half a period
apart. To clarify whether the offset observed has a physical origin or is simply a consequence of the nonlinear
dynamics of the system, we draw the reader’s attention both to the time evaluations of the velocity components
acquired at point C in the diagonal plane (see Fig. 5g–i) and to the corresponding frequency spectra (see
Fig. 5j–l). One can clearly recognize two main differences when the signals monitored at points A and B
are compared with those acquired at point C . First, at points A and B, the oscillation amplitudes of all three
velocity components are of the same order of magnitude, whereas at point C , the amplitude of the uperp
velocity is an order of magnitude higher than the corresponding values of the udir and uy velocities. Second,
the main harmonic existing in all three velocity components at points A and B is persistent only in the uperp
component at point C , whereas the udir and uy signals contain only the second harmonic characterized by
twice the frequency (see Fig. 5j–k). This difference arises because the offset between the time evaluations
of the udir and uy velocity components monitored at any pair of reflectional symmetric points tends to zero
as the distance between the points and the cavity diagonal plane decreases. In the diagonal plane, the udir
and uy velocity components are precisely half a period apart and therefore cancel each other out. The offset
between time evaluations of all the velocity components acquired at the reflectional symmetric points is a
direct consequence of the nonzero periodic uperp velocity in the diagonal plane, which is inherent in perturbed
flow. The observed spatiotemporal symmetry breaking can therefore be attributed to the three-dimensional
character of the perturbed flow throughout the cavity (including the diagonal plane) which—in contrast to
two-dimensional symmetric type-periodic flows (see, e.g., [34,35])—is not invariant under a reflection plus a
half period advance in time and does not preserve Z2 space-time symmetry after undergoing Hopf bifurcation.

3.4 Bifurcated flow: spatial characteristics

The qualitative characteristics of the bifurcated flow discussed in the previous section are based on the data ac-
quired at only three discrete points and therefore require supplemental generalization. This section investigates
the spatial distribution of the main characteristics of bifurcated flow.We start by presenting the flow oscillation
amplitudes for all three velocity components calculated for the periodic, fully developed flow (Re = 2335)
determined by only a single oscillatingmode. The analysis was performed by computing the deviation between
the maximum and the base flow values of a given velocity component attained at each grid point and aver-
aged over several oscillation periods. Next, we plotted isosurfaces confining the regions where the averaged
oscillation amplitudes are no <25% of the maximal amplitude of the corresponding velocity component, as
shown in Fig. 6a–c. The contours of the maximal averaged amplitudes in the spanwise and main diagonal cross
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Fig. 6 Spatial distribution of the oscillation averaged amplitudes for the udir , uperp, and uy velocity components, Re = 2335.
The arrows indicate the direction of lid movement: a–c three-dimensional contours confining the areas with A ≥ 0.25Amax; d–f
values obtained in the horizontal midplane; h–j values obtained in the main diagonal cross section

sections are shown in Fig. 6d–f and g-i, respectively. The procedure constitutes a convenient way to determine
the most energetic flow regions (see, e.g., [36] and [12]). It should be noted that because of the subcritical
character of the bifurcation, the calculated averaged oscillation amplitudes cannot be formally related to the
absolute values of the flow eigenvectors. Nevertheless, given the good agreement between the previous DNS
study [12] (on the “classical” lid-driven cavity) and the corresponding formal linear stability analysis [19,20],
one can expect a striking resemblance between the spatial patterns of both flow characteristics.

As can be easily recognized, the spatial pattern of the amplitudes is reflectional symmetric with respect to
the main diagonal plane of the cavity. The maximum values of all the oscillation amplitudes are side biased
from the main diagonal surface. At the same time, there are substantial qualitative differences between the
spatial distributions of the directional and vertical amplitudes Audir and Auy , respectively, compared with the
spatial distribution of the perpendicular amplitude Auperp . First, Audir and Auy are compactly grouped around
the main diagonal plane, while Auperp is widely dispersed and occupies the bulk of the cavity volume (see
Fig. 6a–c). Second, the maxima of Audir and Auy are about twice the maximum of Auperp (Fig. 6d–f). Third,
the maximal values of the Audir and Auy oscillation amplitudes observed on the spanwise cross-sectional plane
are more than twice those found on the main diagonal plane, while the values of Auperp are about the same on
both planes. The observed differences indicate that udir and uy oscillations are prevalent in the dynamics of
the developed bifurcated flow.

Providing useful information about the character of the observed oscillatory instability, the flow oscillation
amplitudes are still affected by the existence of the main harmonic multipliers (due to the flow nonlinear-
ity), and therefore, they cannot entirely address the spatial characteristics of the unstable oscillatory mode.
Further processing is required to filter out the nonlinear effects, which is achieved by performing a Fourier
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Fig. 7 Spatial distribution of uperp ×10 perturbation in the diagonal plane of symmetry for t = [T/6, T/3, T/2, 2T/3, 5T/6, T ],
Re = 2335. The arrows indicate the direction of lid movement

transform of the flow and applying a standard band-pass filter. The filtered flow velocity u(x, t) containing
only the main harmonic (without its multipliers) superimposed upon the velocity base flow um(x) can then be
straightforwardly reconstructed by the inverse Fourier transform:

u(x, t) = um(x) + a(x) cos(ωt) + b(x) sin(ωt) (7)

where a and b are Fourier coefficients, and x is a spatial coordinate vector. As has already been mentioned, the
symmetry breaking observed in the oscillatory regime is directly related to a nonzero value of the instantaneous
velocity component uperp that is perpendicular to the cavity diagonal plane of symmetry. A better visualization
of the symmetry breaking mechanism can be achieved by representing an instantaneous pattern of the main
uperp harmonic reconstructed for the diagonal plane of symmetry of the cavity. The perturbation multiplied by
a factor of ten 10 × uperp (for visualization purposes) is shown in Fig. 7 for six discrete times spread evenly
over the flow oscillating period.

The images in Fig. 7 can be thought of as showing a deflection that will experience an imaginary massless
shell with infinitely small stiffness if positioned in the diagonal plane of symmetry and subjected exclusively to
a perturbation (without the base flow) of the supercritical regime discussed. Clearly, the temporal distribution
obtained is consistent with the spatial distribution corresponding to the uperp oscillation amplitudes in the
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Fig. 8 The spatial distribution of the real and imaginary parts of the udir main oscillating mode with the corresponding spanwise
cross section (y = 0.5). The lid moves as indicated by the arrows, Re = 2335: a, c three-dimensional contours confining
the areas with |Re(Audir )| ≥ 0.25 × max(|Re(Audir )|); b, d three-dimensional contours confining the areas with |Im(Audir )| ≥
0.25 × max(|Im(Audir )|)

diagonal plane of symmetry of the cavity (see Fig. 6h). In both figures, the trailing bottom corner of the cavity
is characterized as a region with the maximal values of uperp oscillation amplitudes.

Further generalization of the oscillatory mode is due to the spatial distributions of the real and imaginary
parts of the main harmonic provided by a Fourier transform (performed at every point of the computational
domain for all three velocity components). It was verified that over the entire computational domain, the
main harmonic perturbation (both real and imaginary parts of the corresponding Fourier transform) is fully
antisymmetric (identical up to a sign) in terms of the udir and uy velocity components (see Figs. 8, 10) and
fully reflective symmetric (identical) with regard to the uperp velocity component (see Fig. 9).

The finding that the main harmonic components udir and uy are antisymmetric infers their zero values on
the diagonal plane in contrast to the main harmonic of uperp, which exists over the entire diagonal plane. This
fact is in line with the observations of the previous section, revealing the existence of the main harmonic only
in the signal corresponding to the uperp velocity component, monitored at point C (see Fig. 5j–l). In summary,
on the symmetry plane and in its near vicinity, oscillations of the bifurcated flow are dominated by the main
uperp velocity harmonic, which is characterized by a reflectional symmetry spatial distribution. In contrast,
the flow oscillations far from the symmetry plane are determined by the antisymmetric udir and uy and the
symmetric uperp harmonics, that in turn affect out-of-phase udir and uy and in-phase uperp velocity oscillations,
respectively, relative to the main diagonal plane.

The mechanism above described of spontaneous spatiotemporal symmetry breaking due the presence of
nonzero uperp oscillations over the entire diagonal plane of symmetry superimposed on reflectional symmetric
base flow may also be verified by analyzing the flow helicity. This quantity, defined as the volume-integrated
scalar product of the velocity field u(x, t) and the vorticity field ω(x,t) = curl u, is of key importance in
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Fig. 9 The spatial distribution of the real and imaginary parts of the uperp main oscillating mode with the corresponding spanwise
cross section (y = 0.5). The arrows indicate the direction of lid movement, Re = 2335: a, c three-dimensional contours
confining the areas with |Re(Auperp )| ≥ 0.25 × max(|Re(Auperp )|); b, d three-dimensional contours confining the areas with
|Im(Auperp )| ≥ 0.25 × max(|Im(Auperp )|)

the characterization of the reflectional symmetry (or lack thereof) of a fluid flow [37–40]. When looking at
the spatial characteristics of turbulent flow, it is convenient to introduce the helicity density as a scalar field
defined by h(x, t) = u(x, t)·ω(x,t) and to calculate it in terms of the base flow and the whole flow spectrum
[41]. In this section, we focus on investigating the base flow and the main harmonic helicity densities. If the
flow is reflectional symmetric, both fields will vanish on the symmetry plane [38]. Figure 11 shows the spatial
distributions of helicity densities corresponding to the base flow (Fig. 11a) and to the real (Fig. 11b) and
imaginary (Fig. 11c) parts of the main flow harmonic taken at the mid-span cross section of the cavity.
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Fig. 10 The spatial distribution of the real and imaginary parts of the uy main oscillating mode with the corresponding spanwise
cross section (y = 0.5). The arrows indicate the direction of lid movement. a, c three-dimensional contours confining the areas
with |Re(Auy )| ≥ 0.25 × max(|Re(Auy )|); b, d three-dimensional contours confining the areas with |Im(Auy )| ≥ 0.25 ×
max(|Im(Auy )|)

It can be seen that the helicity density of the base flow is antisymmetric, while the main harmonic helicity
densities are reflective symmetric relative to the diagonal symmetry plane. As expected, the base flow helicity
density vanishes on the symmetry plane, thus verifying its reflectional symmetry. In contrast, both the real and
the imaginary parts of the main harmonic helicity density have nonzero symmetry plane values, indicating
reflectional symmetry breaking of the bifurcated flow. The presence of nonzero uperp oscillations on the
symmetry plane can also be visualized by following Lagrangian tracers with initial symmetric distribution in
the vicinity of the symmetry plane. Figure 12 shows the temporal evaluation of the tracers for t = T/5, T/4,
and T/3, where T is the oscillation period corresponding to the main harmonic. It is remarkable that no mixing
is observed between the particles from the two sides of the symmetry plane when those particles are exposed
only to the base flow (see Fig. 12a, d, g). One can clearly recognize interosculation of the particles from the two
sides of the cavity midplane exposed to the oscillatory flow determined only by the main harmonic (without
base flow, see Fig. 12b, e, h. In the absence of base flow, particle interosculation progresses continuously with
time, occurring across an interface region that is nevertheless localized to the vicinity of the diagonal plane.
The actual process of mutual penetration of particles from both sides of the diagonal plane, inherent in the
bifurcated flow regime, is determined by the main harmonics superimposed on the base flow, as shown in
Fig. 12c, f, i. Particles that cross the diagonal plane due to symmetry breaking are entrained by the prevailing
base flow and dispersed throughout the entire cavity. Note that an extensive regionwith considerable oscillation
amplitudes for all three velocity components is also located close to the leading corner of the cavity bottom
(see Fig. 6g–i). This explains the enhanced particle intrusion in this area, which is characterized by a twisted
plume shape rising from below (see Fig. 12c, f, i).
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Fig. 11 The spatial distributions of the helicity density corresponding to: a the base flow; b the real part of the flowmain harmonic;
c the imaginary part of the flow main harmonic. The distribution is presented for the cavity mid-span cross section, Re = 2335.
The arrows indicate the direction of lid movement

3.5 Structure of the internal vortices

Flow vortices inherent in perturbed cavity flows are typically characterized by finite oscillating amplitudes,
whereas the cavity end walls have only a very small effect on the flow pattern [42]. The lid-driven cavity flow
is therefore a particulary attractive platform for experimental investigation of time-periodic three-dimensional
vortices. The complexity of the vortex interactions effected by the presence of nonslip boundaries gives rise to
an impressive variety of instabilities and bifurcation scenarios including elliptic, quadripolar, centrifugal and
cooperative instabilities [42].All these instabilitieswere obtainedby exploring the 2D-3D transition in either the
“classical” lid-driven cavity or in cavities with parallel/antiparallel wall motion. In this section, we demonstrate
that the diagonally lid-driven cavity flow, that is under investigation here, can certainly be considered as an
alternative platform for further numerical and experimental investigation of the vortex interactions inherent in
highly separated essentially three-dimensional flows.

Figure 13a presents the y (vertical) component of the vorticity distribution of the base flow taken at the
cavity mid-span cross section and computed as a curl of the velocity field averaged over a whole number of
periods. The representative base flow pathlines projected onto the mid-span plane are superimposed onto the
contours. The pattern so obtained can be interpreted as a flow topographic map, in which the closed contours
determine the size and position of the corresponding vortex cores. Four different vortex groups (marked with
numbers 1–4) can be recognized as bearing a striking resemblance to the steady-state flow pattern reported
for Re = 2000 in [24]. It should be noted that only the counter-rotating vortex pair marked by the number
2 has a clearly distinguishable core of a nearly elliptic shape, whereas all the other vortices exhibit the flow
converging to their centers. The base flow vorticity field is antisymmetric and strained close to the diagonal
interface plane, where it attains maximum absolute values, similar to that determined in [43] with respect to
the stationary elliptic instability of the vortex pair in an open flow.

As already mentioned, given that the flow is determined by only a single oscillating mode with moderate
amplitudes, the spatial distribution of eigenvector magnitudes of any flow field can be approximated by the
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Fig. 12 The temporal distribution of passive particle tracers corresponding to the base flow: (a, d, g); the main flow harmonic: (b,
e, h); and the overall bifurcated flow (base flow with superimposed main harmonic). The time evaluations were taken at t = T/5:
(a–c); t = T/4: (d–f); t = T/3 (g–i). The arrows indicate the direction of lid movement, Re = 2335

Fig. 13 Base flow path lines projected on a mid-cross section, superimposed with: a base flow vorticity field; b oscillation
amplitudes of the y (vertical) component of the vorticity field. The arrows indicate the direction of lid movement, Re = 2335

corresponding oscillation amplitude distribution. Figure 13b presents the reflection symmetric distribution of
the averaged oscillation amplitude of the y vorticity component taken at the mid-span cross section. Looking
at Fig. 13b, one can recognize an oscillation amplitude peak of ωy located on the interface between the two
vortices, which is apparently the result of local centrifugal effects of the flow. In this region, the streams
symmetrically moving away from the cavity walls meet the oppositely directed stream driven by the cavity
lid (see Fig. 13b regions 1, and 2). As a result, both counterflows decelerate while turning downward into the
cavity and then each separately proceeds to its cavity part. At the same time, inertia interferes with the flow
rotation, originating an instability characterized by increased velocity and vorticity oscillations.
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4 Conclusions

Oscillatory instability of the flow inside a diagonally lid-driven cavity was investigated by a series of DNS.
It was demonstrated that the DNS approach conducted with a standard second-order accuracy time-marching
solver can successfully reveal the main instability characteristics of the three-dimensional highly separated,
shear-driven confined flow with all no-slip boundaries. The calculations were performed on two successive
stretched grids of 1003 and 2003 finite volumes, and Richardson extrapolation was used to approximate the
results to the zero-grid-size limit. It was found that the transition to unsteadiness takes place via subcritical
Hopf bifurcation at Recr = 2320 and ωcr = 0.249 and is characterized by a spontaneous symmetry breaking
of the flow. The value of the critical Recr number was further verified by flow simulation at Re = 2310, taking
the steady flow obtained for Re = 2300 as the initial condition. The obtained qualitative and quantitative
results of the steady-state flow fields were presented.

The bifurcated periodic flow is characterized by reflectional symmetry fields of the velocity base flow
and by the oscillation amplitudes of the uperp velocity component. In contrast, the oscillation amplitudes of
the uy and udir velocity components are antisymmetric. The symmetry-broken instantaneous flow field is
characterized by in-phase uperp and out-of-phase uy and udir velocity components up to a small offset. The
offset is a consequence of the symmetry breaking that results from the uperp velocity oscillations on the interface
surface. As the distance to the interface surface decreases, the offset value approaches zero.

A mechanism of the observed oscillatory instability was thoroughly investigated by means of the spatial
distribution of the base flow characteristics and oscillating amplitudes, and a Fourier analysis of the main
oscillating harmonic and helicity fields of the flow. The flowmixing phenomenonwas visualized by tracking the
Lagrangian tracers initially seeded from both sides of the diagonal plane of the cavity. The study demonstrated
how the DNS approach can be efficiently exploited for a global stability analysis of complex highly separated
and previously uninvestigated flows.
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