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Abstract
The oscillatory instability of 2D natural convection flow in a cooled square
enclosure with a tandem of vertically aligned cylinders was investigated in
detail. The study was performed by applying linear stability analysis and time
integration of slightly perturbed flows. As a function of the distance between
the two cylinders the flow underwent a transition to unsteadiness via either a
symmetry-breaking or a symmetry-preserving first Hopf bifurcation. The cri-
tical values of the Rayleigh number Racr and the oscillatory instability ωcr for
the transition to unsteadiness were accurately estimated. An extensive dis-
cussion of the scenarios determining the mechanisms driving the onset of the
observed instabilities is presented.

Keywords: linear stability analysis, natural convection flow, tandem of
vertically aligned cylinders, immersed boundary method, distributed Lagrange
multiplier

(Some figures may appear in colour only in the online journal)

1. Introduction

Natural convection flow in rectangular enclosures in the presence of immersed bodies has
been the subject of extensive research in the past two decades. Interest in this kind of flow was
motivated by its relevance to both fundamental research and numerous engineering appli-
cations. In fact, despite relatively simple geometry, heat transfer by natural convection in
rectangular enclosures exhibits a wide variety of complex dynamic behaviors, which depend
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on the boundary conditions (Lee et al 2013) and the number, position and arrangement of the
immersed bodies (Park et al 2014, Cho et al 2017, Seo et al 2017, 2017). These behaviors
may include a transition to unsteadiness via symmetry-preserving or symmetry-breaking
bifurcations (Bouafia and Daube 2007, Yoon et al 2009) and the existence of multiple steady
state regimes (Erenburg et al 2004). In engineering, the flow configuration under con-
sideration is relevant to heat exchangers (Baïri et al 2014, Garoosi et al 2016), nuclear and
chemical reactors (Hohnea et al 2006, Bieder et al 2015), and the cooling of electronic
equipment (Peterson and Ortega 1990). Configurations with a large number of immersed
bodies of different shapes and orientations are also widely used in the mesoscale analysis of
natural convection flows in porous media (Martin et al 1998, Sangani and Yao 1998, Keyser
et al 2006, Rochette and Clain 2006, Narvaez et al 2013) and comprise a computational test
bed for minimizing convective heat fluxes through the boundaries of the enclosure as well as
for the development of smart thermal insulating materials (Gulberg and Feldman 2016, Idan
and Feldman 2017)

The investigation of natural convection within a cooled square enclosure containing a
tandem of two hot circular cylinders of differing orientations, affected mainly by the mutual
non-linear interactions of buoyancy flows induced by the two cylinders, is of mostly scientific
interest. The steady and unsteady characteristics of this type of flow for a tandem of vertically
aligned circular cylinders were elucidated by Park et al (2014) in terms of the spatial
orientation of typical convection cells and the values of local and averaged Nu numbers as a
function of the distance between the cylinders. The study was then extended to a tandem of
two horizontally or diagonally aligned, stationary (Cho et al 2017) or horizontally aligned,
rotating (Ashrafizadeh and Hosseinjani 2017) cylinders, with an emphasis on the character-
ization of unsteady scenarios in terms of the typical flow patterns and the dynamics of rising
and descending plumes. The most recent results regarding the characteristics of 2D flow
instability induced by natural convection in a square enclosure with four variously positioned
cylinders are due to Seo et al (2017, 2017). In addition to describing the flow patterns typical
of this kind of flow, these authors developed a heat transfer correlation determining the heat
flux rate as a function of the distance between the cylinders.

Despite the very detailed investigations of the flow characteristics, including time
evolution histories of the flow fields, and of the averaged Nu values and characterization of
typical flow patterns, the previous studies have inherent drawbacks in that they focussed only
on phenomenological aspects—they are all based on the findings obtained by time integration
of the Navier–Stokes (NS) and energy equations. However, a full understanding of the
instability mechanisms, including determination of the values of the critical Rayleigh number
and the oscillating frequency, and the character of the flow bifurcation, can be reached only
by performing a formal linear stability analysis. The objective of the present study was thus to
address this knowledge gap by performing a formal linear stability analysis of the natural
convection flow induced by a tandem of vertically aligned cylinders. The study was per-
formed for three representative configurations, with varying distances between the cylinders.
It was found that, depending on the distance between the cylinders, the natural convection
flow undergoes a transition to unsteadiness via either a symmetry-breaking or a symmetry-
preserving first Hopf bifurcation. The results obtained by the linear stability analysis were
then extensively verified by time integration of the corresponding slightly supercritical flows.
A discussion regarding the mechanisms determining the onset of each instability is presented.
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2. Physical model and governing equations

The natural convection flow around a tandem of two cylinders confined in a square cavity is
considered. The cylinders are aligned along the vertical centerline and are equidistant from
the cavity center. The distance between the cylinder centers is equal to δ (see figure 1).

The ratio between the cylinder diameter, D, and the length of the cavity side, L, is equal
to D/L=0.2. Gravity acts in the negative direction to the y axis. The natural convection flow
is governed by incompressible NS and energy equations (equations (1)–(3)), along with
additional kinematic constraints that are summarized by equations (4)–(5); these equations are
introduced to enforce the no-slip and the determined temperature (or heat flux) boundary
conditions on the surfaces of the immersed cylinders:
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where u u v w, ,= ( ), p, t, and θ are the non-dimensional velocity, pressure, time and
temperature, respectively, and ey


is a unit vector in the vertical (y) direction. The flow

buoyancy effects are addressed by applying the Boussinesq approximation ρ=ρ0
(1-β(T−Tc)), which results in the appearance of an additional temperature term as a source
in the momentum equation in the y direction (see equation (2)) and allows for temperature-
velocity coupling. Following the works of Christon et al (2002) and Xin and Le Quere
(2002), the problem is scaled by L U g L T, b= D , t=L/U, and P=ρU2 for length,

Figure 1. Schematic representation of the physical model chosen for the investigation
of natural convection flow around a tandem of vertically aligned hot cylinders placed
inside a cold square cavity.
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velocity, time, and pressure, respectively, where L is the length of the square cavity, ρ is the
mass density, g is the gravitational acceleration, β is the isobaric coefficient of thermal
expansion, and ΔT=Th−Tc is the temperature difference between the hot cylinder and the
cold cavity surfaces. The non-dimensional temperature θ is defined as θ=(T−Tc)/ΔT. The
Ra and Pr numbers are Ra TLg 3= Db

na
and Pr=ν/α, where ν is the kinematic viscosity and

α is the thermal diffusivity. All the simulations were performed for the value of Pr=0.7,
corresponding to air. The volumetric force f and the heat source q, appearing as sources in
equations (2)–(3), reflect the impact of the immersed surfaces of the cylinders on the
surrounding flow. The surfaces are determined by a series of discrete Lagrangian points, the
locations of which do not necessarily coincide with the underlying Eulerian grid (for which
equations (1)–(3) are formulated), and the forces and sources are additional unknowns of the
overall system of equations (1)–(3). Closure of the overall system is achieved by introducing
additional kinematic constraints determined by equations (4)–(5). In accordance with the
formalism of the immersed boundary (IB) method, introduced by Peskin (Peskin and
Flow 1972) and utilized in the present study, two adjoint operators, namely, the regularization
operator R and the interpolation operator I, defined as:

f F X X F X X x Xq R Q Q dV a, , , , 6k k k k
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k k k k
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are introduced to convey information between the Lagrangian points and the Eulerian grid.
Here, S corresponds to all the Lagrangian cells that belong to the immersed body surface, Ω
corresponds to a group of Eulerian cells located in the close vicinity of the immersed body
surface, dVS

k corresponds to the virtual volume encompassing each Lagrangian point k, and
dVΩi is the volume of the corresponding cell of the Eulerian flow domain, whose velocity and
temperature values are directly involved in enforcing the boundary conditions at point k of the
immersed body. Both operators use convolutions with the Dirac delta function, δ, to facilitate
the exchange of information between the Lagrangian points of the body surface and the
Eulerian grid. The discrete delta function introduced by Roma et al (1999) was used in the
present study.
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where Δr is the cell width in the r direction. The solution of the system of equations (1)–(5)
yields the velocity, u, the temperature, θ, and the pressure, p, fields along with the field of
Lagrangian volumetric forces, Fk, and heat fluxes, Qk, determined for each volume, dVS

k. The
linear stability eigenproblem is formulated by assuming infinitesimally small perturbations of
the form {u(x, y), q(x, y), p(x, y), F

~
(x, y),Q

~
(x, y)}eλt around the steady state flowU , Θ, P, F,

Q, as follows:
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The generalized eigenproblem formulated in equations (8(a)–(e)) with all homogeneous
boundary conditions is then solved by applying the shift-and-invert Arnoldi iteration:
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where J is the Jacobian matrix calculated from the RHS of equations (8(a)–(e)), and B is the
diagonal matrix whose diagonal elements, corresponding to the values of u and q, are equal to
unity, and whose diagonal elements, corresponding to p, F

~
and Q

~
, are equal to zero (see

Gelfgat 2007, Feldman and Gulberg 2016 for more details). The solution of the generalized
eigenproblem yields the critical Rayleigh value, Racr at which the real part of the complex
leading eigenvalue λ is equal to zero (to a prescribed precision), i.e. Real(λ)=0. When shift-
and-invert Arnoldi iteration is applied, the leading eigenvalue λ is inversely related to the
dominant eigenvalue μ corrected by the value of a complex shift σ (see equation (9)). The
critical values are obtained by utilizing the secant method. Next, we define the Nusselt
number Nu as a ratio of convective to conductive fluxes. Utilizing the same scaling as in
equations (1)–(5), the non-dimensional heat flux from the finite surface of the immersed body
with an area encircling any Lagrangian point k is defined as:

n
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where Qk is the k th Lagrangian volumetric heat flux obtained as a part of a solution of the
system of equations (1)–(5). The heat flux values averaged over the entire surface of the
immersed body are then used for the calculation of the average Nusselt number, Nu, defined
as:
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n

. 11
q

=
¶
¶ ˆ
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3. Implementation details

The governing equations (1)–(5) are discretized by a standard finite volume method
(Patankar 1980) on a staggered grid. Diffusion, pressure, and terms corresponding to the force
and the heat flux densities are treated implicitly, while all the non-linear advection terms are
treated explicitly and taken from the previous time step. The time derivative in the momentum
and the energy equations is approximated by a second-order backward finite difference. The
above spatial and temporal discretizations result in a full coupling between all the flow fields
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(including additionally introduced force and heat flux densities). The fully coupled approach
automatically yields a divergence free velocity field for both time integration and Arnoldi
iteration. Comprising a straight-forward extension of the fully pressure-velocity coupled
approach introduced in Feldman and Gelfgat (2009) and the linear stability procedure
developed in Gelfgat (2007), the present study also utilizes the direct MUMPS solver
(Amestoy et al 2001, 2006) for performing time integration and the shift-and-invert Arnoldi
iteration, both extended by the IB capability. For further details of the extensive verification
of the utilized approach for the analysis of natural convection confined flows in the presence
of immersed bodies, our previous study (Feldman and Gulberg 2016) should be consulted.

4. Results and discussion

We start with an analysis of configuration characterized by the value of δ=0.5 (see figure 1).
The linear stability analysis for this configuration has already been performed in our previous
study (Feldman and Gulberg 2016) and is summarized in brief here for the sake of com-
pleteness. According to the performed linear stability analysis, the flow under consideration
undergoes a transition to unsteadiness via the first Hopf bifurcation. Figure 2 presents the
contours of the absolute values of the temperature and the velocity leading eigenmodes1

obtained at the critical Rayleigh, Racr=5.011×105, and critical angular frequency,
ωcr=0.2875, values. The grid convergence study with respect to the obtained Racr and ωcr

values is summarized in table 1.
The distributions of all the perturbations are biased to the right, clearly indicating the

symmetry-breaking character of the bifurcation. To confirm the findings obtained by the
linear stability analysis, we performed a time integration of the natural convection flow in the
slightly supercritical regime at Ra=1.1×Racr=5.51×105. The temperature, pressure
and velocity fields of the unstable steady state obtained at Racr=5.011×105 were taken as
the initial condition. All the time integration results presented in this paper were obtained on
400×400 grids. By ensuring that further grid refining leads to insignificant deviations (less
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Figure 2. Contours of the absolute values of the leading eigenmode obtained at
Racr=5.011×105 and δ=0.5 on a 1800×1800 grid for: (a) x-velocity component,
u¢∣ ∣; (b) y-velocity component, v ;¢∣ ∣ temperature, q¢∣ ∣. Reprinted from Feldman and
Gulberg (2016), Copyright (2016), with permission from Elsevier.

1 Spatial distribution of the obtained eigenmodes can, in general, be multiplied by any positive constant, as it
corresponds to the intensity of oscillations which will be observed when performing time integration of slightly
bifurcated flow.
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than 0.5% for the averaged Nu values and less than 1% for all the flow fields), we successfully
verified the grid independence of the results (see tables 2 and 3 for the detailed comparison).

The time evolution and the amplitude spectrum of the Nusselt values Nu averaged over
the surfaces of the upper and lower cylinders are presented in figure 3. It is clear that the Nu
values of both cylinders oscillate with the same oscillating frequency, corresponding to the
main harmonic characterized by the angular frequency value equal to ω=0.258, which is
close to the value of ωcr=0.2875 predicted by the linear stability analysis. Note also the
existence of the main harmonic multipliers clearly seen in the amplitude spectrum of both
Nusselt values, which is a consequence of the non-linearity of the flow in the supercritical
regime. It should be noted that the flow non-linearity is more pronounced in the vicinity of the
lower cylinder, which is characterized by relatively low values of the perturbations. The
mechanism driving the observed instability can be revealed by examining the instantaneous
characteristics of the slightly bifurcated flow. Figure 4 presents a series of pathline snapshots
taken at four representative points (1, 2, 3, 4) evenly distributed over a single period of Nu of
the upper cylinder (see figure 3(a)). It is clear that the instability results from the interaction of
the two counter rotating vortices that are formed immediately above the upper cylinder. The
dimensions of the two vortices vary over the period: the growth of the left vortex is
accompanied by shrinkage and consequent shedding of the right one, which explains the
origin of the symmetry-breaking bifurcation predicted by the linear stability analysis.

The next step of the study focussed on a qualitative and quantitative investigation of the
effect of the distance between the cylinders on the properties of the observed bifurcation. To
investigate this effect, we performed the same numerical simulations (i.e. linear stability
analysis followed by time integration of slightly bifurcated flow) for two additional config-
urations with δ values smaller and larger than δ=0.5, namely, for δ=0.4 and δ=0.6.

We first discuss the results obtained for the configuration with δ=0.4. The contours of
the absolute values of the obtained temperature and the velocity leading eigenmodes are
shown in figure 5. For this configuration, the converged critical Rayleigh and angular fre-
quency values (see table 4) are equal to Racr=2.562×105 and ωcr=0.2397. Reducing the
value of δ from δ=0.5 to δ=0.4 does not qualitatively affect the patterns of the temperature
and the velocity leading eigenmodes, thereby preserving the symmetry-breaking character of
the bifurcation. This observation is also confirmed by the qualitative similarity between the
time evolutions and the amplitude spectra of the averaged Nu values presented in figure 6 for
δ=0.4 and their corresponding counterparts obtained for δ=0.5, as shown in figure 3.

Nonetheless, a decrease in the δ value results in about a twofold decrease in the value of
the critical Rayleigh number, Racr and in about a 20% decrease in the value of the critical
angular frequency, ωcr=0.2397. Dependance of the Racr value on the distance between the
two cylinders is governed by two competing mechanisms. First, the closer the cylinders are,
the smaller the distance is that accelerating thermal plume rising from the lower cylinder can
pass without being suppressed by the surface of the upper cylinder. Second, as the distance
between the two cylinders decreases, their remoteness from the bottom and top horizontal

Table 1. Grid convergence for the critical Racr and ωcr values, δ=0.5.

Grid Racr×105 ωcr

1400×1400 5.015 0.2873
1600×1600 5.012 0.2874
1800×1800 5.011 0.2875
2000×2000 5.011 0.2875
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Table 2. Comparison between the maximal and the minimal values of the averaged Nu values obtained on 400×400 and 500×500 grids for the
upper and lower cylinders.

δ=0.4, Ra=2.761×105

Numaxup Numinup Numaxlow Numinlow

400×400 500×500 400×400 500×500 400×400 500×500 400×400 500×500
8.4437 8.4466 7.2063 7.1901 14.506 14.483 14.351 14.324

δ=0.5, Ra=5.51×105

Numaxup Numinup Numaxlow Numinlow

400×400 500×500 400×400 500×500 400×400 500×500 400×400 500×500
11.199 11.194 9.768 9.748 17.072 17.043 16.963 16.930

δ=0.6, Ra=1.41×106

Numaxup Numinup Numaxlow Numinlow

400×400 500×500 400×400 500×500 400×400 500×500 400×400 500×500
14.173 14.163 13.969 13.956 20.867 20.825 20.843 20.801
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Table 3. Comparison between the maximal and the minimal values of the flow characteristics obtained on 400×400 and 500×500 grids.

δ=0.4, Ra=2.761×105 δ=0.5, Ra=5.51×105 δ=0.6, Ra=1.41×106

CP (0.25, 0.25) CP (0.75, 0.75) CP (0.25, 0.25) CP (0.75, 0.75) CP (0.25, 0.25) CP (0.75, 0.75)

Grid Grid Grid Grid Grid Grid
400×400 500×500 400×400 500×500 400×400 500×500 400×400 500×500 400×400 500×500 400×400 500×500

max(ux) 0.08567 0.08534 0.1265 0.1271 0.06461 0.06432 −0.05346 −0.05384 0.01636 0.01623 −0.01301 −0.01301
min(ux) 0.08291 0.08228 0.07312 0.07252 0.0528 0.05269 −0.06404 −0.06409 0.01301 0.01301 −0.01636 −0.01623

max(uy) 0.05182 0.051565 0.1144 0.1133 0.07187 0.072 0.07179 0.0718 0.05067 0.05045 0.05067 0.05044
min(uy) 0.04454 0.04469 0.07821 0.07783 0.06446 0.06423 0.06385 0.06364 0.045 0.045 0.045 0.04501

max(θ) 0.2223 0.2233 0.5982 0.6051 0.2456 0.2471 0.501 0.5011 0.2252 0.2252 0.2252 0.2252
min(θ) 0.2137 0.2129 0.5323 0.5334 0.2332 0.2331 0.2387 0.2402 0.2174 0.2175 0.4335 0.4334
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boundaries of the cavity increases. As a result, a thermal plume rising from the upper cylinder
has more space to accelerate before it reaches the top surface of the cavity. In addition, the
increasing distance between the lower cylinder and the bottom surface of the cavity enables a
higher momentum to be preserved while the flow changes its direction in this region. A
significant decrease in the Racr value, when decreasing the distance between the cylinders,
can be explained by a dominance of the second mechanism.

Note also that while the amplitude of the main harmonic of the upper cylinder Nu
obtained for δ=0.4 is about 20% lower than the corresponding Nu value obtained for
δ=0.5, the opposite trend is observed for the Nu amplitude obtained for the lower cylinder,

Figure 3. Time evolution results obtained for δ=0.5, at Ra=5.51×105: (a) Nu
value averaged over the surface of the upper cylinder; (b) amplitude spectrum obtained
for Nu averaged over the surface of the upper cylinder; (c) Nu value averaged over the
surface of the lower cylinder; (d) amplitude spectrum obtained for Nu averaged over
the surface of the lower cylinder.
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Figure 4. Characteristics of the periodic natural convection flow developing around the
tandem of vertically aligned cylinders characterized by the value of δ=0.5 at
Ra=5.51×105: (a)–(d) instantaneous pathlines at the selected time instances [1, 2,
3, 4].
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Figure 5. Contours of the absolute values of the leading eigenmode obtained at
Racr=2.562×105 and δ=0.4 on a 1800×1800 grid for: (a) x-velocity component,
u¢∣ ∣; (b) y-velocity component, v¢∣ ∣; temperature, q¢∣ ∣.

Figure 6. Time evolution results obtained for δ=0.4, at Ra=2.761×105 : (a) Nu
value averaged over the surface of the upper cylinder; (b) amplitude spectrum obtained
for Nu averaged over the surface of the upper cylinder; (c) Nu value averaged over the
surface of the lower cylinder; (d) amplitude spectrum obtained for Nu averaged over
the surface of the lower cylinder.

Table 4. Grid convergence for the critical Racr and ωcr values, δ=0.4.

Grid Racr×105 ωcr

1400×1400 2.564 0.2398
1600×1600 2.561 0.2295
1800×1800 2.562 0.2397
2000×2000 2.562 0.2397
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namely, the amplitude of the main harmonic of the lower cylinder Nu obtained for δ=0.4 is
about twice that obtained for the value of δ=0.5. This observation can be explained by
examining the instantaneous pathlines of the slightly bifurcated natural convection flow, as
shown in figure 7. Similarly to the configuration characterized by the value of δ=0.5, it can
be seen that instability observed for the present configuration is also driven by the interaction
of the pair of counter rotating vortices. However, in this configuration the vortices are larger
than those observed for δ=0.5, which apparently leads to longer time-over times and results
in lower frequency and amplitude values of the main Nu harmonic.

Let us examine the configuration characterized by δ=0.6. The contours of the absolute
values of the temperature and the velocity leading eigenmodes (see figure 8) lead us to the
conclusion that the instability of this flow is driven by a mechanism that differs from that for
the two previous configurations. In fact, the flow undergoes a transition to unsteadiness at a
significantly (an order of magnitude) higher Racr value (see table 5) and, importantly, the
temperature and the velocity perturbations of the flow are globally reflectional and symme-
trical with respect to the cavity vertical centerline. In addition, there are two distinctive
features of the flow under consideration that should be pointed out. The first is that the
oscillating frequency of the Nu values obtained for the upper and lower cylinders is twice that
predicted by the linear stability analysis (see figure 9). The second is related to the dynamics
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Figure 7. Characteristics of the periodic natural convection flow developing around the
tandem of vertically aligned cylinders characterized by the value of δ=0.4 at
Ra=2.761×105: (a)–(d) instantaneous pathlines at the selected time instances [1, 2,
3, 4].
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Figure 8. Contours of the absolute values of the leading eigenmode obtained at
Racr=1.285×106 and δ=0.6 on a 1800×1800 grid for: (a) x-velocity component,
u ;¢∣ ∣ (b) y-velocity component, v ;¢∣ ∣ temperature, q¢∣ ∣.
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Figure 9. Time evolution results obtained for δ=0.6, at Ra=1.41×106 : (a) Nu
value averaged over the surface of the upper cylinder; (b) amplitude spectrum obtained
for Nu averaged over the surface of the upper cylinder; (c) Nu value averaged over the
surface of the lower cylinder; (d) amplitude spectrum obtained for Nu averaged over
the surface of the lower cylinder.
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Figure 10. Characteristics of the periodic natural convection flow developing around
the tandem of vertically aligned cylinders characterized by the value of δ=0.6 at
Ra=1.41×106: (a)–(d) instantaneous pathlines at the selected time instances [1, 2,
3, 4].

Table 5. Grid convergence for the critical Racr and ωcr values, δ=0.6.

Grid Racr×106 ωcr

1400×1400 1.282 0.3740
1600×1600 1.284 0.3718
1800×1800 1.285 0.3701
2000×2000 1.285 0.3691
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of the slightly bifurcated flow presented in figure 10; the qualitative difference between the
dynamics of the flow and that of the two previous configurations can be pinpointed by
following the dynamics of the thermal plume rising from the upper cylinder. It can be seen
that over a single oscillating period the thermal plume twists twice in diametrically opposite
directions, directing the heat fluxes along the cavity’s top wall to the left and then to the right
top corners of the cavity. All the above qualitative observations suggest that the observed flow
is invariant under the action of spatiotemporal symmetry H (half a period apart) preserving the
Z2 symmetry group (Kuznetsov 1998) and formally reading

u X XH t K t T u u u X Y Z t T, , 2 , , , , , 2 , 12Z X Y Z¢ = + = - ¢ ¢ - ¢ +¢ ¢ ¢ ¢( ) ( ) ( )( ) ( )

with the H-symmetric base flow u X u XH KZ¢ = ¢ ¢¢¯ ( ) ¯ ( ), where KZ′ is the spatial reflection:
Z Z¢  - ¢, u uZ Z -¢ ¢ and T is period of the perturbed flow oscillations dynamically
determined by the corresponding Ra number. In isothermal 2D flows, a representative
example of this symmetry is the von Karman street wake, whose symmetries are discussed in
detail in Barkley et al (2000) and Blackburn et al (2005). To quantitatively prove that the
natural convection flow under consideration also preserves the Z2 symmetry group (half a
period apart), we monitored the history of the temperature values at two points positioned
symmetrically from the two sides of the cavity centerline, as shown in figure 11. It can clearly
be recognized that, first, the oscillating frequency of both signals is now close to that
predicted by the linear stability analysis and, second, the signals are precisely half a period
apart, thereby identifying the present flow with the Z2 symmetry group. It can therefore be
concluded that similarly to the flow around the cylinder, the observed instability is also driven
by a vortex shedding mechanism.

5. Concluding remarks

The mechanism of oscillatory instability of 2D natural convection flow in a cooled square
enclosure, with a tandem of hot vertically aligned cylinders, was studied by both linear
stability analysis and time integration of the supercritical flow. The critical values of the
Rayleigh number, Racr and the angular oscillating frequency, ωcr, were accurately estimated.
The dependance of the Racr and ωcr values on the distance between the cylinders was
investigated and explained both qualitatively and quantitatively.

It was found that the configuration under consideration exhibits a transition to unstea-
diness via the first Hopf bifurcation, which can be either symmetry-breaking or symmetry-

Figure 11. Monitoring the history of temperature, δ=0.6, Ra=1.41×106: (a) time
evolution of temperature, θ, monitored at control point (0.5, 0.425)—full line and
control point (0.5 0.575)—dashed line; (b) amplitude spectrum of the temperature
history monitored at the two control points.
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preserving. The specific scenario depends on the distance between the cylinders. The sym-
metry-breaking bifurcation is driven by the interaction between a pair of counter rotating
vortices that are formed immediately above the upper cylinder. The symmetry-preserving
bifurcation belongs to the Z2 symmetry group and similarly, the flow around the cylinder is
driven by a vortex shedding mechanism. This study thus constitutes a significant milestone
toward further extending the performed analysis to fully 3D configurations with all no-slip
boundaries, which will be the focus of our future research.
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