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Abstract 

The goal of this report is to present the final project conducted in order to fulfill the requirements 

of the M.Sc. degree at the Department of Mechanical Engineering, Ben-Gurion University 

(BGU) of the Negev. The project comprises theoretical research investigating the multiphase 

flow of charged solid particles in an electrolyte subjected to an electric field. The research 

motivation comes from a number of fundamental problems revealed when operating laser 

printers produced by the HP Indigo company. The present work is a continuation of Michael 

Hagayev's project [1], which included a literature survey, formulation of a simplified physical 

model, and performance of a numerical study simulating the dynamics of an uncharged single 

phase.  

The main objective of this project is to develop a comprehensive numerical methodology that is 

capable of theoretical multiphase flow modeling under the action of an electric field, by means 

of standard techniques of computational fluid dynamics. HP-BGU collaboration is planned to 

continue next year. 

This report contains: 

• A modular background about HP Indigo's components of interest.

• A comprehensive literature review surveying methods for the simulation of multiphase

flow and electrically-driven flow models. Additionally, the literature review includes the 

theory behind physical phenomena related to electrically-driven flow between two 

bounding electrodes subjected to an electrical voltage.  

• Extended objectives of the performed research.

• A comprehensive two-way coupled physical model, including the governing equations,

definitions, constitutive laws, and dimensional analysis. 

• A comparison between analytical solutions and results obtained by 2D numerical

simulations utilizing a significantly simplified physical model. The considered 

configurations are: single-phase Couette-Poiseuille flow, two uncharged phases flow, 

and two-phase flow containing charged particles subjected to a constant electric field. 

• A solution of the fully (two-way) coupled physical model utilizing computational fluid

dynamics (CFD) software, verification, and electro-osmotic flow characterization of a 

strongly non-symmetric electrolyte. 

• A physical model relevant to the setup used in HP Indigo's laser printers: dimensions,

data, assumptions, and simulation results. 

• A summary, conclusions , and recommendations for possible future work.

KEYWORDS: Electrically-driven flow; Poisson-Nernst-Planck equations; 

Electroconvection; Electroconvective instability; Symmetric binary electrolyte, Strongly 

non-symmetric electrolyte. 
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Nomenclature 

Value Units Symbol Description 
 2m  A  Cross-section/surface area 

 - AR  Aspect ratio 

 Depends on the 
parameter , , , ,A B G a e n  Parameters 

 T  B  Magnetic field intensity 

 m  a  Gap width between electrodes 

 Depends on the 
equation 1 2 1 2, , ,a a c c  Integration constants 

 Depends on the 
function 1 2,C C  Functions of the variation of parameters 

approach 

 3mol m  c  Species concentration 

 3

imol m  0c  Initial bulk concentration of symmetric 
binary ions 

 3

cdmol m  0_ cdc  Initial bulk concentration of charge director 
species (cations and anions together) 

 3

cdmol m  0_ _cd effc  Initial bulk concentration of effective 
micelles (cations and anions together) 

 3

smol m  0_ sc  Initial bulk concentration of solid ink 
particles 

 3mol m  1 2 3, ,c c c  Concentration of: (1) cations; (2) anions; (3) 
third negatively charged species 

 3mol m+
 

0c+  Initial bulk concentration of cation species 

 3mol m−
 

0c−  Initial bulk concentration of anion species 

 3

imol m  ic  Concentration of species i 

 3

imol m  ,0ic  Reference bulk ionic concentration of 
species i 

 3

smol m  maxc  Maximum constant concentration of solid 
particles 

 - 
rc  Concentration ratio 

 3

smol m  sc  Concentration of solid particles species 

 3

inkmol m  inkc  Ink species concentration 

 3

inkmol m  0

inkc  Initial bulk concentration of ink species 

 3mol m+
 c+  Cation species concentration 

 3mol m−  c−  Anion species concentration 

 %  effcd  Percentage of effective micelles 

 2m s  1 2 3, ,D D D  
Molecular diffusion coefficient of: (1) 
cations; (2) anions; (3) third negatively 

charged species 

 2m s  cdD  Molecular diffusion coefficient of charge 
director species 

 m  HD  Hydraulic diameter 

 2m s  iD  Molecular diffusion coefficient of species i 

 - 
ir

D  Molecular diffusivity ratio of species i 

 2m s  sD  Molecular diffusion coefficient of solid 
particles 

 2m s  D+  
Molecular diffusion coefficient of cation 

species 

 m  cdd  Average diameter of micelles 



j 
 

Value Units Symbol Description 
 m  pd  Particle diameter 

 m  sd  Average diameter of solid ink particles 

 N C V m=  E  Electric field vector 

 N C V m=  , , , ,x y z rE E E E E  Electric field components 

 - Err  Relative density error 

1.6e-19 C  e  Electron's elementary charge 

96,485 C mol  F  Faraday's constant 

 3N m  , , , ,x y z rF F F F F  Body force components 

 Depends on the 
equation variable f  Inhomogeneous term of a differential 

equation 

 3N m  f  
External body force per unit volume vector 

acting on the mixture 

 3N m  Ef  
Electric body force per unit volume vector 

acting on the mixture 

 N kg  
if  

External body force per unit mass vector 
acting on phase i 

 N kg  pf  
External body force per unit mass vector 

acting on a particle 
 - Ha  Hartmann number 

 m  h, x  Grid step 

 J kg  
n

ih  Enthalpy of phase i at non-equilibrium 

 -  I  Identity tensor 

 2C m  0I  Characteristic current density 

 2C m  limI  Limiting current density 

 2kg m  pI    Particle moment of inertia tensor 

 2C m  yI  Total surface-averaged current density 

 2

imol m s  
iJ  Ionic flux of species i 

 2mol m s+   0J  Characteristic ionic flux 

 2mol m s  yJ  y  component of ionic flux 

 2

inkmol m s  
ink

yJ  Ionic flux of ink species 

 2mol m s+   yJ +  Ionic flux of cation species 

 2mol m s−   yJ −  Ionic flux of anion species 

 W m K  k  Mixture thermal conductivity 

1.381e-23 J K  Bk  Boltzmann constant 

 vortex pairs / mm ,x zk k  Wave number in the x  and z  directions 

 m  0, ,L l H  Geometric characteristic length 

 - 
2L  Euclidean norm 

 m  l  Main electrode arc length 

 - M  Valence index of the i=3  species 

 
cdkg mol  

cdM  Molar mass of the charge director species 

 
ikg mol  

iM  Molar mass of species i 
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Value Units Symbol Description 
 N m  pM  External moment vector acting on a particle 

 
skg mol  

sM  Molar mass of the ink species 

 kg  m  Mass 

 kg  
cdm  Mass of a single charge director particle 

 3kg m s  
'

im  
Mass rate per unit volume of production of 

phase i 

 kg  
im  Mass of species i 

 kg  sm  Mass of a single solid ink particle 

 kg  Tm  Total mass 

 - N  
Maximum to minimum ratio of initial 

species concentration 

6.02e23 particles / mol 
AN  Avogadro number 

 - n̂  Unit vector perpendicular to a surface 
 Pa  P  Mixture pressure 

 - Pe  Péclet number 

 Pa  0P  Characteristic pressure 

 Pa  iP  Pressure of phase i 

 3N m  ip  
Volumetric force vector of interaction 

between phases acting on phase i 
 m  p  Wetted perimeter 

 3m s  BE DRQ −
 Volumetric flow rate in the gap between the 

back electrode and the developer roller 

 C  inQ  Net charge enclosed within a Gaussian 
surface 

 3m s  ME DRQ −
 Volumetric flow rate in the gap between the 

main electrode and the developer roller 

 3m s  neckQ  Volumetric flow rate in the gap between the 
BID electrodes 

 3W m  q  Internal heat sources within the mixture 

 2W m  iq  Net heat flux out of phase i 

 - Re  Reynolds number 

 - 
I II III IVR , R , R , R  Current density ratios 

 m  r  Radial coordinate 

 m  1r  Developer roller radius 

 m  2r  Main electrode radius 

 m  
ir  Average radius of spherical particle species 

 - r̂  Radial unit vector 

 - Sc  Schmidt number 

 - Stk  Stokes number 

 3

imol m s  iS  Rate of concentration source of species i 

 K  T  Mixture temperature 

 2N m   iT  Stress tensor of phase i 

 s  t  Time 

 s  
0t  Characteristic time 

 s  t  Time step 

 J kg  U  Mixture specific energy 
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Value Units Symbol Description 

 J kg  iU  Specific internal energy of phase i 

 m s  u  Mixture velocity vector 

 m s  0u  Characteristic velocity magnitude 

 m s  fu  Fluid velocity vector 

 m s  iu  Velocity vector of phase i 

 3W m  
'

iu  
Internal energy per unit volume rate of 

production of phase i 

 m s  ,M iu  Electromigration velocity vector of species i 

 m s  pu  Particle velocity vector 

 m s  avu  Mixture average inlet velocity 

 m s  _,wall wallu u  Boundary wall velocity 

 m s  , , , ,x y z ru u u u u  Velocity components 

 m s  u  
Tangential component of the average 

mixture velocity entering the ME-DR gap 
 3m  V  System volume 

 V  V  Voltage 

 3m  cdV  
Volume of a single spherical charge director 

particle 
 3m  iV  Volume of phase or species i 

 3m  sV  Volume of a single spherical ink particle 

 3m  TV  Total volume 

 V  TV  Thermal voltage 

 V  V  Electric potential difference 

 m  w  Developer roller length 

 m  ,x x  x  coordinate 

 - x̂  Unit vector in the x direction 

 - 
cdY  Mass fraction of charge director 

 - 
iY  Mass fraction of species i 

 - 
lY  Mass fraction of liquid oil 

 - 
sY  Mass fraction of solid ink particles 

 m  ,y y  y  coordinate 

 m  0y  Height from bottom reference surface 

 Depends on the 
equation variable hy  

Homogeneous solution of a differential 
equation with variable y  

 Depends on y variable 
maxy  Max value of y  variable 

 Depends on the 
equation variable py  

Private solution of a differential equation 
with variable y  

 m s  wally  Wall velocity variable 

 m  z  z  coordinate 

 - 
1 2 3, ,z z z  Valence of: (1) cations; (2) anions; (3) third 

negatively charged species 

 - 
cdz  Valence of charge director species 

 - 
iz  Valence of species i 
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Value Units Symbol Description 

 - 
ir

z  Valence ratio of species i 

 - 
sz  Valence of solid particles species 

 - z+
 Valence of cation species 

 - z−  Valence of anion species 

 -   Correction coefficient 

 - 
i  Volume fraction of phase or species i 

 - 
s  Volume fraction of solid particles species 

 Depends on the 
property   Mixture equivalent property 

 Depends on the 
property i  Property of species i 

 -   Electrostatic screening length 

 2 2C / N m    Mixture absolute permittivity 

8.854e-12 2 2C / N m  0  Vacuum permittivity 

 - 
r  Mixture relative permittivity 

 Pa s    Mixture dynamic viscosity 

 Pa s  l  Fluid dynamic viscosity 

 Pa s  s  Dynamic viscosity of ink species 

 rad    Tangential coordinate 

 - ̂  Tangential unit vector 

 -   Electrohydrodynamic coupling constant 

 C m    Charge density 

 m  D  Debye length 

 2m V s  cd  Electrical mobility of charge director species 

 2m V s  i  Electrical mobility of species i 

 2m V s  s  Electrical mobility of solid ink species 

 2m s    Mixture kinematic viscosity 

 2m s  l  Kinematic viscosity of liquid oil 

 -   Order of magnitude 

 3kg m    Mixture density 

 3kg m  cd  Density of charge director particles 

 3C m  E  Space charge density 

 3kg m  i  Density of phase or species i 

 3kg m  l  Oil density 

 3kg m  p  Particle density 

 3kg m  s  Density of solid ink particles (not porus) 

 S m    Electrical conductivity per unit length 

 2N m     Electrostatic Maxwell stress tensor 

 2N m     Deviatoric shear stress tensor 

 s  p  Stokes relaxation time 
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Value Units Symbol Description 

 3W m    Mixture viscous dissipation 

 2N m C    Electric flux 

 V  Ext  Externally imposed electric potential 

 Depends on the 
equation variable 

  Solution form of differential equation 

 V    Electric potential 

 V  DR  Electric potential supplied to the developer 
roller 

 V  electrodes  Electric potential supplied to the BID 
electrodes 

 V    Intrinsic electric potential 

 V  0  Reference intrinsic electric potential 

 Depends on the 
variable   Dependent variable 

 rad s    Angular velocity of the developer roller 

 rad s  p  Particle angular velocity vector 
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Subscripts: 

Description Sign Description Sign 
A specific phase or species i  Bulk / reference / vacuum 0  

Liquid l  Indices 1 2 3, ,  

Limiting lim  Indices I II III IV, , ,  

Migration M  Avogadro A  
Main electrode ME  Average av  

Maximum max  Boltzmann B  
Total number of phases or species n  Back electrode BE  

Neck neck  Charge director cd  

Particle / Private p  Debye D  
Radial component / Ratio / Relative r  Developer roller DR  

Solid particles s  Electric E  
Thermal / Total T  External Ext  

Wall wall  Effective eff  

x  component x  Electrodes electrodes  
y  component y  Fluid f  

z  component z  Different grids G1, G2, G3  

Tangential component   Hydraulic H  
Density   Homogeneous h  

 

Superscripts: 

Description Sign Description Sign 
Positively charge cation species +  Negatively charged ink species ink  

Negatively charged anion species −  Non-equilibrium n  

Unit vector   Transpose T  

Dimensional quantities that have a 
non-dimensional representation ~  

y  component y  

Rate of production '  
 

Operators: 

Description Sign Description Sign 

Tensor    Determinant det  

Dell operator   Wronskian W  

Laplacian 2 ,   Tensor product   
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Abbreviations: 

Description Sign Description Sign 
Initial Condition(s) IC Boundary Condition(s) BC 

Induced Charge Electro-Osmosis ICEO Back Electrode BE 

Intermediate Transfer Media ITM Ben-Gurion University BGU 

Liquid Electrophotographic Printing LEP Binary Ink Developer BID 

Left Hand Side LHS Computational Fluid Dynamics CFD 

Main Electrode ME Concentration Polarization CP 

MagnetoHydroDynamics MHD Debye-Hückel DH 

Message Passing Interface MPI Diffusion Layer DL 

Navier-Stokes NS Developer Roller DR 

OverLimiting Current OLC ElectroConvection EC 

Poisson-Boltzmann PB ElectroConvective Instability ECI 

Partial Differential Equation PDE Electrically-Driven Flow EDF 

Photo Imaging Plate PIP Electric Double Layer EDL 

Poisson-Nernst-Planck PNP ElectroHydroDynamics EHD 

Pre-Transfer Erase PTE ElectroKinetic EK 

Q over M QoM Electro-Osmosis EO 

Richardson Extrapolation R.E. Electro-Osmotic Instability EOI 

Right Hand Side RHS Extended Space Charge ESC 

User-Defined Function UDF Finite Volume FV 

Vortex Pairs VP Generalized Newtonian Fluids GNF 

  Graphical User Interface GUI 
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1. Introduction 

 

This report presents a theoretical study of multiphase flow, consisting of charged solid particles 

moving within an electrolyte fluid under the action of an electric field. The study is motivated 

by a number of problems faced while operating the HP Indigo printers, whose digital printing 

technology is based on liquid ink driven by electrical forces. This research was initially 

conducted by Michael Hagayev, in the framework of a final B.Sc. project under the supervision 

of Prof. Avi Levy from the Mechanical Engineering Department of BGU and HP Indigo's 

presenter Mr. Tal Eluk, a former student of Prof. Levy. Within the framework of the above-

mentioned project, a physical model that includes governing equations was developed. The 

equations were solved by an analytical approach for the fully developed region under a number 

of basic assumptions. In addition, numerical simulations were performed by utilizing the Ansys 

Fluent program for single-phase flow in the absence of an electric field. 

The objective of the current study is to develop a comprehensive numerical methodology that is 

capable of simulation of multiphase flow subjected to an electric field by means of standard 

techniques of computational fluid dynamics (CFD). The methodology is focused on the 

development of a physical model incorporating the electrohydrodynamics (EHD) phenomenon, 

including governing equations, definitions , and constitutive laws. The developed physical model 

provides the capability of comparing the analytically and numerically obtained results by means 

of the distributions of the charged particle concentrations and the mixture velocity fields. First, 

a simplified well-known physical model will be tested in order to verify the numerical results. 

Second, a two-way coupled physical model will be implemented in order to characterize the 

electro-osmotic flow of a strongly non-symmetric electrolyte. Lastly, the developed 

methodology will be utilized for the numerical simulation of multiphase flows with the purpose 

of addressing the fundamental multi-physics phenomena typical of those observed in HP 

Indigo's configurations.  

It is expected that this study will comprise a basis for a fundamental understanding of the impact 

of different operating parameters on the printing quality of HP Indigo laser printers. 

Modeling of Van Der Waals and capillary forces, Brownian motion, and particle charging 

mechanisms remained out of the scope of the current research, for the sake of simplicity.  
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2. Background 

 

Multiphase flows are multiscale phenomena, ubiquitous in a variety of physical and industrial 

processes. These flows consist of two or more thermodynamic phases, which can be part of the 

same chemical component (e.g. water and vapor water) or several different chemical components 

(e.g. water flow combined with silicon particles). Multiphase flows may contain gas, liquid, or 

solid particle phases, or any combination in between. Several examples of natural multiphase 

flows are the transport of pure air (wind), sandstorms, volcanic eruptions, and blood flow within 

our veins. Several examples of industrial multiphase flows are sewage pipe flows, hydraulic or 

pneumatic transport of solid particles, cavitating pumps, and fluidized beds. The higher the 

number of phases of the flow, the more complicated is its physical modeling and numerical 

simulation. Moreover, many other physical phenomena, such as heat transfer, chemical 

reactions between phases, evaporation, melting, electromagnetic forces acting on a charged 

phase etcetera, may simultaneously take place within the flow. 

EHD is the study of the hydrodynamics of electrically charged fluids [2-3]. The EHD discipline 

focuses on the interactions between external and induced electric fields and fluid motion in the 

presence of ionized particles [4]. EHD gathers several mechanisms of particle motion in a fluid: 

electrophoresis, electro-osmosis (EO), etc. Electrokinetic (EK) phenomena address the formation 

of equilibrium or quasi-equilibrium electric double layers (EDL) in the micro and nano scales [4-

6]. EDL is a structure that is generated due to the interaction between charged substrate and fluid 

flow. The first layer of negative or positive charge ions is attached to the object surface due to 

chemical interactions or metal kept at a certain potential, while the second layer is made up of 

the oppositely signed ions attracted to the first layer via Coulomb forces. This second layer, 

named the Stern layer, electrically screens the first one, as can be seen in figure 1: 

 

Figure 1: Screening effect caused by the generation of EDL [7]. 
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Both EHD and EK phenomena are collectively called electrically-driven flows (EDFs) 

throughout this work. Several examples of EDF applications are fuel cells, separation 

techniques, electrodialysis, fluid pumping, and mixing in microfluidic systems [8]. 

This study deals with multiphase flow typical of liquid electrophotographic printing (LEP) 

printers designed and produced by the HP Indigo company. This flow contains charge carrying 

polymeric ink particles embedded within an electrolyte that consists of charge director micelles 

surrounded by an oil medium. This mixture is known as ISOPAR L and is characterized by the 

composition scheme shown in figure 2. 

 

Figure 2: ISOPAR L mixture composition [9]. 
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2.1 Main Units of LEP Printers 

This section introduces Indigo's LEP technology printer and describes its main units relevant to 

the current study. Figure 3 presents a typical model of the printer. 

 

Figure 3: Indigo industrial LEP technology printer – main units [10]. 

 

The printer consists of diluting and charging units, a computer station, a digital cyclic printing 

unit, an oil leftover treatment unit, voltage and thermal controllers, and more. This work will 

focus on the central unit in which the digital periodic printing process takes place, as shown in 

figure 4. 

 

Figure 4: HP Indigo digital press printing cycle [11-12]. 
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Description of the different components introduced in figure 4: 

1. The charging station positively charges the photo imaging plate (PIP) roller surface (marked 

in green in figure 4). 

2. Exposure to the laser beam electrically discharges specific sections on the PIP surface, 

forming a desirable photo image, as controlled by the computer unit connected to the printer. 

3. Charged ink particles mixed with electrolyte oil are transferred from the binary ink developer 

(BID) units to the charged regions on the PIP surface. 

4. The pre-transfer erase (PTE) unit removes the redundant ink and oil from the PIP surface 

cleaning it prior to further transportation of the digital photo image to the intermediate transfer 

media (ITM) roller (marked in black in figure 4). 

5. The first transfer of the digital photo (also called "blanket") through the ITM roller takes place. 

6. The "blanket" is heated up to melt the ink particles and to evaporate the oil. 

7. The second transfer of the "blanket" with the melted ink particles on its surface takes place by 

pressing it on the printing paper to get the final image. 

8. The remaining ink is cleaned and the PIP surface is further cooled. 

 

The above process occurs every entire circle of the PIP drum, each time with a different BID 

color. Applying this technology to form a number of different color layers, the final photo is 

printed on the paper. 
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Figure 5 shows a section view of the BID unit. 

 

Figure 5: BID unit section [13]. 

 

Description of the BID components: 

Ink inlet – diluted ink mixture enters the BID domain. 

Main electrode (ME) – stationary main electrode. 

Back electrode (BE) – back stationary electrode at the same electric potential as the ME. 

Developer roller (DR) – an important drum at the BID which is kept at an electric potential 

different from that of the electrodes. The DR rotates clockwise while the ink mixture flows in 

the gap between its surface and the ME. 

Squeegee roller – another drum that rotates counterclockwise. Its purpose is to flatten the coming 

ink layer, increase its uniformity and attach it to the DR. After passing the squeegee roller, the 

mixture is transferred from the DR to the PIP shown in figure 4. 

Cleaner roller – a counterclockwise roller that cleans remaining ink and oil from the DR and 

prepares it for the next round. 

Wiper – removes remaining ink and oil from the cleaner roller. 

Sponge roller – removes viscous ink leftovers from the cleaner roller and the wiper. 

Squeezer roller – squeezes the sponge roller. 

Ink outlet – remaining ink mixture leaves the BID for further processing and reuse. 
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The present research focuses on an analysis of the ink flow within the gap between the ME and 

the main roller of the BID (i.e. the DR). An enlarged sketch of this area is shown in figure 6, 

while a dimensional drawing and fluid properties of the ink mixture are given in chapter 8. 

 

Figure 6: Schematic of the gap between the ME and DR in which the ink flows [13]. 

 

As can be seen from figure 6, diluted ink enters the neck between both electrodes, and splits to 

the right (between the BE and the DR) and the left (between the ME and the DR). It should be 

noted that most of the ink (about 67%) goes to the left. There is an electric potential difference 

between the electrodes and the DR so that an electric field is generated, which results in electric 

forces acting on the charged ink particles. The direction of the electric field vector is radially 

outwards from the DR. Because of the negative charge bonded to the ink particles, the electric 

force pulls the ink particles toward the DR surface. One should notice that due to the narrow gap 

between the ME and the DR (350 µm), the electric field vector and the fluid velocity vector are 

nearly perpendicular to each other – the electric field is radial while the flow velocity is 

tangential. 
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3. Literature Review 

 

The present study focuses on analysis of multiphase flow. Several numerical methodologies 

have been developed over the years to model and analyze multiphase flows. Additionally, the 

present study includes analysis of an electrolytic fluid that contains ions and charged particles, 

whose dynamics are determined by the applied electric force. For this reason, some adjustments 

have to be made to the classical two/multi-phase models in terms of adding additional equations 

to provide two-way coupling between the electric and the hydrodynamic phenomena. In 

particular, the whole theoretical framework has been embedded by EDF models. This chapter 

introduces several multiphase methods and EDF models, in addition to an electro-osmotic flow 

characterization of a strongly non-symmetric electrolyte. An extensive discussion regarding the 

pros and cons of each method and model is presented, motivating the choice of a specific 

methodology that is suitable for the objectives of the present project. A detailed mathematical 

formulation of the chosen physical methodology, coupling the two-phase flow with the EDF 

model, is given in chapter 5. 

 

3.1 Methods for Solving the Multiphase Flows  

The methods for numerical modeling of multiphase flows can be classified into three general 

families. This section elaborates each family of the methods, their usage, and the governing 

equations to be solved. 

 

3.1.1 Eulerian-Eulerian Method 

This method addresses all n  phases as a continuum. Solid particle phases are characterized by 

their concentration c , in terms of mass or number of particles per unit volume. A specific 

position in space cannot be occupied by several phases at the same time, that is, the volume 

occupied by each phase i  cannot be occupied by the remaining phases at the same position in 

space at the same time. For that reason, the volume fraction i  of phase i  is defined by the 

volume of phase i , iV  in a system of volume V  [14]: 

(1)  
( ) 1

1.
n

i i i

iV t

V dV where 
=

= = 

In the Eulerian-Eulerian method, conservation equations are solved for each phase separately, 

as detailed below.  
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Mass conservation equation [14]: 

(2)  
( )

( ) ' ,
i i

i i i iu m
t

 
 


+ =


 

where 
i , 

iu  and '

im  are the density, velocity vector, and mass rate per unit volume of production 

of phase i , respectively, t  is time, and   is the divergence operator. 

Momentum conservation equation [14]: 

(3)  
( )

( )   ' ,
i i i

i i i i i i i i i i i

u
u u T f p mu

t


 


+  = + + +


 

where   is the tensor product that denotes a dyadic multiplication of (3x1) by (1x3) velocity 

vectors,  iT  represents the stress tensor of phase i , if  is a vector of external body force per unit 

mass acting on phase i , and 
ip  represents the volumetric force originating from interactions 

between the different phases (e.g. drag force). 

Energy conservation equation [14]: 

(4)  
( )

( ) ( ) ( ) ' ' ,
i i i ni

i i i i i i i i i i i i i

U
uU q P P u h m u

t t

  
   

 
+ = − − −  + +

 
 

where iU  corresponds to the specific internal energy of phase i , iq  is net heat flux out of phase 

i , 
iP  represents the pressure of phase i , n

ih  is the non-equilibrium enthalpy of phase i , and '

iu  

indicates the rate of production of  internal energy per unit volume of phase i . 

 

3.1.2 Eulerian-Lagrangian Method 

This method treats fluidic phases as continuous phases so that the conservation equations (2-4) 

are solved. However, solid particles are considered as a disperse phase. Particle trajectory 

calculations are based on the equation of motion of every single particle. The vector equation of 

motion for each particle, neglecting the Brownian motion, is given by [15]: 

(5)  ,
p p f

p

p

du u u
f

dt 

−
= − + 

where pu  and fu  are particle and fluid velocity vectors, respectively, pf  relates to the vector of 

external body force per unit mass acting on the particle (e.g. gravitation), and p  refers to the 

Stokes relaxation time, which for spherical particles is calculated by [16]: 
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(6)  
2

,
18

p p

p

l

d



= 

where 
p  and 

pd  are particle density and diameter, respectively, and 
l  is the fluid dynamic 

viscosity. The Stokes relaxation time accounts for the particle inertia and is the time constant for 

the exponential decaying in particle velocity due to drag. In other words, Stokes relaxation time 

is proportional to the time that the particle takes to reach its velocity, which for small particles 

is approximately the fluid velocity. 

In addition, the rotational dynamics of each particle is governed by the vector equation of motion 

due to the action of external moments: 

(7)  ,
p

p p

d
I M

dt


  =   

where pI    is the particle moment of inertia tensor, 
p  is the particle angular velocity vector, 

and the pM  vector refers to the action of external moments on the particle. 

With this formalism, six scalar equations corresponding to six degrees of freedom govern the 

spatial trajectory of each particle. 

 

3.1.3 Mixture Method 

Similar to the Eulerian-Eulerian method, all phases are assumed to be continuous. This method 

relates to all the n  phases as one mixture consisting of n  species, having equivalent properties 

(e.g. temperature, density, viscosity). These equivalent properties are calculated based on the 

volume fraction of each species 
i , which generally can be time and space dependent: 

(8)  ,i i

i

  = 

where   is the mixture equivalent property (scalar or vector) and i  is the property of the thi  

species. 

The four conservation equations to be solved for the mixture are as follows. 

The mass conservation equation: 

(9)  ( ) 0,u
t





+ =


 

where   and u  are the density and velocity vector of the mixture, respectively. 



11 
 

The momentum conservation equation: 

(10)  
( )

( )   ,
u

u u P f
t


 


+  = − + +


 

where P  represents the pressure of the mixture, f  is the vector of the external body force per 

unit volume acting on the mixture, and    is the deviatoric shear stress tensor defined as: 

(11)    ( ) ,Tu u =  + 

where   is the dynamic viscosity of the mixture. 

The thermal energy conservation equation: 

(12)  ( ) ( )( ) ( ) ,U u U P k T q
t
 


+ + =   ++


 

where U , k , and T  are the specific energy, thermal conductivity, and temperature of the 

mixture, respectively,   accounts for the viscous dissipation and q  represents internal heat 

sources within the mixture. 

The concentration of each species is calculated by Fick's law of diffusion, which refers to the 

conservation of species i  as: 

(13)  ( ) ( ) ,i
i i i i

c
c u D c S

t


+ =   +


 

where ic  and iD  are the concentration and the molecular diffusivity of species i , respectively, 

and 
iS  refers to the rate of the concentration source of species i . The concentration variable may 

be based on the number or mass of particles per unit volume. Throughout this work, the units 

used for concentration are 3

imol m   . The equations relating concentration, mass fraction and 

volume fraction of species i  are: 

(14)  

( ) ( )

( )

( ) ( )

( )
,

i T i ii i i
i

i i i T

i T T Ti i
i

i i i T

V V m V mol
c

M m mol V

m m m VY mol
c

M m mol V

 




= = =


= = =

 

where iM  is the molar mass of species i , iY  is the mass fraction of species i , m  and V  denote 

mass and volume, respectively, and the subscript T  means "Total". Similar to the volume 

fraction, the mass fraction fulfills: 
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(15)  
1

1.
n

i

i

Y
=

= 

Since the sum of volume or mass fractions has to be equal to unity (see equations (1) and (15)) 

equation (13) should be solved for only 1n−  species [17]. The volume or mass fraction of the thn  

species is determined as unity minus the sum of 1n−  solved volume or mass fractions and the 

concentration of the thn  species is calculated according to equation (14). To further minimize 

numerical errors, the thn  species should be selected as the species with the largest overall 

volume or mass fraction. 
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3.1.4 Multiphase Flows Solving Methods: Pros and Cons 

Multiphase flow phenomena have been extensively investigated over the last six decades.  

During this period, a large number of different numerical methods have been developed to 

simulate various multiphase flows relevant to basic science and engineering applications. Each 

method is typically tailored to address the specific kind of flows. The Eulerian-Lagrangian 

method is used to calculate the trajectories of bubbles [18-19], particles [20-21] or droplets [22]. 

The Eulerian-Eulerian method facilitates accounting for the forces acting between different 

continuous phases when simulating bubble flows [23] and fluidized beds [24]. Several works 

compare between the above methods [15,25]. Another method widely used in various 

engineering applications is the mixture method, which is a simplification of the Eulerian-

Eulerian method. Simulation of fluid-solid suspensions [26] and jet spray flames [27] for 

example, are the representative studies in which the mixture method has been implemented. 

When carefully implemented, the Eulerian-Lagrangian method is the most accurate approach, 

requiring the minimal amount of basic assumptions. However, this method is the most 

computationally expensive because of the large number of equations – six per particle/bubble. 

Because of this, the Eulerian-Lagrangian method is limited to several tens of thousands of 

particles at the most. Besides, each simulation may take weeks, or even months, to run. 

The Eulerian-Eulerian method treats particle phases as continuous, relying on constitutive laws 

and correlations used to approximate the properties of each phase and the interaction between 

the phases. The accuracy and reliability of the results obtained by the above approach may suffer 

if the correlations used do not exactly fit the flow under the consideration. At the same time, this 

method gives satisfactory results for a lot of practical applications, with much less computational 

effort than the Eulerian-Lagrangian approach. 

The mixture method is the simplest way to approximate multiphase flows, because of the 

relatively small number of equations involved in the model. Conservation equations are solved 

for the whole mixture, while the mixture equivalent properties are obtained by an average-

weighting. Due to these reasons, the mixture method is based on the largest number of physical 

assumptions and is not necessarily suitable for simulations of general multiphase flows. Still, 

this method is useful for simulating flows related to various engineering applications, providing 

results of acceptable quality, while making a reasonable computational effort. 

Precise calculation of particle trajectories is out of the scope of the present study. As a result, 

any numerical method based on the Eulerian-Lagrangian approach should not be considered. In 

contrast, Eulerian-Eulerian and mixture methods are both suitable for this research. This report 

will focus on the mixture method because of its simplicity and reasonable computational effort. 

Furthermore, in this work the particles are considered to be small and light, so the drag force 

between them and the surrounding fluid is relatively small and can be safely neglected. 
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3.2 Electrically-Driven Flow (EDF) Models 

Considering that the focus in this work is on a weak electrolyte subjected to an electric field, the 

external force term if , pf , or f  for either the Eulerian-Eulerian, the Eulerian-Lagrangian, or 

the mixture method, respectively, should be introduced to account for the electric force. In this 

case, additional relations must be provided in order to achieve a closed form of the overall system 

of equations. These relations depend on a specific EDF model. This section elaborates three 

different EDF models that can be embedded into the mixture method, including the governing 

equations and the limitations of each EDF model. 

 

3.2.1 Poisson-Nernst-Planck (PNP) Model 

In the absence of magnetic effects, the electric potential   can be computed by the Gauss law 

[28]: 

(16)  ( ) ,E    = − 

where   is the absolute permittivity of the electrolyte medium and 
E  relates to the space charge 

density of the medium. Absolute permittivity is calculated by the following relation: 

(17)  
0 ,r  = 

where 
r  is the non-dimensional relative permittivity of the medium and 

0  is the constant 

vacuum permittivity. 

The space charge density is defined as [28]: 

(18)  
1

,
n

E i i

i

F z c
=

 

where iz  is the valence of the thi  species, n  is the number of charged species in the electrolyte 

and F  denotes the Faraday's constant that is defined as: 

(19)  ,AF eN= 

where e  is the electron's elementary charge and AN  is the Avogadro number. 

The valence of a chemical element is related to the number of electrons in its outer shell. The 

valence of a chemical element is the combined power of the element with the surrounding 

electrons with which it will bond or form chemical compounds or molecules. 
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The Nernst-Planck equation (20) extends Fick's law of diffusion determined in equation (13). It 

is the standard law governing the transport of charged species in a weak electrolyte under the 

action of an electric field. The Nernst-Planck equation reads: 

(20)   ,i
i

c
J

t


= −


 

where iJ  is the ionic flux of the thi  species due to advection, diffusion and electric phenomena 

(in the absence of magnetic potential): 

(21)   ,i
i i i i i i

B

z e
J c u D c D c

k T


 
= −  −  

 
 

where 
Bk  is the Boltzmann constant. 

 

3.2.2 Poisson-Boltzmann (PB) Model 

In certain numerical simulations, there may be some difficulties when defining the boundary 

conditions for solving Gauss's law, determined in equation (16). A common approach to avoid 

this EDF simulation problem is the decomposition of the electric potential into two variables 

[28]: 

(22)  ,Ext  = + 

where Ext  refers to externally imposed electric potential and   is the intrinsic electric potential. 

Following this approach, Gauss's law determined in equation (16) is also decomposed into two 

equations [28]: 

(23)  
( )

( )

0

.

Ext

E

 

  

  =

  = −
 

An additional simplification is to consider the external electric force f  acting on the mixture 

formulated in equation (10) as only influenced by the externally imposed electric potential. 

In such conditions, the PNP model can be simplified to the PB model. Assuming that the ions 

follow a Boltzmann equilibrium, Gauss's law for the intrinsic electric potential determined in 

equation (23) reads [28]: 

(24)  ( ) ( ),0 0

1

exp ,
n

i
i i

i B

ez
F z c

k T
   

=

 
  = − − − 

 
 
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where 
,0ic  is a reference bulk ionic concentration of species i  and 

0  is a reference intrinsic 

electric potential, typically valued as 0. Like in the PNP model, The Nernst-Planck equation (20) 

is solved. 

 

3.2.3 Debye-Hückel (DH) Model 

The DH model is a further simplification of the PB model for low intrinsic electric potentials 

1i

B

ez

k T
 . By Taylor series expansion up to the second exponential term, equation (24) 

becomes: 

(25)  ( ) ,0

1

1 .
n

i
i i

i B

ez
F z c

k T
  

=

 
  = − − 

 
 

As in the PB model, Gauss's law for the externally imposed electric potential (23), as well as the 

Nernst-Planck (20) equations, are solved. 

 

3.2.4 EDF Models: Pros and Cons 

Considering the mixture method, PNP is the most comprehensive EDF model in which the 

electric and hydrodynamic variables are two-way coupled. The efficiency and convergence rate 

of the model were extensively surveyed in [29]. An example of the PNP model usage is the 

modeling of EK transport and biogeochemical reactions in porous media [30]. PB and DH models 

are based on the electric potential splitting into external and intrinsic electric potentials. 

Considering the Gauss law, the intrinsic electric potential depends on the space charge density, 

which is influenced by the concentration of the charged mixture species. Considering Boltzmann 

equilibrium, the space charge density does not depend on species concentration variables (it only 

depends on the initial bulk concentrations). Hence, the electric variables depend neither on the 

species concentrations nor on the hydrodynamics (one-way coupling). Several studies applying 

the PB model have been performed, such as the dynamic ion adsorption process in porous 

electrodes of capacitive deionization [31] and the analysis and application of an ion size-modified 

PB equation [32]. The DH model suggests a simplified space charge density expression, rather 

than the PB's exponential relation. The expression is obtained by performing the Taylor series 

expansion and assuming a low value of the intrinsic electric potential. The new space charge 

density expression is numerically simpler to implement.  The DH model has been successfully 

applied for the analysis of deformation and stability of a viscous electrolyte [33]. 
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Among the above three EDF models, the PNP model provides the best description of the realistic 

physical state. However, its numerical implementation is complicated. PB and DH models are 

simpler but are not suitable for a wide range of electrical problems. 

The EDF model chosen in this work is the PNP model. It has already been implemented and 

performs good simulation results in several open-source programs (see chapters 6-7). Besides, 

PB and DH models are not accurate enough when a high electric potential gradient is applied 

[28,34]. 

 

3.3 Physical Phenomena Relating to Bounding Electrolyte Subjected to 

Electric Potential Difference 

Figure 7, taken from Ref. [35], demonstrates the electric charge density (electric charge per unit 

volume) field of a symmetric binary electrolyte consisting of positively charged cations and 

negatively charged anions of the same diffusivity and absolute valence values, subjected to 

various values of external voltage. The electrolyte presented is bounded by a stationary reservoir 

from the top and by an ion-selective surface that is permeable for cations only from the bottom. 

In this case, an electric field directed downwards is generated due to the externally supplied 

voltage. For low voltage values (figure 7(a)), an EDL is generated in the vicinity of the ionic 

selective surface, as mentioned in chapter 2. The thickness of this EDL is of ( )   [35], where 

  is the electrostatic screening length introduced in section 5.1.3. An electrically neutral 

diffusion layer (DL) is located out from the EDL towards the top reservoir [35]. The existence of 

a tangential electric field, perpendicular to the externally supplied voltage, may result in an 

electroconvection (EC) mechanism of the space charge density within the EDL, which is 

associated with the classical EO flow of the first kind related to the quasi-equilibrium EDL [36-

41]. The presence of only EDL and DL for low voltages is associated with the Ohmic regime of 

the I-V curve presented as the underlimiting current in figure 8, taken from Ref. [42]. For supplied 

voltages close to the value of the thermal voltage defined in section 5.1.1, concentration gradients 

directed from the DL towards the ion-selective surface are developed. This phenomenon is 

known as concentration polarization (CP) [39-40,42,44-49]. At steady state, molecular diffusion 

ionic flux driven by this concentration gradient is equal (for an ideal ion-selective surface) to the 

oppositely directed electromigration flux of co-ions (see chapter 5) [35,48-51]. For higher voltage 

values (figure 7(b)), the CP limits the species transport and corresponds to diffusion limitation. 

This constraint results in a depletion region [35,42,52-55] associated with the extended space 

charge (ESC) region presented in figure 7 and the saturated current limI  of the limiting regime 

presented in figure 8 [35,42,48-49,56-57]. The existence of a tangential electric field component 

within the ESC, along with the electric field component perpendicular to the ion-selective 

surface, may result in EO of the second kind (non-linear) related to non-equilibrium EDL [36,39-
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41,44,49,53,58-60]. As can be seen from figure 8, high voltages are associated with the entrance 

to the overlimiting regime of the electric current. Rubinstein and Zaltzman were the first to 

associate the EC as a hydrodynamic mechanism that governs this overlimiting current (OLC) 

[39,41,44,59]. They examined extensively the generation of convective cells consisting of vortex 

pairs (VP) in the vicinity of the ion-selective surface, where the ionic concentration gradient is 

very significant. At voltages associated with the onset of the OLC regime, an electric field 

fluctuation in the tangential direction drives the EO of the second kind mechanism, which, in 

turn, generates a test vortex. This test vortex results in an additional concentration gradient, a 

local change in the electric resistance, and a local potential difference which enhances the 

tangential electric field. The enhanced electric field implies tangential electric force on the fluid 

and contributes to the intensity of the test vortex in the manner of a positive feedback mechanism 

[35,42,55]. For low voltages of the OLC regime, steady VP are generated (see figure 7(c)) [35,44-

45,61]. This vortex phenomenon is called electroconvective instability (ECI) [48-50,62-63], or 

electro-osmotic instability (EOI) [35,54,62]. The ECI is possible due to EO of the second kind for 

a perfectly permselective surface or due to either equilibrium EO (first kind), bulk EC or both for 

non-ideal permselectivity of the surface [39-41,44,48-49,51,60,64-66]. For a highly ion-selective 

surface, the shape of the ESC layer has a great impact on the ECI characteristic [49-50]. Higher 

voltages (figure 7(d)) result in chaotic ECI, which is characterized by multi-layer vortex 

structures that mix the electrolyte, enhance ionic transport by convection, eject patches of 

positive and negative space charge density into the DL and increase the current value 

[35,42,44,50,56,60-62]. The OLC related to high voltage values is mostly associated with excess 

noise [8,35,39,44-45,60,62,67-71]. 

 

Figure 7: Schematic of space charge density of symmetric binary electrolyte subjected to different 
electrical voltages. [35] 
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Figure 8: Schematic of different current regimes as a function of membrane-reservoir applied voltage. [42] 
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4. Research Objectives 

 

The objective of this research is to develop a comprehensive numerical methodology that is 

capable of addressing the above-described multi-physics phenomena, theoretically employing 

standard techniques of computational fluid dynamics. Implementation of this methodology 

should shed light on the physical processes simultaneously taking place in the EDF and help to 

investigate the triggers leading to the onset of EHD instability of the EDF under consideration. 

The results of the present research should provide HP Indigo engineers with a verified and fully 

accessible CFD model, which will serve them as a tool for an in-depth understanding of the 

fundamental mechanisms of EDF taking place in different parts of the printer. It is believed that 

understanding the fundamental EDF mechanisms will shed light on ways to further improve the 

quality of printing. 

An additional secondary objective is to investigate and characterize the electro-osmotic flow of 

a strongly non-symmetric electrolyte consisting of positively charged cation species, negatively 

charged anion species, and a third negatively charged species of high valence value, subjected 

to high voltage of the overlimiting regime. 
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5. The Physical Model 

 

This chapter summarizes the governing equations, solved for an incompressible isothermal 

mixture flow, utilizing the PNP model. The governing equations are first formulated in 

dimensional form and then normalized by utilizing characteristic scales of the problem under 

consideration (see section 5.1). The tilde superscript ~ above a symbol denotes any dimensional 

physical quantity that has a non-dimensional representation. First, equivalent mixture density, 

dynamic viscosity, absolute permittivity, and temperature are calculated by utilizing equation 

(8). For incompressible flow characterized by a constant value of mixture density the continuity 

equation (9) is reduced to: 

(26)  0.u = 

Additionally, when the mixture experiences an electric force, the momentum equation (10) is 

modified into: 

(27)  2 ,E

u
u u P u f

t
 
 

+  = − +  + 
 

 

where Ef  vector is the electric body force acting on the mixture. 

To find this force value, one should be familiar with the electrostatic Maxwell stress tensor [8]: 

(28)    ( ) 
1

,
2

E E E E I 
 

=  −  
 

 

where    is the electrostatic Maxwell stress tensor, E  indicates the electric field vector, and 

 I  denotes the appropriate identity tensor. The electric body force vector acting on the mixture 

is obtained by the divergence of the Maxwell stress tensor: 

(29)    ( ) 
1

.
2

Ef E E E E I 
  

=  =   −   
  

 

Considering the electrostatic relation between the electric field and the electric potential as: 

(30)  ,E = − 

equation (29) becomes: 

(31)  ( ) ( ) 
1

.
2

Ef E E E I 
  

=  −  −   
  
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Due to the Gauss law determined in equation (16) equation (31) can be rewritten as: 

(32)  
( )

,
2

E E

E E
f E 


= −  

and, for the constant mixture permittivity: 

(33)  
1

.
n

E E i i

i

f E F z c 
=

 
= = −  

 
 

Substituting the mixture electric body force expression (33) into the momentum equation (27), we 

get: 

(34)  2

1

.
n

i i

i

u
u u P u F z c

t
  

=

   
+  = − +  −    

   
 

The electric potential in this physical model is derived from the Gauss law (16), being one of the 

four Maxwell equations. Using the space charge density definition determined in equation (18), 

and assuming a constant value of absolute permittivity, the Gauss law satisfies the Poisson's 

equation: 

(35)  2

1

.
n

i i

i

F
z c

 =

 
 = −  

 
 

To get a closed form of the overall set of equations, the Nernst-Planck equation (20-21) for 

incompressible flow is written as: 

(36)  .i i
i i i i i

B

c z e
u c D c D c

t k T


  
+  =   +   

   
 

The last term in this equation is named the "electromigration term" [28]. This term represents the 

transport of charged species due to an electric field and can be further rewritten as a standard 

convective term: 

(37)  ( ) ( ), ,i
i i i i i M i i

B

z e
S D c c u c

k T
  

  
 =   =  =    

  
 

where i  is the electrical mobility of species i  and ,M iu  is the vector of electromigration velocity 

determining the relative velocity between the fluidic carrier and the corresponding ionic species 

i . However, this term may also be considered as the Laplacian operator applied to the electric 

potential field  . 
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In order to derive an expression for the electromigration term determined in equation (37), it is 

necessary to know the electrical mobility equation for the diffusion of charged particles: 

(38)   .i B
i

i

k T
D

z e


= 

Alternatively, the thi  species diffusion coefficient can be derived by the Stokes-Einstein 

equation for the diffusion of spherical particles within a liquid with a low relative velocity-based 

Reynolds number: 

(39)   ,
6

B
i

i

k T
D

r
= 

where 
ir  is the average radius of the thi  spherical particle species. Both equations (38) and (39) 

are known as "Einstein relations" [72]. 

To solve the set of the coupled time and space dependent partial differential equations (PDEs), 

initial conditions (ICs) and boundary conditions (BCs) should be obtained. The IC for species 

concentration in the case of an electrolyte bounded by two parallel electrodes satisfies the 

electroneutrality condition [73]: 

(40)   
1

0.
n

i i

i

z c
=

= 

 Four types of BCs are implemented in this work: 

1. Dirichlet BC – specifies a constant value of the dependent variable on the boundary. 

2. Neumann BC – specifies the value for which the derivative of the dependent variable is 

set on the boundary domain, in its normal direction. For example, ˆ 0P n  =  specifies a 

zero gradient BC for the pressure variable P , where n̂  is a unit vector perpendicular to 

the boundary. 

3. Robin BC – specifies a relationship between the dependent variable and its derivative 

normal to the boundary domain. For example, ˆ 0iJ n =  specifies a zero ionic flux BC, 

where both ic  and ic  are connected. 

4. Periodic BC – specifies the value of the dependent variable on the certain boundary as 

the value of the same dependent variable on the opposite boundary. 

An important parameter which can be calculated when running the numerical simulation is the 

total surface-averaged electric current density (positively signed electric current per unit area) 

passing through a plane parallel to the applied voltage boundaries and placed at height 0y  from 

the bottom boundary [73-74]: 
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(41)   ( )
0

2
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1

2

n

y i i
y

iL x , y y ,t

I F z J dx ,
L y t




=
=

  
= −  

   
 

where 2L  is the length of the above-mentioned plane in the horizontal x  direction and ( )i
y

J  is 

the y  component of the ionic flux vector of the thi  species defined by equation (21). The first 

term in the above expression corresponds to the charged species passing through the given plane, 

while the second term corresponds to the displacement current density and accounts for the time-

varying electric field. To better understand the meaning of the above calculation, let us consider 

an elementary charge moving from point A to point B within the computational domain. If our 

amperemeter is located outside the zone between A and B, there will be no flux contribution to 

the calculation. However, as follows from equation (35), the charge transport will change the 

electric field within the domain, which will be reflected by measurement of an electric current 

made by the amperemeter. 

Generally, the mixture equivalent properties and the volume or mass fractions determined in 

equations (8), (1), and (15), respectively, are space and time dependent functions. Moreover, the 

governing equations, including the conservation of mass (26), momentum (34), species (36), and 

the Gauss law (35), are two-way coupled when employing the PNP model. As can be seen, the 

physical model, even not accounting for the particle charging kinetics, Van der Waals forces, 

and Brownian motion is still very complicated. Hence, dimensional analysis is next performed 

to reduce the number of parameters that determine the physics of the problem under 

consideration. 

 

5.1 Dimensional Analysis 

Dimensional analysis is a mathematical process that aims to determine non-dimensional groups 

governing the problem under consideration. The process starts with identifying scales of the 

problem and is followed by algebraic transformations of the governing equations. Finally, the 

non-dimensional governing equations, together with all the non-dimensional groups, are 

obtained. This chapter suggests ways of normalizing the problem parameters for two different 

configurations: 

1. A configuration with two stationary horizontal boundaries.  

2. A configuration with one horizontal boundary moving with constant velocity in the x  

direction, while another horizontal boundary is stationary.  

 Both configurations operate with an electrolyte consisting of n  charged species. 
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The scales defined will be substituted into equations (20-21,26,34-35,41) providing the set of  non-

dimensional groups. 

 

5.1.1 First Configuration 

For the configuration characterized by stationary boundaries, the characteristic scales are of the 

form [35,51]: 

(42)  
2

20 0 0 0
0 0 0 0 0

0 0 0 0

, , , , , ,B
T T

l u D c Fz D ck T
t V u V P J I

D z e l l l l





+ + + + +

+ +
= = = = = = 

where 
0t  is the diffusion time, 

0l  is the geometric characteristic length, 
TV  is the thermal voltage, 

0c+  is the initial bulk concentration of cation species, 
0u , 

0P , 
0J , and 

0I  are characteristic 

velocity, pressure, ionic flux, and current density, respectively, and superscript sign +  refers to 

positive cation species. Utilizing the above scaling, one can obtain the non-dimensional 

variables: 

(43)   
0 0 0 0 0 0 0

, , , , , , , ,
yi i

i i y

T

Ic Jt x u P
t x u c P J I

t l u c P V J I




+
= = = = = = = = 

where x  corresponds to the spatial coordinate. We next substitute the expressions that appear in 

equations (42-43) into the governing equations of the physical model (as detailed in appendix A), 

yielding non-dimensional governing equations as explained below. 

The mass conservation equation for incompressible flow is of the form: 

(44)  0.u = 

The momentum conservation equation is of the form: 

(45)  2

2
1

1 1
,

2 i

n

r i

i

u
Peu u P u z c

Sc t


=

   
+  = − + −    
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where the non-dimensional numbers Sc , Pe ,  , and 
ir

z  are determined in section 5.1.3. 

Poisson's equation for the electric potential is of the form: 

(46)  2 2

1

2 .
i

n

r i

i

z c
=

−   = 
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The species conservation Nernst-Planck equation is of the form: 

(47)  ,i
i

c
J

t


= −


 

where iJ  is the non-dimensional ionic flux of the thi  species for isothermal flow: 

(48)  ,
i i ii i r i r r iJ Pec u D c D z c = −  −  

where the non-dimensional number 
ir

D  is determined in section 5.1.3. 

The equation for the non-dimensional surface-averaged electric current density in the y  

direction is of the form: 

(49)  ( )
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where the aspect ratio AR  is determined in section 5.1.3. In summary, the first form of a non-

dimensional set of governing equations is: 

(50)  
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5.1.2 Second Configuration 

For a 2D configuration characterized by a moving boundary, its velocity wallu  is utilized to scale 

the time, velocity vector, and pressure fields, as well as the species ionic flux and current density. 

In such a case, the characteristic length H  refers to the distance between the two parallel 

electrodes. For a 3D configuration characterized by a moving boundary, the characteristic 

velocity avu  and length HD  are defined as the average inlet velocity due to the flow rate of the 

mixture and the hydraulic diameter of the rectangular duct, respectively: 

(51)  
4

H

A
D ,

p
= 
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where A  and p  are the cross-section area and wetted perimeter of the duct, respectively. 

The characteristic scales of the moving boundary configuration which differ from the stationary 

boundary configuration, are of the form: 

(52)  20
0 0 0 0 0 0 0 0 0

0

, , , ,
l

t P u J c u I Fz c u
u

 + + += = = = 

where 

(53)  ( ) ( ) ( ) ( )0 02 3 2 3
,H wall avD D D D

l H or D u u or u= = 

are the characteristic length and velocity for 2D or 3D configurations, respectively, and 
0t  is the 

characteristic time. 

We next substitute the expressions that appear in equations (52-53) and (43) into the governing 

equations of the physical model (as detailed in appendix A), yielding non-dimensional governing 

equations as explained below. 

The non-dimensional mass conservation for incompressible flow, Poisson equation for the 

electric potential, Nernst-Planck equation for the species concentration and the calculation for 

current density in the y  direction, all remain the same as written in (44,46,47) and (49), 

respectively. 

The momentum conservation equation is of the form: 

(54)  2
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where the non-dimensional numbers Re  and   are determined in section 5.1.3. 

The non-dimensional ionic flux of the thi  species for isothermal flow is defined as: 

(55)  ( )i

i
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i i i r i

D
J c u c z c .
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= −  +   
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In summary, the second form of a non-dimensional set of governing equations is: 

(56)  
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Note that the sets of equations (50,56) formulated for the general non-symmetric electrolyte 

consisting of n  charged species are straight-forwardly reduced to the system governing the EC 

of a symmetric binary electrolyte by setting 2n = , 
1 2 1r rz z= − = , and 

1 2 1r rD D= = , where the 

indices 1 and 2 refer to the cation and anion species, respectively. 

 

5.1.3 Non-Dimensional Numbers 

This section describes the non-dimensional groups derived in the previous sections. 

The Reynolds number ( Re ) is the ratio between the inertial and viscous forces of the flow. At 

low Reynolds numbers, the flow tends to be laminar because of the relatively high viscous force. 

At high Reynolds numbers, the flow tends to be turbulent because of the relatively high inertial 

force. The transition between "low" and "high" Reynolds number flows is not unique and it 

depends on the geometry. The Reynolds number is defined as: 

(57)  0 0u l
Re .




= 

The Schmidt number ( Sc ) is the ratio between the viscous diffusion rate and molecular mass 

diffusion rate. Viscous diffusion is responsible for the diffusion of momentum in the fluid, while 

molecular mass diffusion tends to prevent the local accumulation of species to minimize the state 

of internal energy. The Schmidt number is defined as: 

(58)  Sc ,
D D

 

+ +
= = 

where   is the kinematic viscosity of the mixture. 

The Péclet number ( Pe ) is the ratio between the advective and diffusive rates of species transport 

within the flow. At low Péclet numbers, species transport is dominated by the molecular 



29 
 

diffusion mechanism. At high Péclet numbers, species transport is dominated by the flow 

advection mechanism. The Péclet number is defined as: 

(59)  0 0u l
Pe .

D+
= 

The electrohydrodynamic coupling constant ( ) is the ratio between the electric and 

hydrodynamic forces. At a low value of  , the EDF is dominated by viscous and molecular 

diffusion forces. At high   numbers, the EDF is dominated by electric forces acting on the ions 

within the solution. The electrohydrodynamic coupling constant is defined as [57]: 

(60)  
2

2 .B
T

k T
V

D D z e

 


 + + +

 
=  =  
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One should note that the Péclet number and the electrohydrodynamic coupling constant are 

identical if the characteristic velocity determined in equation (42) for the configuration with 

stationary boundaries is used in equation (59) instead of 
0u . 

The non-dimensional electrostatic screening length ( ) is the ratio between the Debye length 

D  and the characteristic length 
0l . The Debye length is the characteristic thickness of an EDL 

and it used to measure its spatial extent [8,75-76]. The Debye length is defined as [8,76]: 

(61)  
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Figure 9 illustrates the Gouy-Chapman model of an EDL that helps to understand the meaning 

of Debye length (or electrostatic screening length) [77]: 

 

Figure 9: Gouy-Chapman model for EDL. Electric potential decays exponentially when moving away from the charged 
surface. 

 

The Debye length (or electrostatic screening length) is responsible for the curve-shaped decay of 

the electric potential. The smaller the Debye length, the steeper is the exponential curve of the 

electric potential, which corresponds to the existence of a large potential gradient in the direction 

perpendicular to the surface. In other words, a small value of the Debye length indicates the 

dominant role of the electric field screening effect. The non-dimensional electrostatic screening 

length is defined as: 
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The non-dimensional voltage (V ) corresponds to the Dirichlet BC of the electric potential and 

is defined as the overall electric potential difference V  between two opposite boundaries, 

normalized by the thermal voltage TV : 

(63)  
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In the case of stationary boundaries containing a symmetric binary electrolyte, the non-

dimensional electrostatic screening length and voltage,   and V , fully characterize charging 

and discharging dynamics of the electrolytic cell [75]. 

The valence ratio (
ir

z ) is defined as the valence of the thi  species normalized by the valence of 

the cation species. Considering a symmetric binary electrolyte consisting of positive and 

negative ions, the valence ratio of anions equals -1. For a multispecies electrolyte, a high absolute 

value of the valence ratio corresponds to a highly charged thi  species. The valence ratio is 

defined as: 

(64)  
i

i
r

z
z .

z+
= 

The molecular diffusivity ratio (
ir

D ) is defined as the molecular diffusion coefficient of the thi  

species normalized by the molecular diffusion coefficient of the cation species. Considering a 

symmetric binary electrolyte consisting of positive and negative ions, the diffusivity ratio of 

anions equals 1. For a non-symmetric electrolyte, a high value of the diffusivity ratio refers to 

highly transported thi  species due to molecular diffusion phenomenon. The diffusivity ratio is 

defined as: 

(65)  
i

i
r

D
D .

D+
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As defined above, the non-dimensional electrostatic screening length ( ) controls the initial bulk 

value of cation concentration. Considering an electrolyte that contains more than two species, 

the ratio between the initial bulk concentrations of the remaining species should be additionally 

introduced. In this work, we consider a non-symmetric electrolyte consisting of a single 

positively charged species of valence z+  and two negatively charged species of valences z−  and 

Mz− , respectively, where M  is any positive integer number. The species are denoted by 

subscripts 1 2 3i , ,=  corresponding to the cation species of valence z+ , the anion species of 

valence z− , and the third negatively charged species of valence Mz− , respectively. The non-

dimensional bulk concentration ratio rc  is defined as: 

(66)  3

2

0r

c
c at t .

c
= = 

Regarding to the above-mentioned electrolyte composition, the non-dimensional form of the 

electroneutrality condition determined in equation (40) is given by: 

(67)   1 2 2 2 2 0r r rc z c Mz c c .+ + = 
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The values of the electrostatic screening length ( ), valence ratio (
ir

z ), and the bulk 

concentration ratio (
rc ), in addition to the electroneutrality condition (67), determine the ICs for 

the concentration fields of the species. 

The aspect ratio ( AR ) of a rectangular computational domain is defined as the ratio of its longer 

to its shorter edge lengths. A high aspect ratio of the computational grid cell may cause numerical 

artifacts.  
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6. Solution of a Simplified Physical Model 

 

The equations governing the physical model relevant to the present study can be solved either 

analytically or numerically. An analytical solution typically relies on several basic assumptions 

(e.g. an assumption of laminar flow and the existence of a fully developed flow region), which 

significantly simplifies the governing equations. In contrast, numerical simulation can address 

more general flow configurations. This chapter contains results obtained by both analytical 

solutions and numerical simulations. Several canonical flow configurations are addressed with 

the purpose of getting acquainted with the fundamental physical phenomena typical of EDFs 

and benchmarking the utilized numerical solver. 

 

6.1 Analytical Approach 

The simplified physical model considered in this section does not take into account the impact 

of the concentration of charged species on the electric field. Under this assumption, there is no 

need to solve Poisson's equation for the electric potential (35), as well as the term for the mixture 

electric body force defined in equation (33). As a result, the concentration of charged species is 

not coupled with the electric field. Therefore, the electric field is only a function of the electric 

potential difference applied to the boundaries, while its impact on the momentum of the 

fluid/mixture is neglected (i.e. one-way coupling is assumed). This section contains analytical 

solutions for three flow configurations characterized by increasing complexity: 

1. One phase Couette-Poiseuille flow between two parallel plates without the action of an electric 

field. 

2. Mixture flow through a curved duct without the action of an electric field. The mixture is 

composed of a fluid and a solid particle species. 

3. Mixture flow through a curved duct under the action of a constant electric field approximated 

by a given expression. The mixture is composed of a fluid and a solid particle species. 

 

6.1.1 One Phase Couette-Poiseuille Flow 

Considering the Couette-Poiseuille flow, it is possible to obtain an analytical solution for the 

velocity profile in the fully developed region. Comparison of the analytical solution with the 

results obtained by numerical simulations serves as a verification of the numerical solver. 

Couette-Poiseuille flow between static and moving parallel plates is presented in figure 10. 
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Figure 10: Schematic description of Couette-Poiseuille flow between two parallel plates. 

 

The velocity field is obtained by the solution of the dimensional mass and the momentum 

conservation equations. In the absence of charged species and an electric field, no body force 

exists. In the following analytical approach, the velocity vector u  and the flow properties 

appearing in equations (26-27) and in equation (27), respectively,  refer to the fluid rather than to 

the mixture. Mass and momentum conservation equations for Couette-Poiseuille flow are solved 

under the following assumptions: 

• Single-phase flow. 

• Isothermal flow: constant fluid temperature. The energy conservation equation is not 

solved. 

• Incompressible flow: fluid density is constant in space and time. 

• Fully developed laminar flow: there is no velocity gradient in the x  direction. There is 

no velocity component in the y  direction. 

• 2D case: no dependence on z  coordinate. 

• Steady state flow: no dependence on time. 

• Newtonian fluid: shear stresses are proportional to the flow strain. 

• Constant fluid dynamic viscosity. 

• There are no body forces (gravitational force is negligible). 

The mass (26) and momentum (27) conservation equations formulated in Cartesian and 

cylindrical coordinates, along with the analytical solution of the equations for the case of 

Couette-Poiseuille flow are detailed in appendices B-C, respectively. 

The velocity profile analytically obtained under the assumption of a fully developed region is: 

(68)  ( ) 2

1 2 ,xu y Ay c y c= + + 

where 
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 and constants 1 2c ,c  depend on the BCs. 
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The BCs for the configuration shown in figure 10 are: 

(69)  
( )
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x wall

u y
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where H  is the distance between the two parallel plates and 
wallu  is the velocity magnitude of 

the top moving wall. Substituting the BCs (69) into the solution of (68), the analytical velocity 

profile reads: 

(70)  ( ) 2 .wall
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u
u y Ay HA y

H

 
= + − 

 
 

Figure 11 illustrates the analytical solution obtained for different pressure gradient values. 

 

Figure 11: Analytical velocity profile of a fully developed Couette-Poiseuille flow between two parallel 
plates, for different pressure gradient values. 

 

As can be seen from figure 11, positive pressure gradient values may result in the existence of a 

backflow zone. 

 

6.1.2 Mixture Flow Through a Curved Duct Without the Action of an Electric Field 

Considering a mixture flow composed of two species in the absence of an electric field, it is 

possible to obtain an analytical solution for the velocity and concentration profiles in the fully 

developed region. To do this, one should solve the incompressible mass (26) and the momentum 

(27) conservation equations for the velocity field, along with the species conservation equation 

(13) for the secondary particle species. These equations are solved under the following 

assumptions: 

• Isothermal flow: constant mixture temperature. The energy conservation equation is not 

solved. 

• Incompressible flow: mixture density is constant in space and time. 

• Fully developed laminar flow: there are no velocity and concentration gradients in the 

tangential direction. There is no velocity component in the radial direction. 
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• 2D case: no dependence on z  coordinate. 

• Steady state flow: no dependence on time. 

• Newtonian fluid: shear stresses are proportional to the flow strain. 

• Constant mixture dynamic viscosity. 

• There are no body forces (gravitational force is negligible). 

• Implementation of the mixture model: the momentum conservation equation (27) is 

solved for the mixture elements composing the two above-mentioned species. Therefore, 

the drag force between species is not considered. 

• The molecular diffusion coefficient of the secondary particle species is constant. 

• There is no concentration rate source 
iS  for the particles species. 

Note that the conservation equations of mass, momentum, and species are coupled by the volume 

fraction of solid particles 
s  and by the mixture velocity u . The volume fraction of the particle 

species is necessary for the calculation of mixture properties introduced in equation (8), and 

influences the concentration value determined by equation (14), while the mixture velocity 

appears in all of the three conservation equations. However, fully developed laminar flow and 

constant property (density, dynamic viscosity, and mass diffusivity) assumptions decouple the 

above relations. 

Analytical solutions of the mass (26), momentum (27), and species (13) conservation equations 

are detailed in appendix C. 

The mixture velocity profile analytically obtained under the assumption of a fully developed 

flow region is: 

(71)  ( ) 2
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1
ln ,

2 2
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u r r c r

r


 
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where r  is the radial coordinate, 
1 P

B
 





 and constants 

1 2c ,c  depend on the BCs. The BCs 

for the configuration of the ME-DR gap shown in figure 6 are: 
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where 1r  and 2r  are the radii of internal DR and external ME concentric boundaries, respectively, 

and _ wallu  is the tangential velocity of the moving boundary. 
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Substituting the BCs determined in equation (72) into the solution of (71), the analytical mixture 

velocity profile reads: 

(73)  ( )
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The particle concentration profile analytically obtained under the assumption of a fully 

developed flow region is: 

(74)  ( ) 1 2ln ,sc r a r a= + 

where the constants 
1 2,a a  depend on the BCs. Possible BCs for the concentration of the particle 

species are the Neumann BCs: 
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Substituting the BCs determined in equation (75) into the solution of (74), the analytical particle 

concentration profile reads a constant value which does not depend on the radial coordinate: 

(76)  ( ) 2.sc r a= 

 

6.1.3 Mixture Flow Through a Curved Duct Under the Action of Constant Electric Field 

Approximated by a Given Expression 

As has been stated at the beginning of section 6.1, the mixture electric body force term 

determined in equation (33) is not considered in the current section of the simplified physical 

model. Also, decoupling assumptions regarding the governing conservation equations are given 

in section 6.1.2. For these reasons, the embedded electric field does not impact the mixture 

velocity profile, which remains as presented in equation (73). However, the concentration profile 

of the particle species is obtained by the Nernst-Planck equation (36), which includes the 

additional electromigration source term given by equation (37) for the species conservation 

equation (13). To perform the analytic solution, which accounts for an electric field, several 

additional assumptions are introduced: 

• The electric field does not impact the mixture velocity field. 

• Forces between the charged particles are neglected. 
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• Particle's charge does not impact the external electric field generated by the electric 

potential difference supplied to the electrode boundaries. 

• The magnetic potential is negligible. 

• The curved duct configuration displayed in figure 6 is approximated as a complete 

cylinder, in a way that allows addressing a symmetric Gaussian surface around it. 

• The electric field is applied in the radial direction only. 

• Constant valence of the charged particles. 

As can be seen from equations (30,36), species concentration depends on the electric field E . 

The simplest expression for the electric field vector is obtained by plotting a symmetric Gaussian 

surface around the approximated cylindrical geometry and performing the integral form of 

Gauss's law [78]: 

(77)  
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E ndA


 =  = 

where   is the electric flux through the Gaussian surface, n̂  is a unit vector perpendicular to 

the Gaussian surface (directed out), A  is the Gaussian surface area, and inQ  is the net charge 

enclosed within the Gaussian surface. 

Analytical solutions of Gauss's law determined in equation (77) and the Nernst-Planck equation 

(36) are detailed in appendix C. Utilizing Gauss's law, the expression obtained for the electric 

field vector is: 
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where r̂  is a radial unit vector directed from the internal 
1r  to the external 2r  boundaries. 

The particle concentration profile analytically obtained under the assumption of a fully 

developed flow region is: 
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 and constants 1 2a , a  depend on the BCs. The BCs for the configuration 

shown in figure 6 are: 
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(80)  
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where 
maxc  is a constant. 

Substituting the BCs determined in equation (80) into the solution of (79), the analytical particle 

concentration profile reads: 
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Given different G  values, figure 12 illustrates the result of the normalized concentration of 

particles. Note that the particles are negatively charged. Therefore, their valence value 
sz  is 

negative, and so is G . 

 

Figure 12: Normalized particle concentration as a function of the duct radius for different G  values.  

 

• Note that for absolute G  values larger then 200, the computer memory limitation does not 

allow to display the corresponding curve, although the solution is physical. 

 

6.2 Numerical Approach 

Unfortunately, there is an essential difficulty in performing an analytic solution of the equations 

governing the motion of general incompressible Newtonian flows. An analytical solution may 
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be achieved for a few configurations only, relating to the fully developed flow region under a 

number of basic assumptions. The main reason for this difficulty is the non-linear physics of the 

Navier-Stokes (NS) equation, responsible for the momentum conservation of the flow. 

Moreover, the challenge is even greater when dealing with multiphase flows. Therefore, 

performing numerical simulations of the flow field is necessary. The numerical solution can be 

performed by utilizing several commercial packages, as well as open-source software. These 

programs enable simulation of flows with given BCs and ICs. Over the years the packages have 

been upgraded significantly, and nowadays it is possible to simulate multi-physics phenomena, 

including the motion of particles, and to account for the impact of different fields (e.g. electric, 

magnetic and gravitational fields), chemical reactions, heat transfer, combustion, etc. The field 

encompassing all these numerical capabilities is called computational fluid dynamics (CFD). 

Examples of CFD programs: 

• Ansys programs: Workbench, Fluent, CFX 

• OpenFOAM 

• RheoTool 

• Comsol. 

Examples of additional computing resources: 

• Mathematic computational programs: Matlab, Mathematica 

• Programing languages: C, C++, Java, Fortran, Python. 

Each of the above programs has various utilities and requires training and experience. For the 

simplified physical model solution, Ansys Workbench and Fluent programs (version 18.2) were 

employed. The main reasons that led to this choice are: 

• Intuitive graphical user interface (GUI). 

• The mixture method is utilized and verified in the program (species transport model). 

• Advanced geometry and mesh features. 

• An available student addition in the academic institute. 

The main disadvantages of Ansys Fluent are the difficulties with verifying the simulation results 

(Fluent is not an open-source program) and the need for using the magnetohydrodynamics 

(MHD) module to include electric equations. 

Another program used in this work for calculations, verification, and presentation of results is 

Matlab. BGU purchased licenses for these programs, and they are installed on the laboratory's 

computers and clusters. 
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6.2.1 Ansys Fluent Program 

Ansys Fluent operates with the finite volume (FV) method, in which the domain is divided into 

many small control volume cells. According to the chosen physical model, conservation 

equations are solved in their integral form for each control volume cell. Following the FV 

formalism, the values of the unknown variables are calculated at the cell centroids during each 

numerical iteration or time step. Over the simulation process, errors related to rounding the 

irrational numbers, as well as errors originating from the discretization of geometry and 

truncation of the numerical schemes, can appear and further accumulate. If the simulation 

converges, some of these errors become smaller as the iterations progress. 

The Workbench interface enables us to create geometry and grid, and to enter the Fluent 

program, look and process simulation results, and export data into text files, which can be read 

by Matlab. 

Fluent is the solver which enables definition of the desirable physical model and its equations, 

and makes it possible to determine BCs and ICs, and to perform the iterations or time steps 

required by the numerical procedure. 

 

6.2.2 Comparison Between Analytical and Numerical Results 

This section includes a comparison between the analytical solutions obtained in section 6.1 and 

numerical simulations results obtained by the Ansys Fluent program. All the numerical 

simulations utilize 2D geometries that were divided equally into 100,000 rectangular grid cells. 

The conservation equations of all the cases were solved in their steady state form and required 

approximately 2,200 iterations until convergence was achieved (the maximal residual value was 

610− ). The numerical simulations were executed on the lab's cluster, which is computationally 

powerful and yields results in reasonable time. 

Figure 13 presents a comparison between the numerically and the analytically obtained results 

for the velocity profile of a single-phase Couette-Poiseuille flow in the fully developed region. 
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Figure 13: x  velocity component of the fully developed Couette-Poiseuille flow between two parallel 
plates. Analytical and numerical results. 

 

The analytical solution curve is marked by the blue color in figure 13, while 100 sample points 

located on a line perpendicular to the plates in the fully developed region represent the results 

obtained by the numerical simulation. The constants substituted into the analytic solution given 

by equation (70) were: 
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while the pressure gradient in the x  direction was estimated by a linear fit of the numerically 

obtained result in the fully developed flow region. The values of dynamic viscosity,  , wall 

velocity, wallu , and the distance between plates, H , were taken from the configuration 

corresponding to HP Indigo's setup detailed in chapter 8. Figure 13 shows that the results 

obtained by Fluent for the given model and constant properties chosen are in good agreement 

with the analytical solution for the simple case of fully developed Couette-Poiseuille flow. 

Figure 14 presents a comparison between the numerically and the analytically obtained results 

for the mixture velocity profile in the fully developed region, considering the curved duct shown 

in figure 6. 
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Figure 14: Tangential velocity component of a fully developed mixture-flow through a curved duct. 
Analytical and numerical results. 

 

The analytical solution curve is marked by the blue color in figure 14, while 100 sample points 

located on a line perpendicular to the duct boundaries in the fully developed region represent the 

result obtained by numerical simulation. The constants substituted into the analytic solution 

given by equation (73) were: 
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while the tangential pressure gradient was estimated by a linear fit of the numerically obtained 

result in the fully developed flow region. The values of the dynamic viscosity of the mixture, 

, and the wall velocity, 
_ wallu , were determined as in the previous case for a single-phase flow. 

Figure 14 demonstrates good agreement between the analytical and numerically obtained results, 

both based on the species transport model. 

For an isothermal mixture in the absence of chemical reactions, equation (13) for the conservation 

of the thi  species is identical to the species transport model implemented in Fluent [17]. Figure 

15 presents the concentration profile of the particle species obtained by numerical simulation in 

the fully developed region in the absence of an electric field. 
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Figure 15: Concentration profile of particle species obtained by numerical simulation in the fully developed 
region in the absence of an electric field. 

 

Figure 15 presents 100 sample points obtained by numerical simulation, located on a line 

perpendicular to the duct boundaries in the fully developed flow region. The average value of 

these sample points is marked by a blue line. It can be seen that the concentration of particles in 

the fully developed region is approximately constant along the radial direction, up to the fourth 

decimal digit. This result agrees with the analytical solution presented in equation (76). 

 

When an electric field is applied, either by setting a potential difference between the electrode 

boundaries or by introducing the charged species, the electromigration source term determined 

in equation (37) should be added to the Fluent species transport model. To do so, one should 

compose a user-defined function (UDF), which is a block of code that performs a specific task. 

Another option is to purchase the MHD package mentioned in section 6.2. 
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7. Solution of the Two-Way Coupled Physical Model 

 

In order to simulate the two-way coupled physical model that incorporates the mixture electric 

body force vector introduced in equation (33), the Poisson equation for the electric potential (35), 

and the electromigration source term determined in equation (37), it is worthwhile to consider an 

alternative numerical tool. In this work, the rheoTool open-source program (version 3) based on 

the popular openFOAM CFD program (version 6), was chosen [8,79]. The main reasons that led 

to this choice are: 

• RheoTool is a free open-source program that is available online (see rheoTool user guide 

[28]). 

• RheoTool has already implemented and cross-verified EDF models. The physical model 

described in chapter 5 for a Newtonian mixture flow, utilizing the PNP model, is 

available in this program. 

• An available and easily editable tutorial of rheoTool resembles HP Indigo's case. 

• RheoTool simulation can be executed in parallel with a message passing interface (MPI). 

However, because rheoTool codes are already written, their further utilization at the developer 

level can be time consuming, especially when fundamental changes in the physical model are 

required. 

 

7.1 CFD Software 

OpenFOAM is a popular open-source CFD program that works on a Unix operating system. 

OpenFOAM has an extensive range of features for solving complex fluid flows involving 

chemical reactions, turbulence, heat transfer, acoustics, and solid mechanics. The CFD 

technique utilized within openFOAM is the FV method, which is the same as in Ansys Fluent. 

RheoTool is an open-source toolbox based on openFOAM which was designed to simulate 

generalized Newtonian fluids (GNF) and viscoelastic fluids under pressure-driven and/or 

electrically-driven flows. RheoTool features are available for 1D/2D/3D problems and generic 

grids. RheoTool has several solvers for different uses: rheoFoam, rheoTestFoam, 

rheoInterFoam, rheoEFoam, and rheoBDFoam [28]. The physical model equations given in 

chapter 5 will be solved with the rheoEFoam solver throughout this work, where "E" refers to 

the electric field. It enables a comprehensive solution of the two-way coupled PNP-NS 

equations, providing a mixture velocity vector field, a mixture pressure field, an electric 

potential field, and a concentration field for each of the 1n−  secondary species (see section 

3.1.3). All the simulations were performed on a standard Unix server equipped with 2 Intel Xeon 

12C Processors (Model E5-2697v2, 24 cores in total), and 128 GB RAM. 
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To contribute to an in-depth understanding of the governing physics and to validate the results 

obtained by the rheoEFoam solver, two intuitive and simply edited Matlab scripts were 

developed. Both programs account for a 1D configuration and utilize the PNP equations (35-36) 

only, while the advective term of the ionic flux iJ  containing the velocity of the electrolyte is 

simply equal to zero. The first Matlab program accounts for a transient state, providing various 

BC settings, while the second Matlab program addresses Newton-Raphson iterations of the 

coupled PNP equations yielding a steady state solution related to a membrane-bulk 

configuration (see in the following section). 

Both rheoEFoam and Matlab simulations employ second-order standard spatial discretization of 

the differential operators [80], while the second-order backward difference is used for the time 

discretization. Since the system of PNP equations is intrinsically non-linear, internal iterations 

were introduced when solving equation (36) by the rheoEFoam solver and by the Matlab transient 

script. When utilizing the transient Matlab script, the convergence criterion for the internal PNP 

iterations was the value of 810−  of the 
2L  norm, calculated for the relative difference between 

the two consecutive iterations. When employing the rheoEFoam solver a fixed number of eight 

PNP internal iterations was used for all the calculations. 

 

7.2 Verification 

RheoEFoam solver has already been implemented and cross-verified for the PNP model in 

various EDF cases, such as induced charge electro-osmosis (ICEO) around a conducting cylinder 

and charge transport across an ion-selective membrane [8]. In the current framework, we 

consider a rectangular 2D computational domain of dimensions L H  , which is typical of two 

configurations presented in figure 16. The first configuration operates with a symmetric binary 

electrolyte confined by an ideal permselective membrane from the bottom, which allows for the 

transport of cations and is impermeable for anions, and by the well-stirred Ohmic bulk from the 

top. Fixed values of electric potential are applied to the membrane and the bulk. Non-slip BCs 

for all the velocity components are set on the membrane surface, while the slip condition (no 

penetration and no viscous shear stress) is set on the bulk boundary. Assigning index 1i =  to 

cation and 2i =  to anion species, the full list of the BCs in a non-dimensional formulation is 

given by:  
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where N  relates to the maximum to minimum ratio of initial species concentration and ln N−  

accounts for the Donnan potential-jump [74], ensuring the zero current density value when no 

external potential is applied. 

The ICs for the concentration and the electric potential fields satisfy the quiescent state, being 

the steady state solution of the PNP equations (46-47) obtained by assuming no fluid flow ( )0u =

, and by applying the BCs for electric potential as defined in equation (84) with no external 

voltage ( )0V = . The initial value of the velocity vector is set to zero. 

 

Figure 16: Schematic of (a) permselective membrane-bulk configuration and (b) two electrodes 
configuration. 

 

The second configuration operates with a non-symmetric electrolyte consisting of three charged 

species of valences z+ , z− , and Mz−  assigned with the indices 1 2 3i , ,= , respectively. This 

configuration is confined by two parallel open electrodes. The BCs for the concentration fields 

are: the bottom electrode is completely open for cations and impermeable for the two negatively 

charged species; the top electrode is impermeable for cations and is completely open for the two 

negatively charged species. The bottom and top electrodes are held at constant electric potential 

2V−  and 2V , respectively. Note that the Donnan effect is not taken into account for the 

electrode boundaries. Non-slip BCs for all the velocity components are set on the surfaces of 

both electrodes. The full list of the applied BCs in a non-dimensional formulation is given by: 

(85)  

1
2 3

32
1

0 : 0, 0, , 0;
2

1: 0, 0, , 0.
2

y y

y

c V
y J J u

y

cc V
y J u

y y






= = = = = − =




= = = = = =

 

 

Note that the above BCs can be straightforwardly adapted for the case of a symmetric binary 

electrolyte by simply omitting the relationships with index 3i = . 
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The ICs for the concentration fields have to provide the electroneutrality condition of the DL 

given by equation (67). Note that this relationship can be straightforwardly adapted to the 

symmetric binary electrolyte by simply assigning the values of 
2 1rz = −  and 0rc = . Zero initial 

values are set for the electric potential and velocity vector fields within the computational 

domain. 

For both configurations, periodic BCs for all the fields are set in the x  direction such that 

2 2x AR x AR=− =
 =  and 

2 2x AR x ARx x=− =

 
=

 
 where   represents any of the dependent 

variables. 

The numerical results obtained in the framework of the current study by using the rheoEFoam 

solver and specifically written Matlab script have been extensively verified by comparison with 

the data available in the literature for a number of representative configurations characterizing 

ionic transport within a symmetric binary electrolyte. Specifically, steady ionic transport 

phenomena operating in Ohmic, limiting and overlimiting regimes (see figure 8) and unsteady 

ionic transport phenomena operating in an overlimiting regime, both typical of a permselective 

membrame-bulk configuration (see figure 16(a)), were simulated and compared with the 

corresponding results reported in [35,51]. Note also that for the sake of completeness the results 

obtained for the overlimiting regime were calculated independently from these reported in [8] 

and obtained by utilizing the same rheoEFoam solver. Additionally, the specifically written 

Matlab script has been cross verified with the rheoEFoam solver simulating 1D ionic transport 

between the two electrodes configuration (see figure 16(b)) typical of the limiting regime. The 

results obtained by the two tools have been compared in terms of the concentration fields of the 

two species and the distribution of the corresponding potential and electric fields. 

 

7.2.1 Permselective Membrane-Bulk Configuration 

The 1D (no flow) and 2D ionic transport within the symmetric binary electrolyte are considered 

for the permselective membrane-bulk configuration shown in figure 16(a). The BCs applied are 

the same as in [35]: 

(86)  
1 2

1 2

0 : , 0, 0, 0;

1: 1, , 0,

yy c N J u

y c c V u





= = = = =

= = = = =
 

where periodic BCs are applied in the horizontal direction for the 2D case. 

Following the procedure described in [35], the ICs are assigned by locally perturbing by 1% the 

concentration values obtained by the solution of the 1D PNP equations. The electric current 

density yI  obtained by utilizing equation (49) applied to the mid-cross section ( 0 5y .= ) of the 
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electrolytic cell 1 for the binary ( 2n = ) electrolyte is shown in figure 17 as a function of the non-

dimensional voltage V . For the 1D configurations the presented results represent the steady state 

yI V−  dependence corresponding to Ohmic and limiting regimes (see figure 8). For the 2D 

configuration the steady state 
yI  value was only obtained for the value of 20V = . For higher 

voltages, quasi-steady state flows were observed, while the current density values presented in 

figure 17 were obtained by the averaging of the instantaneous 
yI  values over the time interval 

0 1 0 9t . .=   (the same as in [35]). All the simulations performed for permselective membrane-

bulk configuration (see figure 16(a)) were run on 1x10000 and 960x180 grids utilized for 1D and 

2D configurations, respectively. Both grids were stretched towards the boundaries while the 

minimal cell width was equal to 43 278 10. − . The 2D grid described here is denoted as G1 

throughout this work. 

 

Figure 17: Non-dimensional steady state y
I V−  dependence. Comparison between the presently obtained 

and independent [35] results obtained for 1D and 2D configurations. The results are obtained for 2N = , 
3

10
−= , and V   0 120 . For the 2D configuration the values of 6AR = , 3

10Sc = , and 0 5Pe .=  were 

used. 

 

All the results were obtained for the values of 2N = , 310−= , and V   0 120 . Additionally, 

the 2D simulations were run for the values of 6AR = , 310Sc = , and 0 5Pe .= . The deviation 

between the 1D and 2D results shown in figure 17 starts at about 20V =  and is caused by the 

onset of an EC phenomenon characterizing the transition between limiting and overlimiting 

 
1   The mid-cross-section is considered here for the sake of simplicity, as the instantaneous current density value is 
the same at any cross-section of the electrolytic cell (see section 8.3). 
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regimes [35]. It can be seen that the currently obtained 1D results are in excellent agreement with 

the corresponding results obtained in [35] for the entire range of V  values. Also, the currently 

obtained 2D results agree well with the corresponding data reported in [35], while the maximal 

relative deviation between the current and the independent values of 
yI  does not exceed 5.5%. 

We next perform a verification study of transient 2D EC, including characterizing the ECI onset 

which is the major focus of the current chapter. A grid independence study is also performed. 

For this purpose, the membrane-bulk configuration operating with the symmetric binary 

electrolyte is considered. The full set of governing equations (50) with the BCs determined in 

equation (84) and the ICs corresponding to the quiescent state is solved. The non-dimensional 

parameters utilized are 2N = , 25V = , 310−= , 6AR = , 310Sc = , and 0 5Pe .= . Note that as 

a result of the high value of the Sc  number the convective term of equation (45) was omitted. 

Figure 18 shows the time evolution of the current density 
yI  calculated by utilizing equation (49). 

The results were obtained on three different grids G1, G2, and G3 corresponding to 960x180, 

1920x360, and 3840x720 grid resolutions, respectively. The grids were stretched towards the 

membrane and bulk boundaries. 

 

Figure 18: Grid independence test by means of transient current density obtained by rheoTool 2D 

simulations of the membrane-bulk configuration. Results are obtained for 2N = , 25V = , 3
10

−= , 

6AR = , 3
10Sc = , and 0 5Pe .= . Insets: Close-up on the ECI onset represented by two consecutive abrupt 

peaks of the current density response including accurate values obtained by employing Richardson 
extrapolation based on G2 and G3 grids. 

 

As can be seen from figure 18, the electric current density curves descend rapidly up to two 

consecutive peaks followed by convergence to the steady state value. These peaks shown in the 
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close-up of figure 18 are associated with the ECI onset within the electrolytic cell. The 

convergence of the results obtained with different grid resolutions is established as follows from 

figure 18. A zero-grid-size approximation for the time evolution of 
yI  was next calculated by 

employing the Richardson extrapolation (R.E.) to the results obtained on G2 and G3 grids. The 

first minimum and maximum values of the time evolution of 
yI  obtained on the three grids, 

along with the values provided by R.E. (see the close-up of figure 18) are next compared with the 

independent results reported in [51] for the potentiostatic response of a nonconfined system, as 

summarized in table 1. 

 

Table 1: Non-dimensional time and current density values of the minimum and maximum points of the 
first abrupt peak for different grids, compared to those obtained in Ref. [51]. 

 G1 G2 G3 R.E. Ref. [51] 

mint  0.0433 0.0398 0.0391 0.0389 0.0238 

minI  6.0247 6.3203 6.3885 6.4060 8.8141 

maxt  0.0518 0.0479 0.0484 0.0485 0.0450 

maxI  6.9965 7.3391 7.7137 7.8408 10.4240 

 

As can be seen from table 1, the values of the first minimum and maximum peaks of current 

density reported in [51] are somewhat higher (by up to 28%) and were acquired at earlier times 

compared to the currently obtained grid convergent results. Unfortunately, details on neither the 

ICs nor the discretization schemes were provided in [51], which makes it difficult to exactly 

pinpoint the reasons for the observed discrepancy. Nonetheless, the currently utilized standard 

second-order FV based on the central discretization schemes, and thus not containing numerical 

dissipation, and the extensive grid independence study performed corroborate the correctness 

and the high precision of the currently obtained results. Taking into account the fact that there 

are no significant differences in time evolution of 
yI  obtained on G2 and G3 grids, all the 2D 

results presented in section 7.3 were calculated on G2 grid.  

 

7.2.2 Two Electrodes Configuration 

We next focus on verification of the rheoEFoam solver applied to the simulation of ionic 

transport typical of the electrolytic cell confined by two electrodes. The electrolytic cell is filled 

with binary initially electrically neutral electrolyte. The specific BCs and ICs are defined in 

equations (85) and (67), respectively. Periodic BCs are applied in the horizontal direction. The 

dynamics of ionic transport are characterized by the separation of oppositely charged species 

within the electrolytic cell in a limiting regime (with voltage equal to 40V = ) so that the ECI 

does not onset. In this case, the advective component of ionic transport is negligibly small and 
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the ionic transport is only governed by the diffusive and the electromigration terms of the ionic 

flux (see equation (21)). Thus, the results obtained by the rheoEFoam solver for the 2D geometry 

can be compared with the corresponding 1D data obtained by the previously verified Matlab 

code. The comparison is presented in terms of the instantaneous spatial distribution of 

concentration of anions and cations (see figures 19(a) and 19(b), respectively), as well as in terms 

of the spatial distribution of electric potential   (see figure 19(c)) and of the spatial distribution 

of the absolute value of the electric field E  (see figure 19(d)). All the simulations were 

performed on the 1x1000 and 960x180 grids utilized for 1D and 2D configurations, respectively. 

The two grids were stretched towards the electrode boundaries, while the minimal cell width 

was equal to 43 278 10. − . All the presented snapshots are taken at a representative time instance 

equal to 0 01t .= . 

 

Figure 19: Comparison between 1D results provided by the specifically written Matlab script and 2D 
results provided by the rheoEFoam solver for the two electrodes configuration operating in the limiting 

regime: (a) concentration of the anion species, -
c ; (b) concentration of the cation species, +

c ; (c) electric 

potential field, Ψ ; (d) magnitude of the electric field, E . Results are obtained for the values V=40 , 

-3 -2
10 ÷10   , and for the 2D case AR=6 , Sc=

3
10 , and .Pe=0 45  at .t=0 01 . Solid lines and circles 

correspond to the results provided by the Matlab script and the rheoEFoam solver, respectively. 

 

All the results were obtained for the voltage value of 40V =  and three different values of 

electrostatic screening length,   lying in the range of  -3 -210 ÷10   . The 2D rheoTool 
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simulation was executed for the values of 6AR= , 310Sc= , and 0 45Pe= . . It can be seen that all 

the results obtained by the two solvers are in excellent agreement for the entire range of   values. 

As expected for the ionic transport within a symmetric binary initially electrically neutral 

electrolyte, the concentration distributions of positive and negative species are reflective 

symmetric relative to the center of the electrolytic cell. Note also that the rate of reduction of the 

bulk region grows with the value of  , i.e. is inverse to the initial concentration of the two 

species. The screening effect of each species in space charge regions adjacent to both electrodes 

is clearly distinguished by looking at the spatial distributions of electric potential and the electric 

field magnitude. Close to the two electrodes, both fields are characterized by steep gradients that 

gradually reduce farther from the electrodes towards the electrically neutral bulk. 

 

7.3 Electro-Osmotic Flow Characterization of a Strongly Non-Symmetric 

Electrolyte 

This section aims to investigate and specify the behavior of a strongly non-symmetric electrolyte 

composed of 3 charged species and subjected to high voltage. The major question to be addressed 

in the current section is the impact of an additionally introduced third species characterized by 

significantly higher (by an order of ( )310O ) valence and significantly lower (also by an order of 

( )310O ) diffusivity values compared to those characterizing the two other species on the 

electroconvective flow regime. Specifically, the investigation is restricted to the case when the 

two remaining species have the valence (± unity) and the same diffusivity values. Several flow 

characteristics are examined in the course of the current study: the character and the rate of the 

bulk propagation, the width of ESC layer and the propagation velocity of each species, spatio-

temporal distribution of the electric field, time response of the electric current density, the onset 

time of ECI, and the typical value of the wave number of the VP at the instability onset. The 

above characteristics are investigated based on the results obtained by the whole set of numerical 

tools verified in the previous section. The results presented below shed light on the fundamental 

differences between the ionic dynamics typical of an electrolytic cell operating at high voltages 

with a symmetric binary electrolyte and with a strongly non-symmetric electrolyte composed of 

3 species. The differences are discussed by means of comparison with the simulation results 

obtained for a 1D electrolytic cell (no EC), as well as by means of an extensive parametric study 

characterizing the instability onset of electroconvective flow typical of the strongly non-

symmetric electrolyte. The full set of non-dimensional parameters utilized in the current study 

is summarized in table 2. 
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Table 2: Non-dimensional parameters utilized in the numerical simulations. 

Values of general parameters used in 1D and 2D configurations 

Voltage, 44 10V =   

Valence ratio of the anions, 
2 1rz = −  

Molecular diffusivity ratio of the anions, 
2 1rD =  

Electrostatic screening length,  -4 -32.5 10 ÷2 10     

Values of parameters used in 2D configurations for both electrolytes 

Aspect ratio, 6AR =  

Schmidt number, 410Sc =  

Péclet number, 0 1Pe .=  

Values of parameters used in 1D and 2D configurations for electrolyte composed of 
3 species 

Valence index of the third species, 3700M =  

Molecular diffusivity ratio of the third species, 3

3 2 10rD −=   

Concentration ratio, 
rc  -5 -42 10 ÷5 10     

 

 

7.3.1 Analysis of 1D Configuration 

We start elucidating the differences between the ionic transport typical of symmetric binary and 

strongly non-symmetric electrolytes by looking at the corresponding spatial distributions of the 

absolute value of space charge density, 
E , obtained between two open electrodes. Recall that 

both electrolytes were initially electrically neutral and composed of an equal amount of positive 

and negative charges. The distribution of non-dimensional E  obtained for the values of 

42 5 10. −=   and 410rc −=  is shown in figure 20 for the representative time instance, 

61 7 10t . −=  . The   value chosen constitutes the most challenging setup for the numerical 

solution since the Poisson equation (46) is close to being singular over almost the whole 

computational domain. The specific value of the time instance was chosen as it exposes an 

interesting phenomenon of separation between the second and the third species, as is discussed 

in the following. 
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Figure 20: Distribution of absolute value of the space charge density, 
E
ρ , obtained for 1D ionic transport 

between the two open electrodes. The results are obtained for the values of  -4
=2.5 × 10 , -6

=1.7 × 10t , and 

for 3 species -4
=10

r
c . The results corresponding to the symmetric binary electrolyte and to the strongly 

non-symmetric electrolyte are denoted by the dashed and the solid lines, respectively. 

 

Non-zero values of the absolute space charge density indicate the width of the ESC region at a 

given time instance. In both cases, the ionic transport within the electrolyte between the two 

open electrodes is characterized by the existence of two ESC regions that start to develop close 

to each electrode and progress inwards with time. Following the schematic of the considered 

configuration (see figure 16(b)), the externally imposed electric field is directed from the right 

towards the left electrode; thus the left and the right spikes separate between the neutral bulk 

and the positively and the negatively charged ESC regions, respectively. As expected, the ESC 

width of the symmetric binary electrolyte preserves its symmetry over time relative to the center 

of the electrolytic cell. For the strongly non-symmetric electrolyte the picture is quite different 

and is distinguished by three unique features. First, there are actually 3 ESC regions, each 

determined by its spike corresponding to the specific species. Second, the separation of the two 

negatively charged species can be clearly distinguished by the existence of two spikes in the 

distribution of E  in the left part of the computational domain. Third, each ESC region is 

characterized by a different propagation rate. 

To gain more insight into the spatio-temporal charge distribution within the strongly non-

symmetric electrolyte we next decompose the space charge density E  into the terms 
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contributed by each species, namely, 
1 1z c , 

2 2z c  and 
3 3 2 3z c Mz c=  2. The spatial distribution of 

the absolute value of each term contributing to 
E  taken at 61 7 10t . −=   is presented in figure 

21. 

 

Figure 21: Spatial distribution of the terms ( )= 1 2 3
i i

z c i , ,  contributing to the space charge density 
E

 . 

The results are obtained for the values of −=  4
2 5 10. , −= 410

r
c , and −=  6

1 7 10t . . 

 

The spatial distribution shown in figure 21 can be semantically split into four zones. Zones 1 and 

4 represent the positively and the negatively charged ESCs, respectively. Zone 3 corresponds to 

the electrically neutral bulk whose composition is the same as that determined by the IC (see 

equation (67)). Generally speaking, zone 3 is not unique for a non-symmetric electrolyte, as it can 

also be seen in ionic transport of a symmetric binary electrolyte. In contrast, zone 2 is an 

exclusive feature typical of a strongly non-symmetric electrolyte in which one of the species has 

much higher electrical mobility, and thus the separation phenomenon between two negatively 

charged species takes place. Specifically, in the current study, the 
i ir rD z  multiplier entering the 

ionic flux (see equation (48)) and constituting electrical mobility of the thi  species is more than 

seven times higher for the 3i =  species compared to that of the 2i =  species. For this reason, 

both zones 1 and 2 are entirely depleted of the 3i =  species as its propagation rate is much higher 

than that of the 2i =  species. Remarkably, the 1i =  and 2i =  species adjust themselves 

 
2  Note that this decomposition has been already introduced in equation (67) as the IC providing electroneutrality of 
the non-symmetric electrolyte. 
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differently in zone 2 compared to zone 3 in order to preserve electroneutrality in the region 

entirely depleted by the 3i =  species 3. 

Until now, we have explained two distinguishing features typical of the charge distribution of 

the considered strongly non-symmetric electrolyte. The third feature, i.e. non-equal propagation 

rate of the 1i =  and 2i =  species when moving away from the right and left electrodes, 

respectively, towards the center of the electrolytic cell can be explained by focusing on the 

spatial distribution of the electric field magnitude E  shown in figure 22. We first focus on the 

distribution of the electric field magnitude in the ESC region adjacent to the right electrode. 

Close to the electrode, there is no separation between the two negatively charged species (see 

figure 21);  thus, both species simultaneously affect the ionic transport in this region, while the 

degree of impact of each species is in accordance with the concentration multiplied by the 

valence of the given species. As a result, this region is dominated by the negative charges which 

screen the imposed electric potential, as reflected by a rapid decrease of the electric field, until 

it reaches a minimum constant value characterizing the bulk region and eventually governing 

the propagation rate of the cations away from the right electrode. The mechanism driving the 

negatively charged species away from the left electrode is somewhat different. As has already 

been mentioned, there is a separation between the species (see figure 21) in this region due to the 

different electro-osmotic mobilities, and the negatively charged 3i =  species outstrips the 2i =  

species on its way towards the center of the electrolytic cell. Zone 2 is thus entirely depleted of 

the 3i =  species, which leads to a decrease in the concentration of the 1i =  species (see figure 

21) in order to preserve the electroneutrality of the electrolyte in this region. As a result, the 

screening of the imposed electric potential due to the presence of the 1i =  species is lower 

compared to that in the ESC region adjacent to the right electrode 4. This fact is reflected by the 

higher value of the electric field magnitude E  prevailing in zone 2 compared to that prevailing 

in zone 3 (see figure 22), and determines the higher propagation rate of the anion species ( 2i = ) 

towards the center of the electrolytic cell compared to that of the cation species ( 1i = ). 

 
3  The electroneutrality is preserved over the whole width of zone 2, except for the back front of the 3i =  species, 

consistently with the spike of E  observed at 0 33y .  as appears in figure 20. 
4 Recall that in the ESC region adjacent to the right electrode the screening effect of the imposed electric potential 
is due to the presence of the two negatively charged species 2i =  and 3i = . 
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Figure 22: Spatial distribution of the electric field magnitude, E , for different 
r

c  values. The results are 

obtained for the value of −=  4
2 5 10.  and −=  6

1 7 10t . . 

 

The last interesting observation regards the impact of the concentration ratio of two negatively 

charged species, 
3 2rc c c=  on the propagation rate of all the species, which is closely correlated 

with the spatio-temporal distribution of E . As can be seen from figure 22, increasing the 
rc  

value has a quite minor impact on the propagation rate of the cations. The higher the 
rc  value, 

the more negative charge is accumulated in the ESC region adjacent to the right electrode (zone 

4) and the weaker is E  due to the screening effect. As a result, the propagation rate of cations 

decreases slightly with the increasing 
rc  value. In contrast, increasing the 

rc  value significantly 

affects the propagation rate of the two negatively charged species away from the left electrode. 

In particular, the higher the rc  value, the higher is the propagation rate of the 2i =  species and 

the lower is the propagation rate of the 3i =  species. As has been explained above, the 

propagation rate of the 3i =  species is entirely determined by the magnitude of E  in zone 3. 

Thus, the higher is the value of E  in zone 3, or, in other words, the lower the rc  value, the 

higher is the propagation rate of the 3i =  species. Following the same idea, the propagation rate 

of the 2i =  species is entirely determined by the magnitude of E  in zone 2. Decreasing the rc  

value results in increasing the concentration value of the 1i =  species (cations) in zone 2 to 
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provide electroneutrality of the electrolyte in this region. Further, the screening of the imposed 

electric potential by the 1i =  species in zone 1 becomes pronounced, which, in turn, leads to the 

stronger drop in the E  value typical of zone 2, and consequently results in the lower 

propagation rate of the 2i =  species. 

 

7.3.2 Analysis of 2D Configuration 

The analysis performed in the previous section provided important insights regarding the 

fundamental differences between the ionic transport within a symmetric binary and a strongly 

non-symmetric electrolyte consisting of 3 species under high voltage. However, to investigate 

the differences in mechanism typical of the onset of the ECI within the electrolytic cell, an 

analysis of 2D electroconvective flow should be performed. 

 

7.3.2.1 Analysis of Current Density 

Figure 23 presents the time evolution of the current density 
yI  obtained by the numerical 

simulation of 1D and 2D ionic transport for symmetric binary (2 species) and strongly non-

symmetric (3 species) electrolytes confined by two parallel electrodes. The simulations were 

performed for the value of 52 10rc −=   and four different values of   in the range of 

-4 -32.5 10 ÷2 10    . The obtained results indicate several general trends. First, the initial value 

of the current density 
yI  obtained for the 3 species electrolyte is higher by about 22% than that 

of the binary electrolyte for the entire range of   values. It is remarkable that the trend caused 

by the very rapid transport of the 3i =  species compared to the cation and the anion species is 

invariant to the   value and can be accurately predicted by simply using equation (49) applied to 

the mid-cross-section ( 0 5y .= ) of the electrolytic cell. The applied ICs provide a uniform initial 

concentration and zero velocity values, leading to negligible velocities and concentration 

gradients in the mid-cross-section of the electrolytic cell at the very beginning of numerical 

simulations. As a result, the contribution of the advective and diffusive terms of the ionic flux 

(see equation (48)) is neglected for the two electrolytes. Next, also neglecting, for the sake of 

simplicity, the displacement current density term in equation (49), and assuming the same value 

of the electric field characterizing the two configurations at the very beginning of the ionic 

transport, the ratio IR , between the electric current densities characterizing a strongly non-

symmetric electrolyte consisting of 3 species and its symmetric binary counterpart, is estimated 

by: 
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All the results presented in figure 23 were obtained for the non-dimensional values of 
1 2 1c c= =  

or 
1 1c = , 

2 0 9311c .= , and 5

3 1 8622 10c . −=   related to the electrolyte composed of 2 or 3 

species, respectively, which can be deduced from the IC providing the electroneutrality 

constraint for the two electrolytes (see equation (67)). The value of 1 26IR .=  can be analytically 

approximated by equation (87). Overestimation of about 4% of the approximated 
IR  value can 

be attributed to the contribution of the displacement current density term (see equation (49)), 

which was neglected when estimating the 
IR  value in equation (87). 

 

Figure 23: Time evolution of the current density obtained by the numerical simulations of ionic transport 
within 2 or 3 species electrolytes for 1D and 2D configurations. The results are obtained for the value of 

−=  5
2 10

r
c  and for the values of: (a) −=  4

2 5 10. ; (b) −=  4
5 10 ; (c) −= 3

10 ; (d) −=  3
2 10 . 

 

Another trend clearly distinguished by looking at figure 23 is related to the equal transient values 

of the current density yI  obtained for both 1D and 2D configurations up to the ECI onset, as 

recognized by the local abrupt increase of the yI  values characterizing the 2D configuration. 

This result is consistent with the data presented in figure 19 and shows that there is no difference 
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between the ionic transport obtained for 1D and 2D configurations in the limiting flow regime. 

As mentioned in section 7.2, the abrupt increase of the 
yI  values indicates the transition between 

limiting and overlimiting regimes [57], which typically indicates the ECI onset. The physical 

mechanism responsible for the abrupt increase of 
yI  is attributed to the enhanced ionic transport 

caused by the convective mixing of the charged species. Remarkably, higher   values (or, in 

other words, lower values of the initial concentration of the charged species) result in a delay of 

the ECI onset. In particular, for the maximal value of 32 10−=   the electrolytic cell became 

fully discharged before the ECI onset. 

We next investigate the time evolution of the current density for the non-symmetric electrolyte 

consisting of 3 species, characterized by the fixed value of 45 10−=   and three different values 

of 5 42 10 10rc ,− −=   and 45 10− . The results are shown in figure 24. It can be seen that higher 

values of 
yI  correlate with the higher values of 

rc  at times up to 610t − . This finding is not 

surprising as at the very beginning of the ionic transport 
yI  is primarily governed by the charge 

carried by the 3i =  species, whose electrical mobility is much higher compared to that 

characterizing the other two species. Consequently, the higher the concentration of the 3i =  

species 5 (i.e. the higher the 
rc  value), the higher is the corresponding initial current density 

value. In particular, the initial value of the current density 
yI  obtained for the value of 

45 10rc −=   is higher by about 152% and by about 65% than the corresponding values obtained 

for 52 10rc −=   and 410rc −= , respectively. Additionally, the initial value of the current density 

yI  obtained for the value of 410rc −=  is higher by about 53% than the corresponding value 

obtained for 52 10rc −=  . It was further verified that these ratios are invariant to the   value 

and can be accurately estimated by simply using equation (49) applied to the mid-cross-section (

0 5y .= ) of the electrolytic cell. Following the same assumptions as those applied when deriving 

equation (87), we next derive the expressions for 
IIR , IIIR , and IVR  corresponding to the ratios 

between the electric current densities obtained for the values of 45 10rc −=   and 52 10rc −=  , 

45 10rc −=   and 410rc −= , and 410rc −=  and 52 10rc −=  , respectively: 

 
5 Increasing the initial concentration of the 3i =  species leads to a simultaneous decrease in the initial concentration 
of the 2i =  species in order to preserve the constant value of the negative charge within the electrolyte. 
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All the results presented in figure 24 were obtained by applying the initial concentration values 

detailed in table 3. The values can be straightforwardly deduced from equation (67), which 

determines the IC meeting the electroneutrality constraint for the two electrolytes. Substituting 

the concentration values from table 3 into equation (88) yields an analytical approximation for 

the values of 2 52IIR .= , 1 65IIIR .= , and 1 53IVR .= . It is remarkable that the numerically 

obtained ratio values (see figure 24) coincide with the corresponding values estimated by 

equation (88), which confirms that the contribution of the displacement current density term (see 

equation (49)) is negligible at the very beginning if the ionic transport process. 

 

Table 3: Non-dimensional initial concentration values utilized for different 
r

c  values characterizing the 
strongly non-symmetric electrolyte. 

rc / c  52 10−  410−
 

45 10−  

1c  1 1 1 

2c  0 9311.  0 7299.  0 3509.  

3c  51 8622 10. −  
57 2993 10. −  

41 7544 10. −  

 

Another important observation that can be made by looking at figure 24 regards the effect of the 

rc  value on the ECI onset in the strongly non-symmetric electrolyte. The onset can be recognized 

by an abrupt increase in the current density. As follows from looking at the close-up of the ECI 

onset region, the instability starts earlier for higher rc  values. This observation, along with the 

fact that the higher values of rc  result in a wider positively charged ESC close to the bottom 

electrode (see figure 22), gives rise to the expectation of a non-symmetric development of the 

ECI relative to the two electrodes, which is discussed in the next section of this chapter. 
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Figure 24: Time evolution of the current density obtained by the numerical simulations of ionic transport 

within a 3 species electrolyte for 2D configuration. The results are obtained for the value of −=  4
5 10  and 

three different values of 
r

c . Close-up is of the ECI onset. 

 

7.3.2.2 Analysis of Concentration Fields 

As mentioned in the previous sections, symmetry breaking of ionic transport within the strongly 

non-symmetric electrolyte is the fundamental feature distinguishing it from that typical of a 

symmetric binary initially electroneutral electrolyte. The symmetry breaking takes place due to 

the large differences in valences and electrical mobilities of the negatively charged species 3i =  

compared to these characterizing the cation ( 1i = ) and the anion ( 2i = ) species. The latter gives 

rise to the development of non-symmetric ECI within the electrolytic cell, which is thoroughly 

investigated in the current section in terms of the spatio-temporal distributions of the cation and 

the anion concentration fields, taken at the ECI onset attributed to each species. Following the 

observations made in the previous section, there is a strong resemblance between the ionic 

transport within 1D and 2D electrolytic cells prior to and at the very beginning of the ECI onset. 

Thus, the discussion on features characterizing the ECI onset within 2D electrolytic cell is 

supported by the corresponding 1D results facilitating the fundamental understanding of the 

observed phenomena. We next introduce two additional metrics quantifying the characteristics 

of the ECI onset in the 2D electrolytic cell. The first is the non-dimensional wave number k  

defined as the instantaneous number of VP located along the length 2L  in the x  direction (see 

figure 16(b)): 

(89)  
2

.VPN
k

AR


= 
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Consistently with the works of [51,81-82], the wave number k  was obtained based on 2D 

contours of the cation and anion concentrations. The 
1k  and 

2k  wave numbers were next related 

to the cation and the anion species, respectively. The 
1k  and 

2k  values were calculated in the 

vicinity of the bottom and the top electrodes, respectively. The second metric is based on two 

times, 
1t  and 

2t , corresponding to appearance of VP close to the ECI onset in the vicinity of the 

bottom and the top electrodes, respectively. We next introduce the relative time difference   

between 
2t  and 

1t  as: 

(90)  2 1

2

100%.
t t

t


−
=  

The results of extended parametric study performed for the set of   and 
rc  values lying in the 

range of  4 32 5 10 10. − −     and 
rc  5 42 10 5 10− −      are presented in figure 25. The 

results are presented in terms of concentration distributions of the cation and the anion species 

acquired for 2D electrolytic cell together with concentration distributions of all the three species 

acquired for the corresponding 1D electrolytic cell at the same time instances. The time instances 

chosen correlate with the ECI onset recognized for each species by the vortical structures just 

conceived in the ESC layer adjacent to the corresponding electrode. In the following, we focus 

on the major characteristics of the ECI onset typical of a 2D electrolytic cell operating with a 

strongly non-symmetric electrolyte distinguishing it from its symmetric binary counterpart. 
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Figure 25: ECI patterns of cation and anion species a short time after its generation, including 1D charge 

concentration curve of each species. (a) −=  4
2.5 10 , −

2=  5
10

r
c ; (b) −= 5 4

10 , −
2=  5

10
r

c ; (c) 
−= 3

10 , −
2=  5

10
r

c ; (d) −=  4
2.5 10 , −= 410

r
c ; (e) −= 5 4

10 , −= 410
r

c ; (f) −= 3
10 , −= 410

r
c ; (g) 

−=  4
2.5 10 , −=  4

5 10
r

c ; (h) −=  4
5 10 , −=  4

5 10
r

c ; (i) −= 3
10 , −=  4

5 10
r

c . 
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• Non-symmetric vortical initial state 

Following the known mechanism described in [36,58], the electro-osmotic flow of the second 

kind onsets within the electrolytic cell operating at the overlimiting regime with an external 

vertically applied electric field and drives the ECI phenomenon. The instability is initiated as a 

result of disturbances in the electric field introduced in the tangential direction 6. In real 

experiments, the disturbance is typically attributed to imperfections intrinsic to the experimental 

setup, while in numerical simulations the instability is excited by the rounding and the truncation 

errors as a result of limited machine precision and discretization errors, respectively. The ECI 

manifests in creating a series of VP occupying the whole ESC 7 and accelerating the contraction 

of the DL region. Note that when working with finite (no matter how small) values of the Debye 

length (see equation (61)), the VP do not show up immediately after applying external voltage; 

rather, they can be clearly recognized only after the ESC reaches its critical width or, 

alternatively, after a certain critical time value. Although the explicit determination of the critical 

width and time values is the subject for a separate investigation and is not within the scope of 

the current study, we note in passing that these values apparently depend on the Debye length 

and the external voltage. 

In contrast to the electrolytic cell operating with a symmetric binary electrolyte, the ECI does 

not onset simultaneously on DL-ESC interfaces adjacent to the two electrodes. In fact, the time 

2t  is higher than the time 
1t  for the entire range of parameters (see figure 25). Recalling that the 

focus is not on direct determination of the critical time values at which the ECI sets on, the delay 

between the emergence of VP occupying the ESC layers adjacent to the electrodes for the entire 

range of   and 
rc  values is next analyzed in terms of relative time difference   (see equation 

(90)) as summarized in table 4. 

 

Table 4: Values of relative time difference   (in percent) between the times characterizing the ECI onset at 
the cathode and anode. 

rc /  42 5 10. −  
45 10−  

310−
 

52 10−  19 88.  18 61.  9 37.  
410−

 41 46.  41 24.  25 52.  
45 10−  62 41.  60 86.  23 84.  

 

The physical explanation for the observed differences in 1t  and 2t  values is given by looking at 

the corresponding concentration distributions reflecting the ionic transport within the 1D 

electrolytic cell. It is evident that for all the simulations performed the width of the ESC layer 

 
6  i.e. in the direction perpendicular to the externally applied electric field 
7   In contrast to the membrane-bulk configuration, in the current electrolytic cell confined by two electrodes the VP 
are conceived on the DL-ESC interface. 
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adjacent to the cathode is higher than that adjacent to the anode, which is a consequence of much 

higher electrical mobility of the 3i =  species and preserving electro-neutrality of the DL. As a 

result, the ESC layer adjacent to the cathode reaches the critical width before this happens for its 

counterpart adjacent to the anode, which promotes earlier conception of the ECI VP close to the 

cathode ESC. 

A next important observation is related to the dependence of   on 
rc  and   values, as can be 

deduced from the data summarized in table 4. It can be seen that   is almost constant when the 

non-dimensional Debye length   increases from 42 5 10. −=   to 45 10−=  , and rapidly 

increases for , growing from 45 10−=   to 310−=  - the trend which is preserved for all the 

rc  values. From the physical point of view this means that when the initial concentration of the 

charged species is low it takes a longer time for ECI to onset; thus, when the instability 

eventually onsets, the 3i =  species possessing the higher electrical mobility has already left the 

electrolytic cell. As a result, the ECI evolves by a scenario resembling that of the symmetric 

binary electrolyte and the delay between the two times characterizing emergence of VP in the 

vicinity of the two electrodes decreases significantly. The same physical reason is also 

responsible for increasing   with 
rc  values while keeping the same values of   - the tendency 

which is preserved for all the data summarized in table 4 except for the two last values in column 

3 of the table. In fact, the higher 
rc , the faster is the contraction of DL from the cathode side 

compared to that from the anode side and, consequently, the difference in times at which the ECI 

onsets in regions adjacent to each electrode grows. The exception from this trend is observed for 

the last two configurations corresponding to the maximal   values (see figures 25(f) and 25(i)), 

and can be apparently attributed to the initially low absolute concentration value of the 3i =  

species and, as a consequence, its limited impact on the mechanism of the ECI onset. 

 

• Non-symmetric value of wave number of the VP 

As has been already mentioned, when operating in the overlimiting regime the electro-osmotic 

flow of the second kind is characterized by the generation of a series of VP in the vicinity of each 

electrode as a result of tangential disturbance of the electric field within the electrolyte. In 

contrast to the membrane-bulk configuration (see figure 16(a)), where the VP occupy the whole 

computational domain, the VP in the system of two parallel open electrodes (see figure 16(b)) 

occupy only the ESC regions, confined by the corresponding electrode and the ESC-DL 

interface. As such, the ESC width corresponding to the VP onset (in the vicinity of either the 

cathode or the anode), designated also as the critical width, has a major impact on the wave 

number value. The higher values of the ESC critical width result in larger VP hosted along the 

same 2L  length in the horizontal x  direction, which, in turn, leads to their lower amount VPN  
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and to the lower value of the VP wave number. The differences between the wave numbers 
1k  

and 
2k  observed for the cation concentration in the vicinity of the cathode at time 

1t  and for the 

anion concentration in the vicinity of the anode at time 
2t , respectively, can be recognized by 

looking at the 2D subplots of figure 25, and constitute a key feature indicating the symmetry 

breaking of ionic transport within the non-symmetric electrolyte. The differences, as 

summarized in table 5, are next analyzed for the entire range of   and 
rc  values. 

 

Table 5: Non-dimensional wave numbers k
1

 and k
2

 in the vicinity of the cathode and anode, respectively. 

rc /  42 5 10. −   45 10−   310−
  

52 10−  
1k  102  

Figure 25(a) 
46  

Figure 25(b) 
22  

Figure 25(c) 
2k  98  47  19  

410−
 

1k  88  
Figure 25(d) 

39  
Figure 25(e) 

19  
Figure 25(f) 

2k  95  40  20  

45 10−  
1k  71  

Figure 25(g) 
30  

Figure 25(h) 
15  

Figure 25(i) 
2k  83  39  16  

 

First, it is evident that the higher the   value, the lower are both 
1k  and 

2k  values for the entire 

range of 
rc . Additionally, it can be seen from figure 25 that higher   values delay both the 

1t  

and 2t  times of the ECI onset. Both observations indicate that the critical ESC width associated 

with higher   values gets higher values as well. As a consequence, the higher critical width of 

the ESC results in a lower wave number. Another observation related to figure 25 is the 

dependency of the wave numbers, 
1k  and 

2k , on the concentration ratio value 
rc . As can be seen 

from table 5, for 410rc − , 2k  is higher than 1k  for the entire range of  . Additionally, the higher 

rc  value results in a larger relative difference between the 1k  and 2k  values. This observation 

can be explained by looking at the critical width of the ESC adjacent to each electrode. As can 

be seen from figure 22, as well as from the 1D charts shown in figure 25, a higher rc  value results 

in a wider positively charged ESC close to the bottom cathode, and a thinner negatively charged 

ESC close to the top anode. Thus, the wave number 2k  obtained for the top anode is higher than 

its corresponding counterpart 1k  obtained for the bottom cathode. The difference between the 

ESC critical widths in the vicinity of the bottom and top electrodes increases with the rc  value 

and affects the difference between 1k  and 2k  values. Note that for the value of 52 10rc −=  , 

corresponding to the lowest concentration of the 3i =  species, the difference between the ESC 
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critical widths adjacent to each electrode is less pronounced compared to two other values of 
rc

. As a result, the differences between 
1k  and 

2k  values corresponding to the lowest value of 
rc  

are relatively small and can be within the range of the computational uncertainty of equation (89). 

 

• Double VP series adjacent to the cathode region 

We recall that for the case of a strongly non-symmetric electrolyte, there are 3 ESC regions, each 

determined by its spike of absolute space charge density corresponding to the specific species, 

as has been demonstrated in figure 20. As can be seen from figure 21, the larger electrical 

mobility of the 3i =  species compared to that of the other two species results in semantically 

splitting the electrolytic cell close to the bottom electrode into 2 different zones, denoted as zone 

1 and zone 2 throughout this work. Zone 1 represents the positively charged ESC filled by only 

the 1i =  species, while zone 2 is an exclusive feature typical of a strongly non-symmetric 

electrolyte and located between zones 1 and the DL (zone 3). Zone 1 together with zone 2 virtually 

compose the ESC corresponding to the 3i =  species. We next focus on a feature associated with 

a 2D secondary VP series observed in zone 2 by means of 
1c  and 

2c  patterns, as shown in figure 

25. 

As can be seen from subfigures 25(b),(c),(f),(i), the 3i =  species has already left (or is very close 

to leaving) the electrolytic cell. As such, the electrolyte can be considered to be a symmetric 

binary one, for which zone 2 simply does not exist. For this reason, we next focus only on such 

subplots of figure 25 where the 3i =  species is still present in the electrolytic cell at both ECI 

onset times 
1t  and 2t . The left and right sides of figure 25(a) represent the concentration of the 

1i =  species at the time instance 
1t  and the concentration of the 2i =  species at the time instance 

2t , respectively, right after the VP were conceived in the vicinity of the cathode (for 1i = ) and 

the anode (for 2i = ). The different shades of red color in the bottom part of the 2D concentration 

field patterns represent the interface between zone 2 and the DL (zone 3). The shape of this 

interface is uniform on both sides of figure 25(a), meaning that the back front of the 3i =  species 

propagates in the same way as in the 1D configuration, at both 1t  and 2t  time instances. Similarly, 

this interface is also uniform on the left side of figures 25(d),(e), corresponding to the higher rc  

value than that described in figure 25(a). However, the zone 2-DL interface presented on the right 

side of figures 25(d),(e) is non-uniform, indicating the development of the ECI. Further increasing 

of the rc  value results in the appearance of a secondary VP series located in zone 2, already at 

the 1t  time instance (left side of figures 25(g),(h)) close to the primary VP series located in zone 1 

next to the cathode. The wave number of the secondary VP series resembles the wave number 
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of the primary VP series located in zone 1, for both figures 25(g),(h). At the more advanced time 

instance 
2t  (right side of figures 25(g),(h)), the chaotic development of the bottom VP series and 

the generation of multi-layer vortex structures ejected into the DL are observed, resembling the 

scenario observed for the overlimiting voltage in [35]. 

We next propose a physical interpretation of the observed phenomena. As has been already 

mentioned, the ECI is conceived on the ESC-DL interface. The secondary ECI, also caused by 

an electric field disturbance in the direction tangential to the externally applied electric field, 

develops in two consecutive stages: the first one leads to the non-uniformity of the zone 2-DL 

interface, while the second one leads to the development of VP series within zone 2, which at 

the overlimiting regime can be further expressed by the chaotic vortical transport of charged 

species. As follows from the 2D subplots of figure 25, in which the secondary ECI can clearly be 

recognized, it can be seen that the higher the 
rc  value, the earlier and faster is the development 

process of secondary ECI in the zone 2-DL interface. To facilitate an understanding of the 

physical origin of the above observation we relate to the corresponding 1D subplots of figure 25. 

It can be seen that a higher 
rc  value results in a more significant difference between the 

concentration values of the 1i =  and 2i =  species in the DL and in the thin area of zone 2 

adjacent to it. To support this statement, we next present the distribution of the non-dimensional 

absolute space charge density 
E  along the electrolytic cell for the values of 42 5 10. −=  , 

61 7 10t . −=  , and three different values of 
rc  (see figure 26). The concentration difference 

between the 1i =  and 2i =  species can be easily recognized by the local abrupt increase of the 

absolute space charge density E  as appears in the 0 2 0 4. y .   region. It is clear that a higher 

rc  value results in a higher peak value of E  corresponding to the back front of the 3i =  species. 

The higher the maximal value of the abrupt increase in 
E  adjacent to the back front of the 3i =  

species, the faster is the development of an electric field disturbance into the non-uniform zone 

2-DL interface and a secondary ECI. Hence, looking back at figure 25(a) corresponding to the 

lowest value of 
rc , it can be seen that the secondary ECI has not developed yet 8. Looking next 

at figures 25(d),(e) corresponding to a higher value of rc  it can be seen that the secondary ECI 

starts to develop only after the appearance of a VP series along zone 1, while for the highest rc  

value the secondary ECI develops simultaneously with the VP series in zone 1, yielding the 

chaotic vortical transport at 2t  (see figures 25(g),(h)). 

 
8  The non-uniformity of the zone 2-DL interface starts to develop at 63 4 10t . −=   (not shown in figure 25). 
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Figure 26: Distribution of the absolute value of the non-dimensional space charge density, 
E

 , obtained 
for 1D ionic transport between the two open electrodes. The results are obtained for the values of 

−=  4
2 5 10. , −=  6

1 7 10t . , and three different values of 
r

c . 

 

It is also remarkable that, similarly to the primary ECI, the width of the secondary ESC also has 

a considerable effect on the wave number of the secondary VP series. In fact, the width of zone 

2 on the left side of figure 25(g) is thinner than that on the left side of figure 25(h). As a result, the 

wave number value of the secondary VP series on the left side of figure 25(g) is higher than that 

on the left side of figure 25(h). 
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8. HP Indigo Case 

 

HP Indigo's configuration is a private case of electrically-driven multiphase flow. The liquid is 

an ISOPAR L mixture, which is composed of carrier oil, polymeric ink particles, and a 

component called charge director (see figure 2). When the mixture flows in the neck between the 

electrodes of the BID (see figure 5) it splits into the gaps between the DR and the MA or BA (see 

figure 6), where it is exposed to an electric field. The electric field polarizes the neutral charge 

director into inverse micelles and breaks up several of them into positive (cation) and negative 

(anion) charges. At this stage, a large amount of negative charges is bonded to the solid polymeric 

ink particles, while the rest of them and the positive charges remain in the oil domain. Therefore, 

the oil domain can be defined as a weak electrolyte which is composed of positively charged 

cations, negatively charged anions, and negatively charged ink particles of high valence value. 

 

8.1 Geometric Dimensions and Mixture Properties 

The physical values given in this section are taken from the data provided by HP Indigo 

engineers. Figure 27 presents a schematic of the gap dimensions between the DR and the 

electrodes of the BID: 

 

Figure 27: Schematic of the gap dimensions. 
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Together with HP Indigo engineers, a device called mini Q over M (QoM) was chosen to serve 

as a prior simulation domain for the BID. QoM is a cylindrical device bounded by two parallel 

electrodes made of the same material (see figures 28-29). This cylindrical space is filled with an 

electrolyte oil mixture of known mass. A chosen voltage is applied across the electrodes and a 

time-dependent value of the current density is obtained. Several reasons led to the decision to 

use the QoM device: 

• Easy to set and determine different initial concentrations of species. 

• Feasible to perform experiments on charge director with/without ink particles. 

• Top and bottom boundaries are made of the same material. Therefore, for a binary 

electrolyte, simulation results are expected to be symmetric relative to the center point 

of the electrolytic cell, which simplifies the validation procedure of the simulation 

results. 

• Feasible to relate to as a 1D solution in space. 

• Feasible to assess the species concentration gathered near the boundaries after the 

electric field is shut down. 

 

Figure 28: HP Mini QoM device. 

 

 

Figure 29: Schematic of mini QoM dimensions. 
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Table 6 contains the values of the dimensions defined in figures 27,29. 

 

Table 6: DR-ME gap and QoM geometric dimensions. 

 Description Symbol  Value  Units  
Neck width between the 

BID electrodes a  2 mm  

DR radius 
1r  36 mm  

ME radius from DR center 
2r  36.35 mm  

DR length w   78.5 cm  

ME arc length l  1.8 cm  

DR angular velocity   62.83 ( )20=  rad / s  

Length between the QoM 
electrodes H  0.974 mm  

Electrode area of the QoM A  1002 2mm  
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Mixture and species properties are displayed in table 7. 

 

Table 7: Mixture and species properties. 

 Description  Symbol Value  Units  Comments  

Ink mass fraction 
sY  0.03 - In the neck between the 

electrodes 
Charge director 
mass fraction cdY  0.001 - For anions and cations 

together 
Ink particles 
density (not 

porous) 
s  1000 3kg m   

Ink particles 
density (porous) _s porous  ~850 3kg m  

Up to a maximal ink 
mass fraction of ~0.35 

Charge director 
density cd  1100 3kg m  

For both anions and 
cations 

Liquid oil density 
l  765 3kg m  For 15˚C 

Liquid oil 
kinematic viscosity l  1.64e-6 2m s  For 25˚C 

Ink particles 
dynamic viscosity s  0.003-0.005 Pa s  For 0.03 mass fraction 

Volumetric flow 
rate in the neck 

between the 
electrodes 

neckQ  30 L min    

Volumetric flow 
rate in the gap 

between the ME 
and the DR 

ME DRQ −  ~20 L min    

Volumetric flow 
rate in the gap 

between the BE 
and the DR 

BE DRQ −
 ~10 L min    

Ink particles 
average diameter sd  4 m    

Micelle's average 
diameter cdd  7 nm    

Percentage of 
effective micelles effcd  2 %  

Mixture 
temperature T  30 C    

Ink particles 
electrical mobility s  1.2e-8 2m V s  

For 0.002 mass fraction. 
Empirical result 

Micelles electrical 
mobility cd  1.7e-9 2m V s  

For E 1.5 V mm= . 
Empirical result 

Mixture relative 
permittivity r  ~2 - For low ink 

concentration 
Electric potential 

supplied to the DR DR  -400 V  
Considering a reference 

point 
Electric potential 

supplied to the 
electrodes 

electrodes  -1400 V  
Considering a reference 

point 
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According to equation (15) and table 7, the mass fraction of the liquid oil is: 

(91)  1 0 03 0 001 0 969lY . . . .= − − = 

To calculate the mixture properties determined by equation (8), the volume fractions 
i  have to 

be known. However, the data in table 7 and in equation (91) include only mass fractions. The 

relation between mass and volume fractions is calculated according to equation (14): 

(92)  ,i i

i

Y





= 

which enables reformulating equation (8) as: 

(93)  .i i

i i

Y


 


= 

Because volume fractions of each species and mixture density are not given, the mixture density 

will be assumed to be equal to the liquid oil density: 

(94)  .l  

The dynamic viscosity of the liquid oil is: 

(95)  6 3765 1 64 10 1 255 10 Pa s .l l l . .   − −=  =   =   

Mixture dynamic viscosity can be calculated due to equations (91) and (93-95), neglecting the 

dynamic viscosity of the charge director and considering the average value of dynamic viscosity 

of the ink particles from table 7: 

(96)  
3 3765 765

0.03 0.004 0.97 1.255 10 1.309 10 Pa s .
1000 765

l l l
i i i i s s l l

i ii i s l

Y Y Y Y
  

    
   

− −

=  = + =

=   +    =  

 
 

The tangential component of the average mixture velocity in the ME-DR gap can be calculated 

from the data given in tables 6-7: 

(97)  
( )

( )

( )2 3

2 1

20 1/ 60000 m
1.213 ,

78.5 10 36.35 36 10 s

ME DRQ
u

w r r


−

− −


= = =

−   − 
 

while the tangential velocity of the DR reads: 

(98)  3

_ 1

m
20 36 10 2.262 .

s
wallu r   −= =   = 
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The volume of a single spherical ink particle is: 

(99)  
( )

3
63

17 3
4 10

3 351 10 m
6 6

s
s

d
V .


−

−


= = =  

and the volume of a single spherical charge director (same for anion and cation) is: 

(100)  
( )

3
93

25 3
7 10

1 796 10 m
6 6

cd
cd

d
V . .


−

−


= = =  

The mass of a single ink or charge director particle can be estimated from equations (99-100), 

respectively: 

(101)  17 141000 3 351 10 3 351 10 kg ,s s sm V . . − −=  =   =  

(102)  25 221100 1 796 10 1 976 10 kg .cd cd cdm V . . − −=  =   =  

The molar mass of ink and charge director species can be evaluated from equations (101-102), 

respectively as: 

(103)  14 23 10 kg
3 351 10 6 022 10 2 018 10

mol

s
s s A

s

M m N . . . ,−=  =    =  

(104)  22 23 cd

cd

kg
1 976 10 6 022 10 118 97

mol
cd cd AM m N . . . .−=  =    = 

Utilizing equations (14), (103) and (104), the bulk molar concentration of each species can be 

obtained by: 

(105)  9 s
0_ 10 3

mol0.03 765
1.137 10 ,

2.018 10 m

s s l
s

s s

Y Y
c

M M

  −
=  = = 


 

(106)  3 cd
0 3

mol0 001 765
6 43 10

118 97 m

cd cd l
_cd

cd cd

Y Y .
c . .

M M .

  −
=  = =  

The bulk concentration of effective micelles, anions and cations together is: 

(107)  3 4 cd
0 0 3

mol
6 43 10 0 02 1 286 10

m
_cd _eff _ cd effc c cd . . . .− −=  =   =  

In the absence of ink species, the bulk concentration of the anions is assumed to be equal to the 

bulk concentration of cations. Hence, to ensure initial electroneutrality (see equation (40)): 

(108)  
4

0 5 cd
0 0 3

mol1 286 10
6 43 10

2 2 m

_cd _effc .
c c . .

−
+ − −
= = = =  
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It is difficult to evaluate the valence value for the ink particles and ion species. To do so, it is 

possible to utilize the electrical mobility equation for the diffusion of charged particles (38). In 

this case, one should know the molecular diffusion coefficient of each species. Considering a 

relatively low velocity-based Reynolds number and an averaged radius of ink particles and ions, 

the molecular diffusivity of each species can be calculated according to the Stokes-Einstein 

equation (39): 

(109)  
23 2

14

6
3

1.381 10 303.15 m
8.483 10 ,

4 10
6 6 1.309 10

2 2

B
s

s

k T
D

d s
 

−
−

−
−

 
= = = 


  

 

(110)  
23 2

11

9
3

1.381 10 303.15 m
4.847 10 .

7 10
6 6 1.309 10

2 2

B
cd

cd

k T
D

d s
 

−
−

−
−

 
= = = 


  

 

Substituting these values into equation (38) yields the absolute valence value of each species: 

(111)  
8 23

14 19

1.2 10 1.381 10 303.15
3695.41 3695 ,

8.483 10 1.602 10

s B
s

s

k T
z

D e

 − −

− −

   
= = = 

  
 

(112)  
9 23

11 19

1.7 10 1.381 10 303.15
0.916 1.

4.847 10 1.602 10

cd B
cd

cd

k T
z

D e

 − −

− −

   
= = = 

  
 

Recalculation of the diffusion coefficients based on the rounded integer valence values yields: 

(113)  
8 23 2

14

19

1.2 10 1.381 10 303.15
8.484 10 ,

3695 1.602 10

s B
s

s

k T m
D

z e s

 − −
−

−

   
= = = 

 
 

(114)  
9 23 2

11

19

1.7 10 1.381 10 303.15
4.441 10 .

1 1.602 10

cd B
cd

cd

k T m
D

z e s

 − −
−

−

   
= = = 

 
 

Considering the ink species, the bulk concentration of the effective positive micelles remains as 

in equation (108), according to equation (112). The negative charges are attributed to both anion 

and ink species. The bulk concentration of the negative charges attached to the ink particles is 

calculated due to equations (105) and (111): 

(115)  9 6 s
0 3

mol
3695 1 137 10 4 202 10

m
s _ sz c . .− − =   =  

Hence, to ensure the initial electroneutrality condition determined in equation (40), the bulk 

concentration of the remaining anions yields: 

(116)  
( )5 6

0 0_ 5

0 3

6.43 10 4.202 10 mol
6.01 10 .

1 m

s sz c z c
c

z

− −+ +

− − −

−

−  − − − − 
= = = 

−
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The electric potential difference between the DR and the BID electrodes is: 

(117)  ( )Δ 400 1400 1000 V,DR electrodesV  = − = − − − = 

while common values of the voltage applied across the QoM electrodes are 500 V or 1500 V. 

Following the dimensional analysis characterized by stationary boundaries, as introduced in 

section 5.1.1, the non-dimensional numbers can be calculated for HP Indigo's QoM 

configuration. Consider the characteristic velocity 
0u , as it appears in equation (42), and the 

characteristic length 
0l  as the length between the QoM electrodes H  (see table 6), the non-

dimensional numbers obtained are as follows: 

Schmidt number (see equation (58)): 

(118)  
3

4

11

1 309 10
3 852 10

765 4 441 10l

.
Sc . .

D D .

 

 

−

+ + −


=  = = 

 
 

Péclet number (see equation (59)): 

(119)  
( )

2

20 0 0 0

0

2
2312

3 11 19

1 381 10 30 273 152 8 854 10
0 208

1 309 10 4 441 10 1 1 602 10

r B
T

u l l k T
Pe V

D l D D z e

. ..
. .

. . .

 

 + + + +

−−

− − −

 
= = = = 

 

   + 
= = 

     

 

Electrostatic screening length (see equation (62)): 

(120)  
( ) ( )

( )

( )

0

2 2

0 0 0 0

12 23

4

23 19 5 23

1 1

2 2

2 8 854 10 1 381 10 30 273 151
1 982 10

0 974 10 2 1 1 602 10 6 43 10 6 022 10

r BD B

A A

k Tk T

l l Hz e c N z e c N

. . .
. .

. . . .

  

+ + + +

− −

−

− − −

= = = =

     +
= = 

      

 

Considering common values of the voltage applied across the QoM electrodes, 500V =  or 

1500 V , the non-dimensional voltage applied is: 

(121)  
( )

4 4

23

19

1 914 10 or 5 742 10
1 381 10 30 273 15

1 1 602 10

BT

V V V
V . . .

k TV . .

z e .

−

+ −

  
= = = =  

     +
   
    

 

For the case of a non-symmetric electrolyte consisting of a single positively charged species of 

valence 
1z z+=  and two negatively charged species of valences 

2z z−=  and 
3 sz z Mz−= = , the 

non-dimensional numbers 
ir

z , 
ir

D , and rc  obtained are: 
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(122)  32 2
2 3 2

1 1 1 1

1
; 1 , 3695 3695 ;

1i

i
r r r r

z zz Mz
z z z Mz M

z z z z

−
= = = = − = = = = − → = 

(123)  
11 14

332
2 311 11

1 1 1

4.441 10 8.484 10
; 1 , 1.91 10 ;

4.441 10 4.441 10i

i
r r r

D DD
D D D

D D D

− −
−

− −

 
= = = = = = = 

 
 

(124)  ( )
9

0_ 53

5

2 0

1.137 10
0 1.892 10 .

6.01 10

s

r

cc
c at t

c c

−
−

− −


= = = = = 


 

Substituting the non-dimensional numbers into the governing equations (50) yields: 

(125)  

( )

( )

( )

5 2 7

8 2

3

0

2.596 10 0.208 1.272 10 3695

7.86 10 3695

0.208

0.208 1.91 10 7.059 ,

s

s

s
s s s

u

u
u u P u c c c

t

c c c

c
c u c c

t

c
c u c c

t









− + −

− + −


  

−

 =

 
 +  = − + −  − −  

 

−   = − −


=  − +  




=  − +   − 



 

and into the electric current density calculation introduced in equation (49) yields: 

(126) 

( ) ( )

( )
0

2
4 8

1
0 208 3695 7 059

2 608 10 7 86 10

y y s s

AR

s

x, y y , t

I . u c c c c c . c
AR y

c c . c . dx .
y y t

 

+ − + −

+ − −

=

 
= − − − − − −



 
+ +  −  

   


 

As can be seen from the set of governing equations (125), the flow is mainly dominated by the 

electric body force acting on the mixture. In addition, the electroneutrality condition determined 

in equation (40) seems to be preserved, except for the ESC regions where the potential Laplacian 

is significant. The transport of anion and cation species is dominated by all advection, molecular 

diffusion, and electromigration phenomena, while the molecular diffusion of ink species seems 

to be negligible. As can be seen from equation (126), the contribution of the displacement current 

density to the total current density calculation is negligible. 

Following the dimensional analysis characterized by the moving DR boundary as introduced in 

section 5.1.2, the non-dimensional numbers can be calculated for HP Indigo's BID configuration. 

Considering the characteristic velocity 0u , as appears in equation (97), and the characteristic 

length 0l  as the hydraulic diameter HD  (see equation (51)) of the ME-DR duct (for Reynolds 

number calculation) or the ME-DR distance H  (for electrostatic screening length calculation), 

the non-dimensional numbers obtained are as follows: 
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The Schmidt number, as well as the non-dimensional numbers 
ir

z , 
ir

D , and 
rc , remains the same 

as for the stationary configuration (see equations (118,122,123) and (124), respectively). 

The Reynolds number (see equation (57)) is: 

(127)  

( )

( )

( )

( )( )

2 10 0

2 1

2 3

2

3 2 3

44

2

4 78 5 10 36 35 36 10765 1 213
4 962 10

1 309 10 2 78 5 10 36 35 36 10

H
w r ru l u D u uA

Re
p w r r

. ..
. .

. . .

     

   

− −

− − −

−
= = = = =

+ −

  − 
=  = 

  + − 

 

The electrohydrodynamic coupling constant (see equation (60)) is: 

(128) 

( )
22 2312

2 0

3 11 19

1.381 10 30 273.152 8.854 10

1.309 10 4.441 10 1 1.602 10

0.208 .

r B
T

k T
V

D D z e

 


 

−−

+ + + − − −

   +  
= = = =  

       

=

 

The electrostatic screening length (see equation (62)) is: 

(129)  
( ) ( )

( )

( )

( )

0

2 2

0 2 10 0

12 23

4

23 19 5 23

1 1

2 2

2 8 854 10 1 381 10 30 273 151
5 517 10

36 35 36 10 2 1 1 602 10 6 43 10 6 022 10

r BD B

A A

k Tk T

l H r rz e c N z e c N

. . .
. .

. . . .

  

+ + + +

− −

−

− − −

= = = =
−

     +
= = 

−       

 

According to equation (117), the non-dimensional voltage applied between the ME and DR is: 

(130)  
( )

4

23

19

1000
3 828 10

1 381 10 30 273 15

1 1 602 10

BT

V V
V . .

k TV . .

z e .

−

+ −

 
= = = = 

     +
   
    

 

Substituting the non-dimensional numbers into the governing equations (56) yields: 

(131)  

( )

( )

( )

3 2 5

7 2

8 8

11 7

0

2.015 10 3.602 10 3695

6.087 10 3695

5.232 10 5.232 10

9.994 10 3.693 10 ,

s

s

s
s s s

u

u
u u P u c c c

t

c c c

c
c u c c

t

c
c u c c

t









− − + −

− + −


 −  − 

− −

 =


+  = − +   −  − − 



−   = − −


=  − +     




=  − +   −  



 

and into the electric current density calculation introduced in equation (49): 
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(132) 

( ) ( )

( )
0

8

2
8 4 7

1
3695 5 232 10 7 059

5 232 10 2 608 10 6 087 10

y y s s

AR

s

x, y y , t

I u c c c . c c . c
AR y

. c c . c . dx .
y y t

 

+ − − + −

− + − −

=

 
= − − −  − − −



 
 + +  −  

   


 

As can be seen from the set of governing equations (131), the flow is mainly dominated by the 

mixture pressure. In addition, the electroneutrality condition determined in equation (40) seems 

to be preserved, except for the ESC regions where the potential Laplacian is significant. The 

transport of anion, cation, and ink species is dominated by the advection phenomenon. As can 

be seen from equation (132), the electric current density is dominated by the advective 

phenomenon, although the y  component (or r in cylindrical coordinates) of the mixture velocity 

yields relatively small values. 

 

8.2 Assumptions 

Several assumptions have to be made when solving the two-way coupled physical model 

introduced in chapter 5 for HP Indigo's configuration. This section discusses these assumptions, 

their justification and how well they fit the physics of the problem: 

1. Incompressible flow – mixture density is constant in space and time. 

2. To compute mixture properties by equation (93), mixture density is assumed to be equal to the 

density of the liquid oil (see equation (94)). 

3. Assumptions related to the mixture method: ink particles and ions are considered as non-

inertial particles, and there is no drag force between the species. 

4. Newtonian mixture - shear stress is proportional to the flow strain. 

5. Constant dynamic viscosity of the mixture. 

6. Gravitation force is negligible because of the particles' low mass. 

7. Constant permittivity of the mixture. 

8. Isothermal flow - constant temperature of the mixture. 

9. Any impact of a magnetic field is negligible. 

10. No dependence of particles' properties on distribution function is assumed. 

11. Average radius of particles and ions is utilized in Stokes-Einstein (39) and molar mass (103-

104) equations. 
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12. Calculation of molecular diffusion coefficient of species is performed by utilizing Stokes-

Einstein equation (39) – suitable for low values of Reynolds number, based on the relative 

velocity. 

13. Constant values of molecular diffusion coefficients of all the species are assumed. 

14. The equivalent valence of all the species is calculated by the electrical mobility equation (38), 

employing the previously calculated molecular diffusion coefficients of the species and 

empirical electrical mobility values (see table 7). 

15. Species valences are constant and do not depend on the magnitude of electric field. This 

assumption means that the initial ionic composition of the solution subjected to the electric field 

is built a very short time after the charge director was broken up into positive and negative 

charges. 

 

Assumption 1 is an approximation. In the reality, negatively charged ink particles are attracted 

to the DR and increase the mixture density in this area. The relative error between solid ink 

particle density and liquid oil density is: 

(133)  
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but the initial ink concentration value is relatively small (see equation (105)). 

Stokes relaxation time is determined by equation (6) for the ink particles: 

(134)  
( )

2
62

3

1000 4 10
0.71μs,

18 18 1.25 10

s s
p

l

d




−

−

 
= = =

 
 

which means that the solid ink particles reach their steady velocity (approximately the fluid 

velocity), very quickly. The non-dimensional Stokes number is defined as the ratio between the 

characteristic time of a particle determined by equation (6) and a characteristic time of the 

surrounding flow: 

(135)  
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where 0u  and 0l  are the characteristic velocity of the flow and the characteristic length of the 

bounding geometry, respectively. Considering 0u  as the tangential DR velocity given by 

equation (98) and 0l  as the distance between the ME and the DR: 
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Alternatively, considering 
0u  as the average velocity between the ME and the DR and 

0l  as the 

hydraulic diameter 
HD  of the ME-DR duct introduced by equations (97) and (51), respectively: 

(137)  
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A particle with low a Stokes number follows fluid streamlines, which means that it is considered 

to be a non-inertial particle. From the Stokes relaxation time value presented in equation (134), 

the relative velocity between the particles and the fluid tends to zero after a short time duration, 

which means that the drag force between them is negligible. Therefore, considering the mixture 

method (assumption 3) is well justified. 

Assumption 5 is a private case of assumption 4. According to HP Indigo's experimental results, 

the fluid dynamic viscosity increases significantly (approximately times three) in the dense 

particle region close to the DR. Therefore, the above assumption can introduce non-negligible 

imprecisions. First, it is necessary to verify the numerical simulations with this simplifying 

assumption. In future simulations, this assumption will be omitted. 

Assumption 6 is mainly introduced to simplify an understanding of the balance of physical forces 

in the obtained numerical results. 

According to the information provided by HP Indigo's engineers, the mixture permittivity of 

ISOPAR L is approximately constant for a low mass fraction value of solid particles, which is 

the case under consideration. Therefore, assumption 7 is well justified. 

According to the information provided by HP Indigo's engineers, temperature differences are 

negligible (assumption 8). Note that taking into account the existence of temperature gradients 

would significantly increase the complexity of the physical model: a thermal diffusion term 

would have to be added to the Nernst-Planck equation (36) due to thermophoresis phenomena, 

and the energy equation (12) would have to be solved. 

The Hartmann number is the ratio between the electromagnetic and viscous forces, defined as: 

(138)  Ha BL ,



= 

where B  is the magnetic field intensity and   is the electrical conductivity per unit length. 

According to HP Indigo's engineers, the electrical conductivity per unit length of the ISOPAR 
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L mixture is about 100 250 pS cm . Considering a high valued conductivity and a relatively 

high magnetic field intensity of 1 T, the Hartmann number is obtained as: 

(139)  
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For low Hartmann numbers, the impact of a magnetic field is negligible (assumption 9). 

As discussed previously in this section, the relative velocity between the particles and the fluid 

tends to zero. Therefore, assumption 12 is well justified. 

According to the information provided by the HP Indigo's engineers, in the time that passes from 

the charge director exposure to the electric field until it breaks up and particle and ion valences 

are determined, the mixture flows nearly the first third of the ME-DR duct length. This means 

that assumption 15 is weak and can be the culprit of a significant uncertainty of the developed 

model. Relaxing this assumption will require further development of the model relating to the 

electric field with the valence of each species. This challenge will be addressed in future work. 

 

8.3 QoM Simulations 

This section summarizes the simulation results addressing the QoM device shown in figures 28-

29. One measurable parameter in the QoM device is the electric current density generated right 

after an electric field is applied. The current density calculation determined in equation (41) is 

employed on a surface parallel to the QoM electrodes, located at height 
0y  from its bottom. To 

choose a specific value of 
0y , a transient 1D Matlab simulation utilizing the PNP equations (35-

36) (without the contribution of the advective term) for the case of a symmetric binary electrolyte 

was executed. Dirichlet BCs of zero concentration were employed on both electrodes, while the 

electric potential difference was set to 1500 V. The ICs within the computational domain were: 
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The mixture properties considered are as given in section 8.1. 6000 grid points non-uniformly 

spaced within a 1 mm height were considered with a time step of 1 μs. The current density value 

calculated due to any height value 0y  within the computational domain is presented in figure 30 

for 10 different times. As expected, the current density values decrease according with time as 

the electrodes discharge. Sharp spikes typical of the flux term distribution close to the boundaries 

result from the discontinuity in the gradient of species concentration due to the presently utilized 

zero Dirichlet BC. Another interesting observation can be made with regards to the presence of 

spikes of negligibly small height separating between the bulk and the adjacent ESC. Next, if the 
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current density is constant in the whole domain (except for the boundaries) at any time, the 

specific location of the current density calculation 
0y  is not important. Throughout this work, 

for the sake of simplicity, the current density calculation is employed in the middle section 

between both the bottom and the top boundaries. 

 

Figure 30: Absolute current density through any height value y
0

 for 10 different times. 

 

Recently, several QoM experiments were conducted by Indigo's engineers for the symmetric 

binary electrolyte, including various initial concentrations of positive and negative micelles 

immersed within the oil medium. The experiments were conducted to validate the numerical 

simulations. Comparisons between the results obtained by 1D Matlab numerical simulations for 

1500V and 500V applied voltages and the corresponding experimental data are shown in figures 

31-32, respectively. 
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Figure 31: Current density received due to applied voltage of 1500V for different initial micelles 
concentration. 

 

 

Figure 32: Current density received due to applied voltage of 500V for different initial micelles 
concentration. 

 

The above results display a factor of ~1.2-2.3 between the initial current density obtained due to 

both experimental and numerical approaches. One should note that the current density obtained 
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from the simulations is proportional to the initial concentration of both species. As mentioned in 

chapter 7, when considering the first time steps the concentration gradient and the time variation 

of the electric field are both neglected at the center point of the electrolytic cell. Therefore, the 

only term that contributes to the electric current density determined in equation (41) at the first 

time steps is the electromigration term presented in equation (37), which is proportional to the 

concentration of both species (since the gradient of the electric potential is constant in the bulk 

at the onset time). There may be several reasons which can cause the differences observed 

between the experimental and the simulation results: 

• The initial concentration values utilized in the Matlab program were calculated in the 

same way as presented in section 8.1. The calculation is based on the different values of 

the mass fraction of the charge director and on the assumption of a certain percentage of 

the effective micelles (see table 7). An imprecise calculation of either the mass fraction 

of the charge director in the different experiments or the percentage of the effective 

micelles can change the values of the current density received from the simulations. It 

should be mentioned that the dynamic viscosity value of the oil carrier, as well as the 

micelles average diameter and electrical mobility data presented in table 7, can contain 

high uncertainties. 

• The influence of hydrodynamics is not accounted for in the 1D simulations. 

Further research should be performed in the future to improve the calibration and accuracy of 

the above-mentioned parameters (see section 9.2). To calibrate the results provided by the 

numerical simulation with the given non-precise physical properties, a model of a correction 

coefficient ( )0c   is suggested next. The initial current densities received from 12 different 

simulations and experimental results are demonstrated in figure 33 as a function of the initial 

bulk density. Linear curves were fitted to the points representing the simulation results, whereas 

quadratic curves were fitted to the points representing the experimental results. The fitted curve 

equations obtained are as follows: 
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Next, a simple model is suggested to predict the initial current density suitable for any initial 

bulk concentration: 

(142)  ( ) ( ) 2x ax b cx dx e,  + = + + 



89 
 

where a-e coefficients are determined by the linear or quadratic fitting curves as introduced by 

equation (141), x  represents the calculated bulk concentration and ( )x  is the correction 

coefficient. For a given measured initial bulk concentration, the multiplication of the suitable   

value with the calculated bulk concentration (as obtained by the process presented in section 8.1) 

can serve as an input bulk concentration for the numerical program. This approach ensures equal 

values of both simulated and experimental initial current densities.   values obtained by the 

fitted curves that appear in figure 33 are shown in figure 34. 

 

Figure 33: Fitted curves for initial current density (time 10-4 s) obtained by both simulated and 
experimental results as a function of the micelles bulk concentration. 

 

 

Figure 34: Values of the correction coefficient   as a function of the micelles bulk concentration. 
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To perform a reliable fitting for the correction coefficient points appearing in figure 34, 

additional experiments are required. The numerical simulations were re-executed with the 

corrected bulk concentration values obtained by utilizing the   values appearing in figure 34. 

The results of these simulations are compared with the experimental results and shown in figures 

35-36: 

 

Figure 35: Corrected current density prediction according to the utilized   model due to applied voltage 
of 1500V for different initial micelles concentration. 

 

Figure 36: Corrected current density prediction according to the utilized   model due to applied voltage 
of 500V for different initial micelles concentration. 
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As can be seen from figures 35-36, the current density predicted by the simulations exhibits a 

much better fit to the experimental results compared to those presented in figures 31-32. 

 

Up to this stage, results were only demonstrated for 1D simulations of the QoM device, 

considering a symmetric binary electrolyte. We next show results of 2D and 3D QoM 

simulations through the EC patterns developing in the vicinity of the top and bottom electrodes, 

operating with both 2 species (no ink) and 3 species (including ink) electrolytes.  Considering the 

2D geometry and mesh demonstrated in figure 37(a), two simulations were executed addressing 

the different electrolytes. The set of dimensioned governing equations (26,34-36) is solved with 

the BCs: 
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with periodic BCs employed in the x  direction. The ICs within the computational domain are: 
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Figure 38 demonstrates the convective cells containing VP that are developed in the vicinity of 

the top and bottom electrodes and appear a short time after the ECI onset of the 2D simulations. 

The anion concentration field is shown in the vicinity of the top electrode, while the cation 

concentration field is shown in the vicinity of the bottom electrode. 
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Figure 37: Geometry dimensions and mesh details of QoM simulations: (a) 2D; (b) 3D.  

 

Considering the 3D geometry and mesh demonstrated in figure 37(b), two simulations were 

executed addressing the different electrolytes. The set of dimensioned governing equations 

(26,34-36) is solved with the BCs and ICs presented in equations (143-144), respectively, where 

periodic BCs were employed in the x  and z  directions. Figure 39 demonstrates the spatial 

convective cells that are developed on the top and bottom electrodes and appear a short time 

after the ECI onset of the 3D simulations. The anion concentration field is shown in the top view, 

while the cation concentration field is shown in the bottom view. 

 

Figure 38: Concentration fields of cation and anion species in the vicinity of the bottom and top QoM 
electrodes, respectively, a short time after the ECI onset. The convective cells containing VP are related to 

2D rheoTool simulations. 
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Figure 39: Concentration fields of cation and anion species on the bottom and top QoM electrodes, 
respectively, a short time after the ECI onset. The spatial concentration patterns are related to 3D 

rheoTool simulations. 

 

As expected from the simulation results of the symmetric binary electrolyte, the onset time of 

ECI is equal for both cation (bottom electrode) and anion (top electrode) species. As explained 

in section 7.3 for the 3 species electrolyte, convective cells are first generated in the vicinity of 

the bottom electrode as a result of the wider ESC region in the vicinity of the bottom electrode. 

The dimensioned wave numbers of both the bottom and top VP demonstrated in figure 38 were 

calculated by: 

(145)  .
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Remarkably, for the case of spatial convective cells appearing close to the top and bottom 

boundaries of the 3D simulations (see figure 39) two different wave numbers were estimated with 

respect to x  and z  directions. The estimation was performed by counting the concentration 

peaks along 10 parallel and equally spaced sections taken in the x  and z  directions. The number 

of concentration peaks was averaged over 10 sections in each direction, and then over 5 

successive time instances starting shortly after ECI onset. Table 8 summarizes the wave numbers 

corresponding to the different configurations and electrolytes. 
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Table 8: Wave numbers of vortex pairs addressing 2D and 3D rheoTool simulations of 2 or 3 species 

electrolytes. Results are related to a short time after the ECI onset while xk and 
zk  are wave numbers in 

the x  and z  directions, respectively. 

Wave number (vortex 
pairs per mm) 

2 species 3 species 

2D 
top 30 30 

bottom 26.67 26.67 

3D 

top 
xk 25.67 

xk 25 

zk 25.67 zk 26 

bottom 
xk 25 xk 25 

zk 26.67 zk 26.67 

As can be seen from table 8, there are minor differences between the wave numbers 

corresponding to the two considered electrolytes. As expected, xk and zk values of the 3D 

configuration are quite similar due to the symmetric geometry and BCs utilized. Table 8 shows 

that the wave number values obtained by the 3D configuration are a bit lower than those obtained 

by the 2D configuration, although the differences are not significant.  

8.4 BID Simulations 

This section summarizes the simulation results addressing the BID unit (figure 5), focusing 

mainly on the ME-DR gap (figure 6). Considering a rectangular domain of height 

2 1 350μmH r r= − = and 5AR = , filled by a symmetric binary electrolyte consisting of 

positively charged cations and negatively charged anions, the effect of an upper moving 

boundary is next examined. Figure 40 compares the anion concentration field obtained by either 

a stationary or a moving upper wall, for different representative time instances. The mixture and 

species properties considered are described in section 8.1. The mesh considered has 710 

uniformly spaced cells in the x  direction and 142 non-uniformly spaced cells in the y  direction. 

The time step utilized is 510 st − = . The set of dimensioned governing equations (26,34-36) is 

solved with the BCs: 
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with periodic BCs employed in the x  direction. The ICs within the computational domain are: 
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Figure 40: The effect of moving boundary on ECI.  

 

In the case of stationary boundaries, Rubinstein-Zaltzman convective cells are generated 

simultaneously in the vicinity of both top and bottom boundaries, due to symmetry 

considerations. For the case of a moving top boundary, the instability convective cells are first 

generated in the vicinity of the stationary bottom boundary, simultaneously with the stationary 

configuration. However, the shear flow and momentum diffusion delay the onset of instability 

phenomena in the vicinity of the moving top boundary and render its patterns to be wavy rather 

than convective cell shapes. Figures 41-42 show the current density as a function of time for the 

stationary and moving boundary configurations as calculated by equation (41). Both curves are 

similar up to the ECI onset time. A magnification of figure 42 demonstrates the characteristic 

pattern of each instability with respect to the time evolution of the corresponding current density. 

As can be seen, the beginning of wavy behavior of the mixture flow in the moving boundary 

configuration can be clearly recognized by a significant peak observed in the time evolution of 
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the current density curve. The integral over time values of both current density curves are 

displayed in figure 41; these are equivalent to the number of charges leaving the computational 

domain through its top and bottom boundaries during the time, and deviate by about 7%. 

 

Figure 41: Current density as a function of time for stationary and moving top boundary configurations. 

 

 

Figure 42: Magnification of figure 41. Instability patterns superimposed with the corresponding  time 
evolution of electric current density. 
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The above-mentioned rectangular computational domain was extruded by 350 µm along the z  

direction, to simulate 3D geometry. In this case, the mesh in the x  and y  directions is similar to 

the mesh previously used in  2D geometry, whereas in the z  direction it was discretized by  60 

equally spaced cells. The simulations were performed for a non-symmetric electrolyte consisting 

of cation, anion, and ink species, with the properties given in section 8.1. The time step utilized 

was 510 st − = . The set of dimensioned governing equations (26,34-36) is solved with the BCs: 
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with periodic BCs employed in the x  direction. The ICs within the computational domain are: 
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Figures 43-44 show the 3D concentration fields of anion and ink species, right after the onset of 

ECI. 

 Figure 43: Isometric view and front, side, and top views of the concentration fields a short time after 
the ECI onset, t=0.01 s. Left: anion concentration. Right: ink concentration.n
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Figure 44: Isometric view and front, side, and top views of the concentration fields a short time after the 
ECI onset, t=0.012 s. Left: anion concentration. Right: ink concentration. 

Several insights are obtained by looking at figures 43-44. As expected, the transport of the ink 

species is more rapid compared with that of the anion species, as a result of the ink's higher 

electrical mobility. As follows from the front view, the instability onsets in the vicinity of the 

stationary bottom boundary. After a short time, wavy concentration patterns are exhibited in the 

vicinity of the top moving wall. Considering the side view, there is no velocity component of the 

top boundary in the z  direction suppressing the VP. Thus, the ECI in the y-z plane is exhibited 

by a series of convective cells simultaneously developing in the vicinity of both top and bottom 

boundaries. Additionally, the observed convective cells result in developing concentration 

streaks on the top boundary, as can be recognized by looking at the top view. This behavior of 

the ECI in the 3D configuration is similar to that observed for 2D simulations presented in figure 

40. For this reason, the mechanism driving the ECI in 3D geometry can be qualitatively

approximated as a superposition of two independent 2D ECI mechanisms: the first governing

the ECI in the x-y plane with the moving top boundary (front view) and the second governing

the ECI in the y-z plane with all stationary boundaries (side view). The development of

concentration streaks on the top boundary has a significant impact on the printing quality of HP

Indigo's printers.
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9. Summary and Conclusions

In this work, the EHD transport of positively charged cations and negatively charged anions, in 

addition to negatively charged ink particles of high valence, was studied. All the species were 

placed within an oil medium and subjected to high voltage. An extensive literature review was 

conducted by surveying three numerical methodologies addressing multiphase flows, three EDF 

models, and the literature related to physical phenomena typical of a bounded electrolyte 

subjected to an electrical voltage. A comprehensive physical model coupling the electrostatic 

and the hydrodynamic phenomena was developed. The model includes a mathematical 

formulation of the governing conservation equations, constitutive laws, and estimation of the 

current density value. An extensive dimensional analysis was performed regarding both 

stationary and moving top boundary configurations. A comprehensive numerical methodology 

capable of addressing the above multi-physics phenomena was developed utilizing standard 

techniques of CFD. A simplified physical model was simulated by the Fluent package, 

comparing analytical solutions with numerical results. Next, the developed fully (two-way) 

coupled physical model was simulated by open source rheoTool software, based on the popular 

openFOAM package. Two Matlab scripts simulating 1D transient and steady state ionic 

transport by the solution of PNP equations were developed as well for verification purposes. The 

rheoEFoam solver was next extensively verified and utilized for gainingfurther understanding 

of the physical phenomena governing the behavior of a strongly non-symmetric electrolyte, and 

compared with its symmetric counterpart. Additionally, the above-mentioned CFD package has 

been adapted to simulate Indigo's QoM device. The numerical results were compared and 

calibrated by utilizing the QoM experimental results. Other 1D, 2D, and 3D simulations relating 

to the BID unit were executed and post-processed according to Indigo's data. Finally, the CFD 

model was provided to the HP Indigo company with the aim of further understanding the 

fundamental mechanism governing the EDF in the BID unit and improving the quality of 

printing. 
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9.1 Conclusions 

General conclusions: 

• The electric field distribution within an electrolytic cell is highly effected and screened by 

the concentration distribution of the charged species within the electrolyte. Thus, the 

solution of the simplified physical model that considers an approximation of only a constant 

external electric field may introduce non-negligible imprecisions. 

• A zero gradient BC applied to the concentration field enables the exit and entry of species 

concentrations through the boundary by the electromigration mechanism. In contrast, the 

zero ionic flux BC does not allow the transport of species concentrations through the 

boundary. However, for high voltage values, applying this BC at the boundary attracting the 

charged species results in a non-limited accumulation of species concentration in the vicinity 

of this boundary, which, in turn, leads to the divergence of the numerical scheme. In order to 

deal with this difficulty, an additional term accounting for steric effects (molecular packing) 

is required to modify the Nernst-Planck equation. 

• The initial electric current density value obtained for a symmetric binary electrolyte is lower 

than the initial electric current density value obtained for a strongly non-symmetric 

electrolyte consisting of 3 charged species and having the same initial amount of positive 

and negative charges. The current density may be calculated across any plane parallel to the 

electrodes and placed at 
00 1y  . 

• For the strongly non-symmetric electrolyte mentioned in chapter 7, each of the 3 charged 

species has a different propagation rate. The propagation rate value of the 3i =  species is 

larger than that of the two other species due to its higher electrical mobility. The difference 

in propagation rate between the 2i =  and 3i =  species results in the exclusive "zone 2" 

where the 1i =  and 2i =  species adjust themselves differently compared to the DL in order 

to preserve the electrolyte electroneutrality (except for the back front of the 3i =  species that 

is consistently with a spike in the 
E  field). 

• Up to the ECI onset time, both the concentration and electric potential distributions, and the 

transient evolution of the electric current density are similar for both 1D and 2D simulations. 

Up to the ECI onset time, the interface and the propagation of the interface between the ESC 

and DL regions resemble those typical of a shock wave. Non-uniformity of the interface and 

a corresponding peak in the transient current density curve indicate the ECI onset. 

• For the strongly non-symmetric electrolyte mentioned in chapter 7, three ESC regions 

correspond to the three different charged species. The ECI first onsets in the vicinity of the 

bottom (negatively charged) electrode and then in the vicinity of the top (positively charged) 

electrode. A secondary ECI associated with the 3i =  species may appear in zone 2. 
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• A moving boundary suppresses the ECI onset in its vicinity. In this case, the most significant 

spike in the transient current density curve corresponds to a wavy shape of the ESC-DL 

interface in the vicinity of the moving boundary. 

• A higher   value results in a weaker screening effect, in a higher propagation rate of the 

charged species, in a larger value of the ECI onset time, in a bigger size of VP, and in a lower 

value of the wave number. 

• A higher 
rc  value results in a lower propagation rate of the 1i =  and 3i =  species, in a higher 

propagation rate of the 2i =  species, in a higher value of the initial current density, in a lower 

value of the ECI onset time, in a higher   value (see equation (90)), and in a larger difference 

between the high wave number in the vicinity of the top electrode and the low wave number 

in the vicinity of the bottom electrode. 

 

Conclusions related to HP Indigo's private case: 

• The mixture method is suitable for the numerical solution of the problem. The assumption 

of non-inertial ink particles is well justified. 

• The range of voltage values supplied to HP QoM electrodes or to the ME-DR boundaries is 

well associated with the overlimiting regime (see figure 8). 

• In the case of QoM simulation, the inertial term of the NS equation (34) can be neglected. 

The fluid flow is mainly dominated by the electric body force term while the ink transport is 

mainly dominated by the electromigration term (see (125)). 

• The values of spatial xk  and zk  wave numbers obtained by the 3D QoM simulation are quite 

a bit smaller than the values of the wave number obtained by the corresponding 2D 

simulations. 

• According to the comparison between QoM experimental and numerical results, several 

mixture and species property values given by HP Indigo are incorrect. The values 

characterized by the highest uncertainty are the oil viscosity, species diameter and electrical 

mobility, and the percentage of effective micelles. 

• The fluid flow in the ME-DR gap is mainly dominated by the inertial and pressure gradient 

terms, while the species transport is mainly dominated by the advective term (see (131)). 

However, the mixture flow within this gap is not turbulent. 

• The qualitative characteristics of 3D BID simulation may be understood by approximating 

them as a superposition of two 2D simulations: the first is a 2D simulation in the x-y plane 

with a moving top boundary and the second is a 2D simulation in the y-z plane with all 

stationary boundaries. The ECI developed in the y-z plane in the vicinity of the top DR 

boundary results in nonuniform streaks of ink concentration on the DR surface, which has a 

significant effect on the printing quality. 
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9.2 Future Work 

The following comprises recommendations for possible extensions of the present study: 

• Calibrating the values of the most uncertain parameters (oil viscosity, species electrical 

mobility, percentage of effective micelles) against QoM experiments and simulation results. 

• Implementing the zero ionic flux BC for the anion and ink species on the top DR boundary 

by utilizing an additional term in the Nernst-Planck equation (36) addressing the steric effects 

(molecular packing). 

• Correlating the mixture viscosity with the ink mass fraction. Correlating the species 

electrical mobility with the value of the electric field. 

• Executing 2D and 3D simulations of the whole ME-DR curved geometry, applying inlet 

velocity and outlet pressure BCs. Executing 2D and 3D simulations for the BE-DR and neck 

regions of the BID. 

• Applying spatio-temporal alternating electric potential BCs on both top and bottom 

boundaries as a possible mechanism of suppressing the ECI patterns (streaks). 
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Appendix A – Dimensional Analysis 

 

First Configuration 

Dimensional mass conservation equation for incompressible flow (26): 
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Dimensional Poisson's equation for the electric potential (35): 
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Substituting relations (42-43) into equation (V): 
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Dimensional Nernst-Planck equation (20): 
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Substituting relations (42-43) into equation (VII): 
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Dimensional ionic flux of the thi  species for isothermal flow determind by equation (21): 
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Substituting relations (42-43) into equation (IX): 
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Dimensional current density in the y  direction determined in equation (41): 
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Substituting relations (42-43) into equation (XI): 
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Second Configuration 

Non-dimensional mass conservation equation for incompressible flow, Poisson's equation for 

the electric potential, Nernst-Planck equation for species concentration and the calculation for 

current density in the y  direction remain the same as presented in equations (II,VI,VIII) and 

(XII), respectively. 

Dimensional momentum conservation equation (34): 

(XIII)   2

1

.
n

i i

i

u
u u P u F z c

t
  

=

   
+  = − +  −    

   
 

Substituting relations (52,43) into equation (XIII): 

(XIV)  

( )

( )
( ) ( ) ( ) ( )0 2

0 0 0 0 02
10 0 0 0 0

2 2 2
20 0 0 0 0

2
10 0 0 0 0

2 0

2

0 0 0

1 1 n

i i T

i

n
T

i i

i

T

u u F
u u u u P P u u z c c V

t t l l l l

u u u u Fc Vu
u u P u z c

l t l l l l

Fc Vu
u u P u

t u l u


 

 
 



 

+

=

+

=

+

   
+   = −  +  −        

   
+  = −  +  −    

   


+  = − +  −







1

2

2 2
1

1

2 i

n

i i

i

n

r i

i

z c

u
u u P u z c .

t Re Re Sc






=

=

 
 

 

  
+  = − +  −  

   




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Dimensional ionic flux of the thi  species for isothermal flow determined by equation (21): 

(XV)  .i
i i i i i i

B

z e
J c u D c D c

k T


 
= −  −  

 
 

Substituting relations (52,43) into equation (XV): 

(XVI)  

( )

( )

0
0 0 0 0

0 0

0 0
0 0 0 0

0 0

0 0 0 0

i

i

i i i T
i i i i

T

i i i
i i i i

i i i
i i i i

r

i i i r i

D D zV c
J J c c u u c c c

l l V z

c D D z c
c u J c u c u c c

l l z

D D z
J c u c c

l u l u z

D
J c u c z c .

Re Sc









+
+ +

+

+ +
+ +

+

+

= −  − 

= −  − 

= −  − 

= −  + 
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Appendix B – Conservation Equations in Cartesian and Cylindrical 

Coordinates 

 

Mass conservation equation for incompressible flow (26): 

(XVII)  

0

1
0.

yx z

r r z

uu u
u

x y z

uu u u
u

r r r z





 
 = + + =

  

 
 = + + + =

  

 

Components of momentum conservation vector equation (27) in Cartesian form: 

(XVIII)  

2 2 2

2 2 2

2 2 2

2 2 2

2

x x x x x x x
x y z x

y y y y y y y

x y z y

z z z z
x y z

u u u u u u uP
u u u F

t x y z x x y z

u u u u u u uP
u u u F

t x y z y x y z

u u u u P
u u u

t x y z z

 

 

 

        
+ + + = − + + + +  

          

         
+ + + = − + + + +              

     
+ + + = − + 

     

2 2

2 2 2
,z z z

z

u u u
F

x y z

  
+ + + 

   

 

and in cylindrical form: 

(XIX)  

2

2 2 2

2 2 2 2 2 2

2 2

2 2 2 2 2

1 1 2

1 1 1 2

r r r r
r z

r r r r r
r

r
r z

r

u uu u u u
u u

t r r r z

uu u u u uP
F

r r r r r r r z

u u u u u u u
u u

t r r r z

u u u u uP

r r r r r r r

 



     

   





 





  

    
+ + − + = 

    

    
− + + − + − + + 
      

    
+ + + + = 

    

   
− + + − + +

    

2

2

2 2 2

2 2 2 2

1 1
.

z z z z
r z

z z z z
z

u
F

z

uu u u u
u u

t r r z

u u u uP
F

z r r r r z










 
+ + 
 

    
+ + + = 

    

    
− + + + + + 
     
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Nernst-Planck conservation equation in Cartesian and cylindrical forms: 

(XX) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2 2 2

2 2 2

2 2 2

2 2 2 2

1 1 1 1

1 1

i yi x i zi i i i
i

i yi x i zi i

B

i r i i zi i i i i
i

i i
i r

B

c uc u c uc c c c
D

t x y z x y z

c Ec E c ED z e

k T x y z

c u c u c uc c c c c
D

t r r r z r r r r z

D z e
rc E

k T r r r



 

      
+ + + = + + 

       

  
 − + +
   
 

        
+ + + = + + + 

        

 
− +


( ) ( ) .i i zc E c E

z




 
+   

 

 

  



VII 
 

Appendix C – Analytical Approach 

 

One Phase Couette-Poiseuille Flow – Velocity Profile 

Mass conservation equation for incompressible flow: 

(XXI)  0.
yx z

uu u
u

x y z

 
 = + + =

  
 

Considering fully developed laminar flow, the continuity equation (XXI) reduces to: 

(XXII)  0.xu

x


=


 

Momentum conservation equation for a Newtonian incompressible fluid in x  direction: 

(XXIII)  
2 2 2

2 2 2
.x x x x x x x

x y z x

u u u u u u uP
u u u F

t x y z x x y z
 

        
+ + + = − + + + +  

          
 

The left hand side (LHS) of this equation is canceled: the first term due to the steady state 

assumption, the second term due to the continuity equation (XXII), and the third and fourth terms 

due to the fully developed laminar flow assumption. Several terms are canceled on the right hand 

side (RHS) as well: the second term due to the continuity equation (XXII), the fourth term due to 

the 2D configuration, and the last term due to the assumption of no external body forces. The 

remaining terms of the momentum equation are: 

(XXIV)  

2

2

2

2

0

1
.

x

x

uP

x y

u P

y x






= − +

 

 
=

 

 

Double integration results in the velocity profile that appears in equation (68): 

(XXV)  ( ) 2 2

1 2 1 2

1
.

2
x

P
u y y c y c Ay c y c

x

 
= + + = + + 

 
 

Substituting the BCs determined in equation (69) provides the values of the 1c  and 2c  constants: 

(XXVI)  

( )

( )

2

1

0 0 0

,

x

wall
x wall

u y c

u
u y H u c HA

H

= =  =

= =  = −
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so the analytical velocity profile in the fully developed flow region reads: 

(XXVII)  ( ) 2 .wall
x

u
u y Ay HA y

H

 
= + − 

 
 

 

Mixture Flow Through a Curved Duct – Velocity Profile 

Cylindrical form of the mass conservation equation for incompressible mixture flow: 

(XXVIII)  
1

0.r r z
uu u u

u
r r r z





 
 = + + + =

 
 

Considering fully developed laminar flow, the continuity equation (XXVIII) reduces to: 

(XXIX)  0.
u




=


 

Momentum conservation equation for Newtonian incompressible mixture in the   direction: 

(XXX)  
2 2 2

2 2 2 2 22

1 1 1 2
.

r
r z

r

u u u u u u u
u u

t r r r z

u u u u uuP
F

r r r r r r r z

     

    






  

    
+ + + + = 

   

    
− + + − + + + + 

     

 

LHS of this equation is canceled: the first term due to the steady state assumption, the second, 

fourth, and fifth terms due to the fully developed laminar flow assumption, and the third term 

due to the continuity equation (XXIX). Several terms are canceled in the RHS as well: fourth, 

fifth, and last shear stress terms due to the continuity equation (XXIX), fully developed laminar 

flow, and 2D configuration assumptions, respectively. Additionally, there are no external body 

forces. Remaining terms of the momentum equation are: 

(XXXI)  

2

2 2

2

2 2

1 1
0

1 1
.

u u uP

r r r r r

u u u P B

r r r r r r

  

  




 

  
= − + + − 

   

  
+ − = =

  

 

For convenience, the momentum equation can be rewritten as: 

(XXXII)  
2

2 2 2

1 1 1
'' ' .

u u u B B
y y y

r r r r r x x x

   
+ − = → + − =

 
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This is an inhomogeneous second-order linear differential equation. To solve this kind of 

equation, one should superpose the homogeneous equation result with a private inhomogeneous 

equation result: 

(XXXIII)  .h py y y= + 

The homogeneous form of equation (XXXII) is: 

(XXXIV)  2

2

1 1
'' ' 0

'' ' 0.

h h h

h h h

y y y
x x

x y xy y

+ − =

+ − =

 

Equation (XXXIV) is a homogeneous Euler's differential equation. Proposing solutions of the 

form ( ) nx x =  we get: 

(XXXV)  

( )

( )

( )

2 2 1

1

1,2 1,2

1 0 / : 0

1 1 0

1 ,

n n n nn n x x nx x x x

n n n

n x x

− −



−  +  − = 

− + − =

=   =

  

and the homogeneous solution becomes: 

(XXXVI)  ( ) ( )1 1 2 2 1 2

1
.hy c x c x c x c

x
 = + = + 

Solution via variation of parameters approach: 

(XXXVII)  ( ) ( ) ( ) ( )1 1 2 2 .y C x x C x x = + 

To find ( )1C x , ( )2C x  one should solve the following system of equations: 

(XXXVIII)  
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 2 2

1 1 2 2

' ' 0

' ' ' ' ,

C x x C x x

C x x C x x f x

 

 

+ =

+ =
 

where ( )f x  is the inhomogeneous term of the original equation (XXXII). Using Cramer's rule: 



X 
 

(XXXIX)  

( )

( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

( )

( ) ( )

( )

det det
' '

'
, ; , ;

det
' '

det det
' '

' ,
, ; , ;

det
' '

2 2

2 2 2

1

1 2 1 21 2

1 2

1 1

1 1 1

2

1 2 1 21 2

1 2

0 x 0 x

f x x f x x f x x
C x

W x W xx x

x x

x 0 x 0

x f x x f x f x x
C x

W x W xx x

x x

 

  

    

 

 

  

    

 

   
   
   = = = −
 
 
 

   
   
   = = =
 
 
 

 

where ( )1 2, ;W x   is the Wronskian of ( )1 x  and ( )2 x  solutions. After integration, ( )1C x  

and ( )2C x  are obtained as: 

(XL)  

( )
( ) ( )

( )

( )
( ) ( )

( )

2

1 1

1 2

1

2 2

1 2

f x x
C x c dx

W , ; x

f x x
C x c dx.

W , ; x



 



 

= −

= +





 

For the current parameters: 

(XLI)  

( )

( )

( )

1 2 2 1 1 2 2

1 1 1

2

2 2 2

1 1 2
, ; ' ' 1

1

ln
2 2

.
2 4

W x x
x x x

B
Bx xC x c dx c x

x

B
x

BxxC x c dx c

x

     = − = −  −  = −



= − = +
−



= + = −
−





 

Substituting equation (XLI) into equation (XXXVII), we obtain a result analogous to that 

introduced by equation (71): 

(XLII)  
2

2
1 2 1

1 1
ln ln .

2 4 2 2

h p
y y

cB Bx Bx
y c x x c c x x

x x

    
= +  + −  = + + −    
    

 

Substituting the BCs (72): 

(XLIII)  
( ) ( )

( ) ( )

1 _ 1

2 20 0

wall wallu r r u y x x y

u r r y x x

 



= =  = =

= =  = =
 

into equation (XLII), the following system of equations is obtained: 
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(XLIV)  

2 1
1 1 1

1

2 2
1 2 2

2

1
ln

2 2

1
0 ln ,

2 2

wall

c Bx
y c x x

x

c Bx
c x x

x

 
= + + − 

 

 
= + + − 

 

 

and by solving this system of equations: 

(XLV)  

( ) ( )

( )

( )

( )

2 2 2 2

1 1 2 1 1 2 2 1

1 2 2

1 2 1

2 2 2

1 2 1 2 2 1

2 2 2

2 1

1
2 ln ln ln

2

2

2 ln ln
.

2

wall

wall

y x Bx x x x x x x

c
x x x

y x x Bx x x x
c

x x

  
− − − − + −  

  =
−

+ −
=

−

 

Substituting these constants into equation (XLII) and performing several algebraic operations: 

(XLVI)  ( )

( )

( )

2 2 2 2 2 2 22
2 1 1 2 1 2

2 1 1

2 2

2 1

ln ln ln 2

,
2

wall

xx x
Bx x x Bx x y x x x

x x x
y x

x x x

      
− + + −      

      =
−

 

which corresponds to the analytical mixture velocity profile obtained for the fully developed 

region (see equation (73)): 

(XLVII)  ( )

( )

( )

2 2 2 2 2 2 22
2 1 1 2 _ 1 2

2 1 1

2 2

2 1

ln ln ln 2

.
2

wall

rr r
Br r r Br r u r r r

r r r
u r

r r r





      
− + + −      

      =
−

 

 

Mixture Flow Through a Curved Duct Without the Action of an Electric Field 

– Particles Concentration Profile 

As stated before, the continuity equation for this case is given by equation (XXIX). Fick's law of 

diffusion for the solid particle species in cylindrical coordinates: 

(XLVIII) 
( ) ( ) ( ) 2 2 2

2 2 22

1 1 1 1
.

r s s z ss s s s s
s

u c u c u cc c c c c
D

t r r r z r r r r z



 

        
+ + + = + + + 

       
 

The LHS of this equation is canceled: the first term due to the steady state assumption, the 

second and fourth terms due to the fully developed laminar flow assumption, and the third term 

is rewritten as: 
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(XLIX)  
( )1 1

,
s s

s

u c c u
u c

r r

 


  

   
= +    

 

while the first term in the RHS of equation (XLIX) is canceled due to the fully developed flow 

assumption and the second due to the continuity equation (XXIX). The third and fourth terms in 

the RHS of equation (XLVIII) are canceled due to the fully developed laminar flow assumption. 

Remaining terms of the particle species conservation equation are: 

(L)  

2

2

2

2

1
0

1
0.

s s
s

s s

c c
D

r r r

c c

r r r

  
= + 

  

 
+ =

 

 

For convenience, the concentration equation can be rewritten as: 

(LI)  

2

2

2

1 1
0 '' ' 0

'' ' 0.

s sc c
y y

r r r x

x y xy

 
+ = → + =

 

+ =

 

This is a homogeneous Euler's differential equation. Proposing solutions of the form ( ) nx x =  

we get: 

(LII)  

( )

( )

( ) ( )

2 2 1

1,2 1 2

1 0 / : 0

1 0

0 ln , 1,

n n nn n x x nx x x

n n n

n x x x 

− −−  +  = 

− + =

=  = =

 

and the solution becomes: 

(LIII)  ( ) 1 2lny x a x a= + 

which is analogous to equation (74). Substituting the BCs (75): 

(LIV)  
( ) ( )

( ) ( )

1 1

2 2

0 0

0 0

s

s

c y
r r x x

r x

c y
r r x x

r x

 
= = → = =

 

 
= = → = =

 

 

into equation (LIII), solution (76) is obtained: 

(LV)  2 ,sy a c const= → = 

which means that the particle species concentration gets a constant value and does not depend 

on the radial coordinate. 



XIII 
 

Approximated Expression of the Electric Field Vector 

Gauss's law states that "the net electric flux through any hypothetical closed surface is equal to 

01   times the net electric charge within that closed surface" [83]: 

(LVI)  
0

ˆ .in

A

Q
E ndA


 =  = 

Utilizing this integral form of Gauss's law for a curved channel, with internal boundary radius 

1r  and external boundary radius 
2r  concentric to each other, requires a complete cylinder 

perimeter assumption for the internal boundary. Such conditions enable generation of a 

symmetric Gaussian surface around the cylinder, as shown in figure I: 

 

Figure I: A Gaussian surface around a complete cylinder. 

 

Considering constant charge density (electric charge per unit length)   on the cylinder 

perimeter: 

(LVII)  
1

C
,

2 m

inQ

r




 
=  

 
 

the direction of electric field lines is radial, perpendicular to the Gaussian surface. Substitution 

of the previous relations into equation (LVI) yields: 

(LVIII)  

( )

1

0

01

0 1

2
2

.

r

r
r

r
E r

rEr
E r

r r

 










 =

= → =

 



XIV

Integrating equation (30) over the radial coordinate yields: 

(LIX)  ( ) ( ) ,rV r E r dr= −

where V  relates to voltage. The electric potential difference V  between 
1r and 

2r is obtained 

as: 

(LX)  
1

2

1 1 2

0 0 1

ln .

r

r

r r r
V dr

r r

 

 

 
 = − =  

 


Substituting the charge density expression presented in equation (LVIII) into equation (LX) 

yields: 

(LXI) 
( )

01 2 1 2 2

0 1 1 0 1 1

2

1

ln ln ln

,

ln

r
r

r

rEr r r r r
V rE

r r r r

V
E r

r
r

r



 

     
 = =  =     

     


=

 
 
 

so the obtained electric field vector is equal to the expression given in equation (78): 

(LXII)  ( )
2

1

ˆ.

ln

V
E r r

r
r

r


=

 
 
 

Note that this approach corresponds with the charge density of the approximated inner boundary 

only, without the influence of charged species within the mixture. 

Mixture Flow Through a Curved Duct Under the Action of Constant 

Approximated Electric Field – Particles Concentration Profile 

As stated before, the continuity equation for this case is given by equation (XXIX). In the absence 

of magnetic potential, the cylindrical form of the Nernst-Planck equation (XX) for the particle 

species yields: 

(LXIII) 

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2 2 22

1 1 1 1

1 1
.

r s s z ss s s s s
s

s s
s r s s z

B

u c u c u cc c c c c
D

t r r r z r r r r z

D z e
rc E c E c E

k T r r r z





 



        
+ + + = + + + 

       

   
− + +   



XV 
 

For the same reasons as in the previous section, the LHS of equation (LXIII), as well as the third 

and fourth terms on the RHS, are canceled. Also, the last two terms on the RHS are canceled as 

the electric field vector introduced in equation (LXII) addresses only a radial component. 

Remaining terms of the Nernst-Planck equation are: 

(LXIV)  

2

2
2

1

2

2
2

1

1 1
0

ln

1
0 ; .

ln

s s s s
s s

B

s s s

B

c c D z e V
D rc

rr r r k T r r r
r

c c z e VG
G

rr r r k T
r

  
      

= + −    
          

    

  −
+ = 

   
 
 

 

For convenience, the concentration equation can be rewritten as: 

(LXV)  

( )

2

2

2

1 1
0 '' ' 0

'' 1 ' 0.

s sc cG G
y y

r r r x

x y G xy

 − −
+ = → + =

 

+ − =

 

This is a homogeneous Euler's differential equation. Proposing solutions of the form ( ) nx x =  

we get: 

(LXVI)  

( ) ( )

( ) ( )

( )

( ) ( )

2 2 1

1 2 1 2

1 1 0 / : 0

1 1 0

0

, 0 , 1,

n n n

G

n n x x n G x x x

n n n G

n n G

n G n x x x 

− −−  + −  = 

− + − =

− =

= =  = =

 

and the solution becomes: 

(LXVII)  ( ) 1 2

Gy x a x a= + 

which is analogous to equation (79). Substituting the BCs (80): 

(LXVIII)  
( ) ( )

( ) ( )

1 max 1 max

2 20 0

s

s

c r r c y x x y

c r r y x x

= =  = =

= =  = =
 

into equation (LXVII), the following system of equations is obtained: 

(LXIX)  
max 1 1 2

1 2 20 ,

G

G

y a x a

a x a

= +

= +
 

 



XVI 
 

and by solving this system of equations: 

(LXX)  max max 2
1 2

1 2 1 2

; .
G

G G G G

y y x
a a

x x x x
= = −

− −
 

Substituting these constants into equation (LXVII) and performing several algebraic operations: 

(LXXI)  ( )
( )

( )
max 2

1 2

,

G G

G G

y x x
y x

x x

−
=

−
 

which corresponds to the analytical particles concentration profile obtained for the fully 

developed region (see equation (81)): 

(LXXII)  ( )
( )

( )
max 2

1 2

.

G G

s G G

c r r
c r

r r

−
=

−
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 ציר תק

  מגיסטר בהנדסה  תואר  מטרת מסמך זה הינה הצגת סיכום העבודה אשר בוצעה במסגרת הדרוש להשלמת 

(M.Sc.בן אוניברסיטת  מכונות,  להנדסת  במחלקה  הנוגע  -(  תאורטי  מחקר  בוצע  זו  בעבודה  בנגב.  גוריון 

ר חשמלי.  - בלזרימה  לשדה  הנתון  באלקטרוליט  המצויים  טעונים  מוצק  חלקיקי  של  המוטיבציה  פאזית 

עולתן של מדפסות לייזר המיוצרות  למחקר זה מגיעה מהתגלותן של מספר בעיות איכות הדפסה במהלך פ

אשר כלל סקר ספרות, הצעת    [ 1]לפרויקט של מיכאל חגייב  . עבודה זו מהווה המשך  HP Indigoע"י חברת  

אשר  פאזי  -ה של זורם חדוהרצת מספר סימולציות נומריות המתארות את הדינמיק מודל פיזיקלי מפושט,  

 טעון חשמלית.  איננו

נומרית רחבה המאפשרת מידול תאורטי של   פיתוח מתודולוגיה  הנוכחית הינו  יעדה המרכזי של העבודה 

רב  סטנדרטי-זרימה  טכניקות  באמצעות  זאת  חשמלי,  שדה  בהשפעת  החישובי  פאזית  המדע  מתחום  ות 

בין חברת   גם בשנה העוקבת  -בן  ברסיטתלאוני  HP Indigoבזרימה. שיתוף הפעולה  גוריון עתיד להימשך 

 לפרסום תזה זו. 

 דוח זה כולל: 

 הרלוונטיים למחקר הנוכחי.  HP Indigoרקע מודולרי הנוגע לרכיבי חברת  •

רב • זרימה  בעיות  לפתרון  גישות  הכולל  נרחב  ספרות  ומודלים  -סקר  כוח פאזיות  ע"י  זורם    ות לתנועת 

הספרות  יםחשמלי סקר  כולל  כן,  כמו  ה .  לתופעות  הנוגע  תאורטי  האופייניות  רקע  פיזיקליות 

 לאלקטרוליט המצוי תחת השפעת מפל מתח. 

 הרחבה על מטרות המחקר.  •

הפיזיקלית, הגדרות, משוואות    אות המצומדות השולטות בבעיה את המשוומודל פיזיקלי נרחב הכולל   •

 מדית. ימצב ואנליזה מ 

מימדיות עבור מודל פיזיקלי מפושט.  - נומריות דו  השוואה בין פתרונות אנליטיים לתוצאות סימולציות •

פאזית של פאזות לא טעונות  - פאזי, זרימה דו- פואסיי לזורם חד-התוצאות מתמקדות בזרימת קוואט

 פאזית המכילה חלקיקים טעונים תחת השפעת שדה חשמלי קבוע.- וזרימה דו  חשמלית,

עות תוכנות זרימה חישוביות, ביצוע  פתרון המודל הפיזיקלי המלא )הכולל משוואות מצומדות( באמצ •

 מונע באמצעות כוחות חשמליים. ה סימטרי   לא  מה של אלקטרוליטוריפיקציה, ואפיון זרי

מדים גיאומטריים, נתונים  י: מHP Indigoמדפסות הלייזר של חברת    מודל פיזיקלי הרלוונטי לנתוני •

 מספריים, הנחות ותוצאות סימולציות נומריות. 

 עתידי. לצות להמשך עבודה סיכום, מסקנות והמ •

 למילות מפתח בתזה ראה תקציר בשפה האנגלית המופיע בתחילת מסמך זה. 
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