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Abstract 

Tumor cell progression and metastasis are complex phenomena, which involve ongoing 

molecular and cellular changes. Despite the significant progress made in the fundamental 

understanding of the biological and genetic events driving both phenomena, much remains 

to be elucidated regarding the influence of the tumor microenvironment on tumor initiation 

and progression as well as response to treatment. As such, the development of a theory 

correlating tumor cell progression and metastasis with biomechanical abnormalities in 

tumors and their microenvironment due to the continuous buildup of mechanical stresses 

may be viewed as a timely – and indeed urgent – need.  

The main purpose of this study is to develop a realistic, physical, and multifunctional 

numerical tool, based on fluid mechanics and governed by the Navier-Stoks equations, that 

can be used to simulate different types of cancer cell dynamic scenarios and will provide 

mechanistic theory correlating complex biological phenomena with continuous rheological 

events within the colony of cancer cells. 

By using the developed numerical tool, we propose a theory that provides a new insight 

into the mechanisms of the tumor development. The theory explains complex biological 

phenomena, such as the growth priorities given to individual cells during the tumor 

development in terms of minimizing the mechanic energy stored within the growing tumor. 

In addition, the performed study provides a new insight to the indistinct  choice-mechanism 

of the “leaders” and “followers” cells described in the literature by reconstructing the 

fingering structure typical of the tumor periphery, by only using the principle of 

minimization of the mechanical energy.
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1. Introduction

A distinctive feature  of biological systems is their great ability to adjust themselves 

to their changing environment [1] [2]. Cellular tissues are subjected to a wide range of 

changes in their environmental condition during their lifetime. Those changes can be very 

slow, e.g., general increase in annual temperatures, periodically changing like day and night 

cycle, or rapidly and randomly changing e.g., unpredictable nutrient loading or 

unpredictable nutrient type [3].  The above changes are associated with several types of 

adaptative strategies, for example with increase or decrease in the number and size of 

tissue cells, change in the activities of pre-existing enzyme molecules [4], as well as 

complete change in their functionality which facilitates the survival of cells.  

In addition to biochemical changes, cells are also subjected to changing 

mechanical environmental conditions. Experimental evidence shows that in a growing 

tumor, two different regions develop. One region is a dense and solid area within the 

center of the tumor, and the second is an invasive region at the outside boundaries of 

the tumor. The hypothesis is that when the cells in the dense area are stressed by their 

neighbors, due to a lack of space for them to grow, they start to divide at a smaller size 

compared to their mother cell (until they completely stop to grow and divide). As a 

tumor grows, cells in the invasive region may detach from the tumor and invade 

surrounding tissues.  

The ability to adapt is a crucial feature of the mechanism of the progression of 

cancer tumors known as a process of metastasis [2]. Metastasis is a complex cell-

biological event that involves continuous molecular and cellular changes in carcinoma 

cells as extensively reviewed in [5],[6]. During the metastasis, individual cells detach 

from their colonies, invade blood vessels, and start new colonies at different locations 

[7]. Through this process, the cells are subjected to a wide range of mechanical and 

biochemical changes in their micro-environment, many cells die during the invasion of 

the blood vessels due to a lethal deformation. It is now broadly recognized that cancer 

pathogenesis is characterized by the multistep progression of carcinomas, whose 

increased invasiveness depends on the activation epithelial to mesenchymal transition 

(EMT) [8-11]. 
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Figure 1.1 - Schematic description of metastasis process [7]. 

The epithelial is one out of the four types of biological tissues, it is the most 

common tissue in animals, and it is located at the outer surface of organs and blood 

vessels. Mesenchymal cells are mostly non-functional cells that can transform into 

different kinds of other tissues. The EMT involves loss of cell-to-cell adhesion, which 

enables the separation of an individual cell from its colony, and morphology changes 

which facilitates cell plasticity and amplifies its resistance to apoptosis and 

chemotherapies [2],[12]. EMT is typically characterized by elongation of the cell which 

benefits its cell invasion ability. 

Despite a considerable progress achieved in the fundamental understanding of 

biological and genetic events governing tumor cell progression and metastasis, a 

mechanistic theory correlating both phenomena with a continuous buildup of 

mechanical stresses within the colony of cancer cells still does not exist. In light of the 

crucial roles that mechanosensing and mechanotransduction play in the regulation of 

cancer events, when closely cooperating with biochemical cues (such as TGF-𝛽) [13], 

the development of such mechanistic theory is critical for gaining a comprehensive 

understanding of cancer pathogenesis. Specifically, the theory should allow for 

correlating formally the effect of continuous buildup of mechanical stresses within cell 
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tissue with onset and progression of EMT, as a key measure of metastatic potential of 

the cancer cell colony.   

 Quantifying the mechanical properties (i.e., normal and shear stresses) in active 

motile tissues is still an open problem. The apparent reason that this problem has not 

been resolved lies, first, in the large quantity of controversial experimental results 

acquired by using different experimental setups, namely, confined vs open systems, and 

second, in the large diversity of the measuring techniques used in experiments, resulting 

in different definitions of stresses and pressures.  

For a confined system (i.e., a system whose rigid or elastic boundaries are in direct 

contact with the periphery of a cell colony), in vitro experiments show that dense cell 

cultures (in which all of the cells may be in contact) contain cells of different sizes [14-16], 

allowing to characterize the system by introducing cell size distribution function (SDF). 

Although the initial SDF narrows with the evolution of the cell colony, the relative 

dispersion (the ratio of the SDF dispersion to the mean cell area) remains substantial, 

thereby indicating the existence of cells characterized by a wide range of sizes and 

shapes, even at the end of an experiment  [17]. As a result of this high scatter, it is 

difficult to pinpoint shape and deformation factors determining the EMT of specific 

cells.   

In contrast, in an open system (i.e., a system whose rigid boundaries do not 

contact with the periphery of the cell colony and the boundary effect on the cell colony 

is negligible), the SDF indicates that the cells at the periphery are larger than those deep 

inside the colony  [17]. It is commonly agreed [14] that most of the invasive post-EMT 

cells are located at the tissue periphery. These cells are more motile and are 

characterized by elongated shape compared to cancer cells from the same colony that 

have not undergone EMT.  

Three different techniques are currently commonly used for determining the 

mechanical properties of tumor cells. The first is traction force microscopy (TFM), which 

is one of the most popular tools used for 'translating' deformations (both temporal and 

spatial) of soft substrates into the dynamic forces exerted by cells on substrates  [18], 

[19]. For setups in which traction forces are balanced by intercellular interactions, the 
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measurements are typically supported by finite-element analysis, facilitating the 

building of stress maps characterizing the dynamical, heterogeneous landscape of both 

normal and shear stresses  [18-21]. The TFM approach is based on the assumption that 

the cell layer can be treated as a continuum linear elastic material [19]. 

The second family of the methods focusing on the prediction of mechanical 

stresses within static cell tissues relies on advances in imaging techniques that provide 

a spatially resolved view of tissue development during morphogenesis, with 

visualization of the cell boundaries of 2D cell sheets  [22], [23]. The technique is based 

on the assumption of mechanical equilibrium, from which the tensions along cell edges 

and pressures within each cell can be inferred from the cell configurations. Although 

the method is capable of resolving mechanical stresses at individual cell resolution, it 

provides only a “frozen,” i.e., stationary, distribution of mechanical stresses within the 

cell tissue and therefore cannot address temporal stress fluctuations arising from the 

non-equilibrium physics of the tissue.  

The third category of commonly used methods utilizes homeostatic pressure as 

a quantitative metric for indicating the metastatic potential of a tumor  [24]. The 

pressure is defined as the force per unit area that a confined tissue would exert on a 

moving piston permeable to fluid, and hence it represents an active osmotic cellular 

pressure. The method is thus applicable for highly non-equilibrium systems that break 

time-reversal symmetry  [25]. In addition to the above methods, there are others that 

have been developed for measuring mechanical stresses in living tissues for both 2D and 

3D geometries; these are based on the use of micro-pillar arrays  [26], suspended 

monolayers [27],[28], laser ablation [29] as extensively reviewed in [30].  

Despite the diversity of experimental methods available for the measurement of 

stresses within living tissues, there is no technique that may be regarded as universal—

suitable for cells of any type or of any size. Therefore, there is a timely – and urgent – 

need to develop a reliable unified theoretical framework that can be easily calibrated 

against the experimental results produced by any of the above techniques. The major 

challenge in developing such a framework is to adequately model the interplay between 

individual cells of the tissue, while taking into account the biological complexity of the 

tissue and resolving the various scales involved. At present, there are two major families 
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of models for the numerical simulation of cells and tissue mechanics—continuum 

models and agent-based models. In models based on the continuum approach, the 

individual character of the cells is neglected, and the tissue dynamics is derived from 

mesoscopic or macroscopic conservation and constitutive laws. Therefore, the 

continuum approach is inapplicable of achieving the research objectives of the current 

study because it will not be able to produce a microscale observation over each 

individual cell. In contrast, agent-based models directly represent the cell itself, which 

positions them as natural candidates for investigating tissue dynamics by focusing on 

the interplay of individual cells. An extensive review of the state of the art of agent-

based models is given in [31]. Here, we describe in brief two of the most popular agent-

based models, namely, the deformable cell model (DCM) and the vertex model (VM), 

that are relevant to the current study.  

The key idea of both the DCM and the VM is to enable modeling of the dynamics 

of cells of arbitrary shape and to give detailed information of the mechanical signals 

(tensile, contraction and shear forces) transmitted to the cell by the ECM via integrin 

receptors linked to the cell cytoplasm (the material within the cell, excluding the 

nucleus) and cytoskeleton (microscopic network of protein filaments and tubules in the 

cytoplasm). In the DCM, the cell body is discretized by a number of nodes, which are 

connected by viscoelastic elements interacting via pairwise functions, typically (but not 

necessarily) represented by linear springs. The whole tissue is modeled by 

interconnecting individual cells, which is, again, implemented by introducing linear 

springs. The forces in the DCM originate from both cell–cell interactions and intracellular 

interactions as modeled by elastic springs and viscous dissipation of the momentum 

governed by incompressible Navier Stokes (NS) equations, which govern global cell 

properties such as cell volume and surface area [32-34]. The VM [35-37], with its 

recently modified self-propelled Voronoi version [38-39],  differs from the DCM in the 

ways the cell boundaries are constructed for static tissues and then later relocated 

when modeling motile tissues. In VM, the tissues are constructed on the basis of a 

polygonal tessellation (typically Voronoi), while the transport of every individual cell in 

the tissue is governed by a balance of junctional tensions and pressure differences. 
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Figure 1.2 - Digital images of cellular tissues obtained by agent-based models. (a) VM model. (b) 
DCM. 

Generally speaking, both the DCM and the VM are applicable for the objectives 

of the proposed study because: they are both suitable for tightly packed cell ensembles 

with small intercellular spaces; they can both incorporate spatial and temporal 

deformations of the tissue and of cell-cell adhesion; and they can both be generalized – 

with a reasonable computational effort – to account for cell proliferation, apoptosis (a 

type of cell death), and polarization. The main disadvantage of the VM is that it requires 

intensive tuning and calibration with experimental results to provide physically correct 

results, including explicit introducing and tuning of the area conservation constant and 

the non-trivial procedure of adapting spring force parameters to macroscopic constants 

[40]. This drawback makes parameter sensitivity analysis very constrained and results in 

very tedious parameter inference. In contrast, the DCM is intrinsically based on the 

solution of continuity and NS equations and thus automatically satisfies the conservation 

of mass and momentum within a tissue. In addition, in the DCM, the cell dynamics is 

typically implemented by the well-established interface tracking approach  [41], and, 

most importantly, the model is governed solely by the Reynolds number and the source 

intensity, which determine the viscous dissipation of momentum and the rate of the cell 

growth, respectively. The calibration of the model to the experimental results is quite 

straightforward and requires only fitting of the source strength to the whole process of 

mitosis (cell division) and of the division spring constant to the duration of cytokinesis 

(cytoplasmic division of a cell at the end of mitosis), see e.g., [32],[33]. The drawback of 

using this model derives from the need to solve the full system of NS equations, which 

has – until now – restricted the application of the DCM to the analysis of tissues 

consisting of only a few hundreds of cells. 



18

 As follows from the above review the need of developing unified reliable 

theoretical framework, capable of convenient calibration with experimental results 

provided by any of existing techniques is extremely timely and is the first goal of the 

current study. The second goal of the current study is to use the developed framework 

to substantiate the hypothesis than connects the purely mechanistic characteristics of 

the tumor with its further proliferation and development. At the first stage the focus is 

on developing DCM based on the principles of fluid mechanics and validating the 

developed model by comparing the obtained results with quantitative characteristics 

available in the literature, including cell growth time, mass conservation after cell 

division, duration of cytokinesis, and overall rate of tumor progression. For the above 

tests relationships will be established between parameters that control cell growth and 

cytokinesis and between constitutive forces introduced to model the physiological 

behavior of tumor tissue.   

After the developed theoretical and numerical methodologies are extensively 

validated, we turn to the second goal of the current study. In particular, the focus is on 

numerical replication and investigation of the size distribution function (SDF) and the 

fingering structure, characterizing the invasive region of a developing tumor. We 

hypothesize and provide theoretical evidence that in addition to chemical and genetic 

events, basic mechanical principles such as minimum mechanical energy may determine 

the development and progression of tumor tissue. It is believed that the currently 

performed study will contribute to a more comprehensive understanding of the 

mechanisms responsible for the tumor cell progression and metastasis. 
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2. Theoretical Background

This chapter presents the basic model of the cell’s proliferation, including the main 

outlines and the mathematical formulation of the model which are explained in detail. The 

basic model, as introduced for the first time by Rejniak [32] consists of individual cells and 

discrete sources. The cells are filled and surrounded by Newtonian, incompressible and 

homogenous fluid. The discrete sources, responsible for the cell’s growth, are placed 

within geometric center of the cells. Surface tension, division, and microenvironment 

mechanosensing of the cells are modelled by introducing additional forces individually 

computed for any given configuration of the cell’s cluster. The presented modeling does 

not take into account the structure of cell cytoskeleton within the cell membrane, and 

therefore stresses and deformations transport through the cell only by the momentum 

diffusion and the mass conservation mechanisms.  

Figure 2.1 - A schematic of a small cluster of 4 cells. The cell boundary determined by a series of 

discrete points (black circles) connected by preloaded linear springs of stiffness coefficient 𝑘1. 

Separate cells are connected by the adherent links modelled by linear springs of stiffness 

coefficient 𝑘2. The cell cytoplasm enclosed by the plasma membrane as well as the ECM are 

modelled as a viscous incompressible homogeneous Newtonian fluid. 

Biological tissues are well known for their viscoelastic stress-strain relation. Therefore, 

when aiming to study rheological behavior for biological tissues, introducing the viscoelastic 

properties is critical for capturing the realistic physics. As described above, the presented 

model incorporates series of linear springs embedded within a Newtonian fluid. This 

approach provides the overall linear viscoelastic behavior of the simulated tissue at the 

𝑘1 
cell

cell

cell cell



20

mesoscale level. Although real tissues show a power-low viscoelastic behavior, we 

believe that at the current stage of this research a linear behavior provides reliable results. 

Mitotic individual cells within the tumor signiddicantly contribte to the tumor 

progression. The mitosis process refers to the growth and further division of an individual 

mother cell into two daughter cells. To mimic accurately the experimental observations 

corresponding to the beginning of tumor growth (i.e., small tumors), characterized by only 

a small fraction of the tumor cells dividing at any given time [42], the presently developed 

model has adopted the strategy of initiating a mitosis process every 10 minutes in a single 

randomly selected cell. In this model mitosis initiation includes activation of a fluid source, 

attached to the geometric center of the cell, and causes membrane expansion of the cell. 

Meanwhile, the cells not yet involved into mitosis preserve their volume while contributing 

to the adjacent microenvironment by exerting adhesive and surface tension forces.  

Utilizing the above strategy, as proposed by Rejniak [1], provides a random orientation 

of the growing direction and irregular outline of the tumor, which would otherwise has 

grown symmetrically acquiring a close to spheroidal shape due to the lack of external 

constrains. We further extend this basic model while proposing considerations based on 

the minimization of mechanical energy stored within the tumor as a criterion for mitosis 

initiation and growth rate. 

2.1. Modeling an individual cell in a developing tumor 

The basic model presented in this study is inspired by the model previously formulated 

by Rejniak [32] based on a fundamental principles of fluid mechanics and the immersed 

boundary method (IBM). The model is governed by the N-S equations for Newtonian, 

incompressible fluid. The membrane of each individual cell is modelled by a series of points 

immersed within the fluid. In accordance with the IBM formalism, the interaction of each 

individual cell with the surrounding environment, as well as the cytokinesis events (i.e., 

activation of contractile forces for cell division) are implemented by applying external forces 

at each point of the cell boundary. The forces are calculated by employing the stress-strain 

constitutive relation for linear springs. 
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Figure 2.2 - The computational domain 𝛺 (for the fluid velocity) with an arbitrary immersed 

boundary 𝛤 determined by the series of boundary points 𝑿𝑖(𝑐𝑖, 𝑡) = [𝑥𝑖(𝑐𝑖, 𝑡), 𝑦𝑖(𝑐𝑖, 𝑡)], where 𝑐 is 

a coordinate along the curve 𝛤 and 𝑡 is time. 

2.1.1. Individual cell growth 

The growth of individual cell is modelled by embedding a singular fluid-source 

within the cell membrane to result in expansion of the cell (see Figure 2.3). The source is 

implemented by a single Lagrangian point located in the geometric center of each cell. Note 

that during the cell growth the cell membrane changes its shape by expanding and moving 

with the velocity equal to that of the surrounding fluid, so that also the location of the 

geometric center of the cell moves. It is also noteworthy that as a result of the cell 

membrane expansion, the cell surface area (the cell perimeter for 2D configuration) 

increases. Thus, in accordance with the limitations implied by the IBM, the series of the cell 

boundary points must be reconstructed during the simulations in order to preserve an even 

spacing (needs to be approximately equal to the grid step ℎ,) between the adjacent points 

(Figure 2.5).  

 In order to solve the NS equations, the source strength 𝑆 is smeared from the 

Lagrangian point onto the underlying Eulerian grid. In practice, the discrete Dirac delta 

function is used for this purpose as will be explained in detail in section 2.2.1. The impact 

of a singular Lagrangian source on the Eulerian surrounding is calculated as follows: 

An arbitrary boundary 
𝑢 velocity 

𝑣 velocity 

𝑿𝑖(𝑐𝑖, 𝑡) 

Ω 

Γ

𝑦 

𝑥
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𝑠(𝒙, 𝑡) =∑𝑆𝛿2(𝒙 − 𝒙𝑠)

Ω

(2.1) 

Where 𝑠 reads for the distributed Eulerian source, 𝒙 is a coordinate on the Eulerian grid, 𝑆 

is a singular Lagrangian source, 𝛿2(𝑟) is the two-dimensional discrete delta function and 𝒙𝑠

is the Lagrangian coordinate of the source. 

In this basic model, that will be extended in the following chapters, the source 

magnitude is binary, i.e., it depends on whether the cell is growing or not: 

S = {
𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠
0

𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑖𝑠 𝑔𝑟𝑜𝑤𝑖𝑛𝑔
𝑡ℎ𝑒 𝑐𝑒𝑙𝑙 𝑖𝑠 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑛𝑜𝑡 𝑔𝑟𝑜𝑤𝑖𝑛𝑔

(2.2) 

The decision regarding which cell will start to grow next is made randomly, i.e., every 

10 minutes a random cell is chosen to start its mitosis. 

Figure 2.3 – Singular Lagrangian source located in the geometric center of the cell. The source 

and the cell are immersed within Newtonian incompressible fluid. 

Fluid velocity vectors
Cell membrane 

Singular source 
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2.1.1. Surface tension 

In the current model it was assumed that the physical properties of the ECM and 

cell cytoskeleton are close to each other. Yet, surface tension force should be considered 

to model the interaction between the two phases. The surface tension force is modeled by 

introducing linear springs connecting two adjacent points of the cell membrane. 

The mathematical formulation of the surface tension forces is based on Hooke’s law: 

𝑭𝑆𝑇(𝑿𝑐2 , 𝑡) = 𝑘𝑆𝑇
𝑿(𝑐1, 𝑡) − 𝑿(𝑐2, 𝑡)

‖𝑿(𝑐1, 𝑡) − 𝑿(𝑐2, 𝑡)‖
(‖𝑿(𝑐1, 𝑡) − 𝑿(𝑐2, 𝑡)‖ − ℓ𝑆𝑇) (2.3) 

When 𝑿(𝑐𝑖, 𝑡) is a boundary point on the cell membrane, 𝑘𝑆𝑇 is the rigidity of linear spring, 

ℓ𝑆𝑇  is the spring free length and 𝑭𝑆𝑇(𝑐2, 𝑡) is the Lagrangian force acting at point 𝑿(𝑐2, 𝑡) 

playing the role of surface tension force acting between the cell membrane and the 

extracellular matrix. 

Following the IBM formalism the Lagrangian, surface tension  force is smeared  to 

the underlying Eulerian grid, by utilizing the discrete Dirac delta function: 

𝒇𝑆𝑇(𝒙, 𝑡) =∑𝑭𝑆𝑇(𝑿𝑐𝑖 , 𝑡)𝛿
2(𝒙 − 𝑿𝑐𝑖)

Ω

(2.4) 

When 𝒇𝑆𝑇 is the distributed surface tension force, 𝒙 is a coordinate on the Eulerian grid, 

𝑭𝑆𝑇 is the Lagrangian surface tension force, 𝛿2(𝑟) is the two-dimensional discrete Dirac

delta function and 𝑿𝑐𝑖  is the Lagrangian coordinate at which the surface tension force is

applied. 

2.1.2. Cell cytokinesis 

The process of the cell division (cytokinesis), in course of which a single mother cell 

splits into two separate daughter cells is modeled in three steps: first, at a certain point the 

singular source is split into two separate sources, each characterized by a flow rate value, 

which is half of the flow rate of the original source (at this current study we chose to 

model a symmetric division). We chose to perform the source separation when the cell 

expands to 160% of its initial size in order to enable the sources enough time to polarize 

the cell before it doubles its size. The two sources are placed within the cell along its 

longest axis. In this step the mother cell is polarized which models the polarization process 

typical of the realistic biological cells in course of which the genetic code is replicated into  
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two counter poles right before the cell division [43]. The second step initiates after the cell 

doubles its size – the sources turn off and a contractile ring, attached to the cell 

membrane, shrinks the cell membrane [43]. This step is modeled by introducing a series of 

linear springs attached to the cell membrane along the shortest axis of the cell and 

creating a cleavage furrow that partitions the cell into two lobes. Finally, when the two 

sides of the cell that connected with the linear springs are close enough to each other (3 

grid steps), the mother cell is divided into two daughter cells (Figure 2.4). 

The mathematical formulation of the contractile forces is based on the Hooke’s law: 

𝑭𝑐𝑦𝑡𝑜(𝑿𝑐2 , 𝑡) = 𝑘𝑐𝑦𝑡𝑜
𝑿(𝑐1, 𝑡) − 𝑿(𝑐2, 𝑡)

‖𝑿(𝑐1, 𝑡) − 𝑿(𝑐2, 𝑡)‖
(‖𝑿(𝑐1, 𝑡) − 𝑿(𝑐2, 𝑡)‖ − ℓ𝑐𝑦𝑡𝑜), (2.5) 

where 𝑿(𝑐𝑖, 𝑡) is a boundary point of the dividing cell, 𝑘𝑐𝑦𝑡𝑜 is the spring rigidity, ℓ𝑐𝑦𝑡𝑜 is 

the spring free length and 𝑭𝑐𝑦𝑡𝑜(𝑐2, 𝑡) is the Lagrangian contractile force acting at point 

𝑿(𝑐2, 𝑡).  

Following the IBM formalism, the contractile force is smeared to the underlying 

Eulerian grid, by utilizing discrete Dirac delta function: 

𝒇𝑐𝑦𝑡𝑜(𝒙, 𝑡) =∑𝑭𝑐𝑦𝑡𝑜(𝑿𝑐𝑖 , 𝑡)𝛿
2(𝒙 − 𝑿𝑐𝑖)

Ω

(2.6) 

where 𝒇𝑐𝑦𝑡𝑜 is the distributed force, 𝒙 is a coordinate on the Eulerian grid, 𝑭𝑐𝑦𝑡𝑜 is 

contractile Lagrangian force, 𝛿2(𝑟) is two-dimensional delta function and 𝑿𝑐𝑖  is the

Lagrangian coordinate at which the contractile force is applied. 

Figure 2.4 - Mitosis process. (a) growth of an individual cell, modeled by a single source placed in 

the geometrical center of the cell; (b) initiating of cytokinesis process for cell that has doubled its 

size. The cytokinesis is modeled by an activation of a division spring tied up to two opposite 

boundaries of the cell; (c) final contour of the cell at the end of cytokinesis process prior to its 

division; (d) two daughter cells at the end of the mitosis process. 

a b c d
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Figure 2.5 - Reconstruction of the cell boundary. In course of cytokinesis the surface area 

(perimeter) of the cell increases. As a result, a reconstruction procedure should be activated in 

order to preserve even spaces, approximately equal to the grid step ℎ, between two adjacent 

points as a requirement for correct interpolation and smearing procedures implemented  by 

utilizing the discrete Dirac delta function being the part of IBM: (a) before the reconstruction, 

average distance between two adjacent points is 1.4341ℎ ; (b) after the reconstruction, average 

distance between two adjacent points is 1.0076ℎ. 

2.1.3. Cell-to-cell adhesion 

Adhesion forces connecting the given cell with the nearby cells play a key role in the 

mechanosensing of the cell with its micro-environment. In this model, the adhesion links 

are modeled as a linear spring that connects between boundary points of the neighbor cells. 

Our algorithm allows only for a single connection for each boundary point at a time, while 

the connection is created between the two closest points as long as they are located within 

the connection range 𝑟𝑎𝑑ℎ equal to 3 grid steps (Figure 2.6). Reconnections are made each 

time the configuration of the boundaries changes significantly, for example, after cell 

division or during cytokinesis.  

The adhesion forces are calculated by utilizing the linear spring formulation: 

𝑭𝑎𝑑ℎ(𝑿𝑐2 , 𝑡) = 𝑘𝑎𝑑ℎ
𝑿(𝑐1, 𝑡) − 𝑿(𝑐2, 𝑡)

‖𝑿(𝑐1, 𝑡) − 𝑿(𝑐2, 𝑡)‖
(‖𝑿(𝑐1, 𝑡) − 𝑿(𝑐2, 𝑡)‖ − ℓ𝑎𝑑ℎ) (2.7) 

(a) (b)
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where 𝑿(𝑐𝑖, 𝑡) is a Lagrangian boundary point of one of the two neighbor cells, 𝑘𝑎𝑑ℎ  is the 

spring rigidity, ℓ𝑎𝑑ℎ is the spring free length (equal to 1.9ℎ) and 𝑭𝑎𝑑ℎ(𝑐2, 𝑡) is the 

Lagrangian adhesion force acting at point 𝑿(𝑐2, 𝑡).  

Following the IBM formalism, the Lagrangian adhesion force is smeared to the 

underlying Eulerian grid, by utilizing discrete Dirac delta function: 

𝑓𝑎𝑑ℎ(𝒙, 𝑡) =∑𝑭𝑎𝑑ℎ(𝑿, 𝑡)𝛿
2(𝒙 − 𝑿)

Ω

 , (2.8) 

where 𝒇𝑎𝑑ℎ  is the distributed force, 𝒙 is a coordinate on the Eulerian grid, 𝑭𝑎𝑑ℎ is the 

Lagrangian adhesion force, 𝛿2(𝑟) is two-dimensional Discrete delta function and 𝑋 is the 

Lagrangian coordinate of the Lagrangian force 

. 

Figure 2.6 - Adhesion links. 

2.2. Governing equations 

The governing equations for the incompressible Newtonian fluid with source term added 

for the implementation of the cell growth [44] are given by:  

𝜌 (
𝜕𝒖

𝜕𝑡
+ ∇ ∙ (𝒖𝒖)) = −∇𝑝 + 𝜇∇2𝒖 +

𝜇

3𝜌
∇𝑠 + 𝒇, (2.9) 

𝜌∇ ⋅ 𝒖 = 𝑠, (2.10) 

where 𝜌 [
𝑔𝑟

𝑐𝑚3
] is the fluid density, 𝒖 [

𝑐𝑚

𝑠
] is the fluid velocity, 𝑝 [

𝑑𝑦𝑛

𝑐𝑚2
] is the pressure field, 

𝜇 [
𝑔𝑟

𝑐𝑚⋅𝑠
] is the fluid dynamic viscosity and 𝑠 [

𝑔

𝑐𝑚3⋅𝑠
] is the volumetric flow rate source. 

Eq’s. (2.9) and (2.10) are normalized by using the characteristic scales for length, time, 

velocity, volumetric flow rate source, pressure, and force respectively: 
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𝑥 = 𝑥̅ ⋅ 𝐿 𝑡 = 𝜏 ∙ 𝑇 𝒖 = 𝒖̅ ⋅ 𝑈 𝑠 = 𝑠̅ ⋅ 𝑆  𝑝 = 𝑝̅ ⋅ 𝑃 

𝒇 = 𝒇̅ ⋅ 𝐹 
(2.11) 

Plugging these expressions back into the momentum equation (2.9) gives: 

𝜌 (
𝜕𝒖̅

𝜕𝜏
∙
𝑈

𝑇
+ ∇ ∙ (𝒖̅𝒖̅) ∙

𝑈2

𝐿
) = −∇𝑝̅ ⋅ 𝑃 ∙

1

𝐿
+ 𝜇∇2𝒖̅ ⋅

𝑈

𝐿2
+
𝜇

3𝜌
∇𝑠̅ ∙

𝑆

𝐿
+ 𝒇̅ ⋅ 𝐹 ,   (2.12) 

and after rearrangement: 

𝜕𝒖̅

𝜕𝜏
+ ∇ ∙ (𝒖̅𝒖̅) ∙

𝑈𝑇

𝐿
= −∇𝑝̅ ⋅ 𝑃 ∙

𝑇

𝜌𝑈𝐿
+ ∇2𝒖̅ ⋅

𝜇𝑇

𝜌𝐿2
+
𝜇

3𝜌
∇𝑠̅ ⋅

𝑇𝑆

𝜌𝑈𝐿
+ 𝒇̅ ⋅ 𝐹 ∙

𝑇

𝜌𝑈
(2.13) 

Using the identity: 

𝑇 ≡
𝐿

𝑈
(2.14) 

[𝑆] = [
𝜌

𝑇
] = [

𝜌𝑈

𝐿
] (2.15) 

in Eq.(2.13) yields: 

𝜕𝒖̅

𝜕𝜏
+ ∇ ∙ (𝒖̅𝒖̅) = −∇𝑝̅ ⋅ 𝑃 ⋅

1

𝜌𝑈2
+ ∇2𝒖̅ ⋅

𝜇

𝜌𝑈𝐿
+
𝜇

3𝜌
∇𝑠̅ ⋅ 𝑆 ⋅

1

𝜌𝑈2
⋅
𝐿

𝐿
+ 𝒇̅ ⋅ 𝐹

∙
𝐿

𝜌𝑈2

(2.16) 

Whereas the non-dimensional momentum equation reads: 

𝜕𝒖̅

𝜕𝜏
+ ∇ ∙ (𝒖̅𝒖̅) = −∇𝑝̅ +

1

𝑅𝑒
(∇2𝒖̅ +

1

3
∇𝑠̅) + 𝒇,̅ (2.17) 

and the non-dimensional continuity equation is rewritten as: 

∇ ⋅ 𝒖̅ = 𝑠,̅ (2.18) 

where the non-dimensional scales for the rate of volumetric source, pressure, force density 

and velocity are: 

𝑆 =
𝜌𝑈

𝐿
  𝑃 = 𝜌𝑈2 𝐹 =

𝜌𝑈2

𝐿
 𝑈 =

𝐿

𝑇
. (2.19) 

Here 𝑇 and 𝐿 are the characteristic time and length typical of the given physical 

phenomenon. 
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2.1.4. Normalizing a spring constant 

Some of the forces that are utilized in the mathematical model are modeled by spring 

with a stiffness coefficient 𝑘 [
𝑔

𝑐𝑚⋅𝑠2
], which must be normalized consistently with the 

characteristic scales given above. 

Recalling that: 

𝒇 = ℛ(𝑘∆𝑙∆𝑠) = 𝑘 [
𝑔

𝑐𝑚 ⋅ 𝑠2
] ∆𝑙[𝑐𝑚]∆𝑠[𝑐𝑚]

1

ℎ2
[
1

𝑐𝑚2
] ⋅

1

1 [𝑐𝑚]
𝛿2 (

𝑥 − 𝑥0
ℎ

), (2.20) 

where ℛ is the regularization operator (will be explained in detail in section 2.2.2), ∆𝑙 is the 

spring elongation, ∆𝑠 is the surface area to which the force is applied (for 2D configuration 

∆𝑠 is approximately equal to the grid step due to the limitations imposed by the IBM as will 

be explained in detail in 2.2.5) ℎ is the grid spatial step and 𝛿2 is the two-dimensional 

discrete Dirac delta function. 

Note that the expression 𝑘∆𝑙∆𝑠 is a resultant force having a unit [dyn], and needs to be 

converted to the volumetric force (or the force density) to be consistent with the units of 

NS equations, i.e., [
dyn

𝑐𝑚3]. The conversion is made by employing the regularization operator

implemented by utilizing the two-dimensional Dirac delta function of unit [
1

𝑐𝑚2] which for 

the 2D configuration should be additionally multiplied by a unit length of   [
1

𝑐𝑚
].

The following procedure is applied when normalizing the force: 

𝒇̅ = ℛ(𝑘̅∆𝑙̅∆𝑠̅̅ ̅) = 𝑘̅
∆𝑙

𝐿

∆𝑠

𝐿
⋅

1

ℎ2 𝐿2⁄
⋅
1

1 𝐿⁄
⋅ ∅2 (

𝑥 − 𝑥0
ℎ

) (2.21) 

Then using the scaling factor determined in Eq. (2.19) the force is rendered non-

dimensionally as: 

𝒇̅ = 𝒇
𝐿

𝜌𝑈2
, 

which leads to: 
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𝑘̅
∆𝑙

𝐿

∆𝑠

𝐿
⋅

1

ℎ2 𝐿2⁄
⋅
1

1 𝐿⁄
⋅ ∅2 (

𝑥 − 𝑥0
ℎ

)

= 𝑘 [
𝑔

𝑐𝑚 ⋅ 𝑠2
] ∆𝑙[𝑐𝑚]∆𝑠[𝑐𝑚]

1

ℎ2
[
1

𝑐𝑚2
] ⋅

1

1 [𝑐𝑚]
∅2 (

𝑥 − 𝑥0
ℎ

)
𝐿

𝜌𝑈2

(2.22) 

𝑘̅
1

𝐿

1

𝐿
⋅
𝐿2

1
𝐿 = 𝑘 [

𝑔

𝑐𝑚 ⋅ 𝑠2
] ⋅

1

1 [𝑐𝑚]

𝐿

𝜌𝑈2
(2.23) 

𝑘̅ = 𝑘 [
𝑔

𝑐𝑚 ⋅ 𝑠2
] ⋅

1

𝜌𝑈2
[
𝑐𝑚 ⋅ 𝑠2

𝑔
]. (2.24) 

Therefore, the scaling factor of the spring stiffness 𝐾 is given by: 

𝐾 = 𝜌𝑈2 (2.25) 

2.2. Numerical methods 

In this chapter, the methodology used for the solution of the governing equations will 

be explained in detail. In general, an exact analytical solution for the Navier-Stokes equation 

can be performed only for a few simplified cases and geometries. Therefore, we use 

numerical methods to solve the governing equations. 

The standard second order finite volume method and second order backward finite 

difference are utilized to discretize the governing equations in space and time, respectively. 

The SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) approach [45] is utilized 

for the pressure-velocity coupling.  For the representation of complex moving cell 

geometry, we use the IBM, which was originally introduced by Peskin [46] in order to 

simulate a blood flow through the heart. This method allows to use a regular Eulerian grid 

whereas the impact of the cell boundaries on the surrounding flow is introduced by 

smearing the Lagrangian forces acting at the Lagrangian points onto the Eulerian grid by 

utilizing the discrete Dirac delta function. 

2.2.1. Discrete Dirac delta function 

In order to smear the Lagrangian forces or the volumetric flow rate source from a 

Lagrangian to Eulerian grid, we chose a discreate Dirac delta function supported over 3 cells. 

This delta function is commonly used in simulations using IBM [47] and gained its popularity 
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for being specifically designed for staggered grids. In 2D configurations the delta function is 

defined as a multiplication of two one-dimensional delta functions: 

𝛿ℎ
2(𝒙 − 𝒙𝟎) = 𝛿ℎ

1(𝑥 − 𝑥0)𝛿ℎ
1(𝑦 − 𝑦0), (2.26) 

where ℎ is the grid step, and: 

𝛿ℎ
1(𝑥 − 𝑥0) =

1

ℎ
∅(
𝑥 − 𝑥0
ℎ

), (2.27) 

and  ∅(𝑟) is a continuous function: 

∅(𝑟) =

{
 
 

 
 
1

3
(1 + √−3𝑟2 + 1) |𝑟| ≤ 0.5

1

6
(5 − 3|𝑟| − √−3(1 − |𝑟|)2 + 1) 0.5 ≤ |𝑟| ≤ 1.5

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2.28) 

There are also other options for choosing  ∅(𝑟), as long as they meet a number of basic 

requirements: 

a. ∅(𝑟) is continuous for all real numbers 𝑟.

b. ∅(𝑟) = 0, |𝑟| ≥ 𝑛 (
𝑥−𝑥0

ℎ
), 𝑛 is a number of grid cells (may be a fraction).

c. ∑ ∅(𝑟 − 𝑖)𝑖 = 1, ∀𝑟

d. ∑ (𝑟 − 𝑖)∅(𝑟 − 𝑖)𝑖 = 0, ∀𝑟

e. ∑ [∅(𝑟 − 𝑖)]2𝑖 =
1

2
, ∀𝑟 

when all the sums are performed for the integers, 𝑖 such that −∞ < 𝑖 < ∞. Note that being 

𝑖  an integer number implies that the distance between each pair of adjacent Lagrangian 

points should be equal, i.e., all the Lagrangian points determining the surface of the 

immersed body should be equally spaced.    

2.2.2. Interpolation and regularization 

By utilizing the discrete Dirac delta function, we define two conjugate operators, 

namely, the interpolation ℐ and regularization ℛ operators. The interpolation operator is 

used to interpolate data from the Eulerian to Lagrangian points and is formulated as: 

𝐶(𝑿) ≡ ℐ(𝑿, 𝑐(𝒙)) ≡ ∑ 𝑐(𝒙)Ω 𝛿ℎ
2(𝒙 − 𝑿), (2.29) 
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where 𝐶 is the quantity interpolated to the Lagrangian point, 𝑿 is the coordinate of the 

Lagrangian point, 𝑐 is the corresponding quantity determined on the Eulerian grid, 𝒙 is the 

Eulerian grid coordinate,  Ω is the computational domain, and 𝛿ℎ
2 is the two-dimensional

discrete delta function. 

The regularization operator smears the data from the Lagrangian to the Eulerian grid 

and is formulated as: 

𝑐(𝒙) ≡ ℛ(𝑿, 𝐶(𝑿)) ≡∑𝐶(𝑿)

Γ

𝛿ℎ
2(𝒙 − 𝑿), (2.30) 

where 𝐶 is the quantity determined in the Lagrangian point, 𝑿 is the coordinate of 

Lagrangian point, 𝑐 is the corresponding quantity determined on the Eulerian grid, 𝒙 is the 

Eulerian grid coordinate,  Γ is the immersed boundary, and 𝛿ℎ
2 is the two-dimensional

discrete delta function. 

2.2.3. SIMPLE scheme 

In order to perform solution of the system of governing equations, we utilize the 

SIMPLE algorithm [45]. According to the SIMPLE formalism, coupling between the pressure 

and the velocity fields is implemented  in two steps: the first step is a predictor 

approximation of the velocity field via the momentum equation (using the pressure 

computed in the previous time step); the second step incudes correction and projection 

procedures, correcting the pressure field obtained by the solution of Poisson equation 

derived from the continuity equation and projecting the predicted non-solenoidal velocity 

on the divergence-free subspace. 

Consider the non-dimensional system of N-S and the continuity equations (the focus is on 

the reduced form of Eq’s. (2.17) and (2.18) without the source terms): 

𝜕𝒖

𝜕𝜏
+ ∇ ∙ (𝒖𝒖) = −∇𝑝 +

1

𝑅𝑒
∇2𝒖 (2.31) 

∇ ⋅ 𝒖 = 0 (2.32) 

The non-solenoidal approximated velocity, 𝒖∗, is obtained by solving the momentum 

equation while taking the pressure field and the non-linear terms as known from the 

previous time step: 
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𝒖∗ − 𝒖𝑛

∆𝜏
+ ∇ ∙ (𝒖𝒖)𝑛 = −∇𝑝𝑛 +

1

𝑅𝑒
∇2𝒖∗ (2.33) 

Assuming that the velocity 𝒖𝑛+1 is the solution for the Eq. (2.31) at the next time step: 

𝒖𝑛+1 − 𝒖𝑛

∆𝜏
+ ∇ ∙ (𝒖𝒖)𝑛 = −∇𝑝𝑛+1 +

1

𝑅𝑒
∇2𝒖∗ (2.34) 

We can next subtract Eq. (2.33) from Eq. (2.34) to obtain: 

𝒖𝑛+1 − 𝒖∗

∆𝜏
= −∇(𝑝𝑛+1 − 𝑝𝑛) ≡ −𝛻𝑝′ (2.35) 

Taking the divergence from both sides of Eq.(2.35) yields: 

1

∆𝜏
(∇∙𝒖𝑛+1 − ∇∙𝒖∗) = −∇2𝑝′ (2.36) 

Next by utilizing the continuity equation (2.32) it follows that  ∇ ∙ 𝒖𝑛+1 = 0 which yields the 

Poisson equation for the pressure correction 𝑝′: 

∇2𝑝′ =
1

∆𝜏
∇∙𝒖∗ (2.37) 

After the pressure correction field is obtained, we next proceed to the correction and 

projection steps, for the pressure and the velocity fields, respectively:  

𝑝𝑛+1 ≡ 𝑝′ + 𝑝𝑛 (2.38) 

𝒖𝑛+1 = 𝒖′ − ∆𝜏 ⋅ ∇𝑝∗ (2.39) 

2.2.4. Discretization using the finite volume method 

To solve the system of N-S equations, the computational domain is discretized by 

utilizing staggered grid, characterized by a half grid step offset of the pressure and the 

velocity component fields relatively to each other. The discretized domain allows for 

determining finite volumes surrounding each discrete pressure and velocity component 

values as shown in Figure 2.7.  
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The N-S and Poisson equations are next can be integrated over the corresponding 

finite volumes. The momentum equations (in 𝑥 and 𝑦 directions) are integrated over the 

finite volumes surrounding 𝑢 and 𝑣 velocity components, respectively. The Poisson 

equation is integrated over the finite volume surrounding the pressure. Without losing 

generality, the equations are analyzed without the source term as appears in equations 

(2.9) and (2.10). Adding the source term is straight forward and omitted here for sake of 

conciseness. Discretization of the body force in the momentum equation reflecting the 

impact of immersed body on the surrounding flow will be explained in section 2.2.5: 

∫ [
𝜕(𝒖)

𝜕𝑡
+ ∇ ∙ (𝒖𝒖)] 𝑑𝑉

𝑉𝒖

= ∫ [−∇𝑝 +
1

𝑅𝑒
∇2𝒖 ] 𝑑𝑉 

𝑉𝒖

(2.40) 

∇2𝑝′ =
1

∆𝜏
∇ ∙ 𝒖∗ (2.41) 

After using divergence theorem, the convection term in Eq. (2.40) can be rewritten in terms 

of momentum flux passing through the finite volume boundaries, which yields:  

∫
𝜕(𝒖)

𝜕𝑡
𝑑𝑉

𝑉𝒖

+ ∫ 𝒖𝒖 ⋅ 𝑛̂

𝑆𝒖

𝑑𝑆 = ∫ [−∇𝑝 +
1

𝑅𝑒
∇2𝒖]  𝑑𝑉 

𝑉𝒖

(2.42) 

All the linear terms (except for the pressure term) are treated implicitly. Detailed 

formulation of all the discretized terms of the momentum equation is next presented for 

the equation in 𝑥 direction: 

𝑢𝑖−1𝑗 
𝑝𝑖𝑗 

𝑣𝑖𝑗 

𝑢𝑖𝑗 𝑝𝑖+1𝑗

𝑣𝑖+1𝑗 

𝑝𝑖𝑗+1A finite 

volume for 

𝑢𝑖𝑗

A finite 

volume for 
𝑣𝑖𝑗

A finite 

volume for 
𝑝𝑖𝑗

Figure 2.7 - The staggered grid used in the current solver. 

𝑢𝑖𝑗−1 
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i. the time derivative term:

∫
𝜕𝑢

𝜕𝑡
𝑑𝑉 =

𝑢𝑖𝑗
∗ − 𝑢𝑖𝑗

𝑛

Δ𝑡
Δ𝑥Δ𝑦

𝑉𝒖

 (2.43) 

ii. The diffusion term:

∫
1

𝑅𝑒
∇2𝑢 𝑑𝑉 =

1

𝑅𝑒
(
𝑢𝑖+1𝑗
∗ − 2𝑢𝑖𝑗

∗ + 𝑢𝑖−1𝑗
∗

Δ𝑥2
+
𝑢𝑖𝑗+1
∗ − 2𝑢𝑖𝑗

∗ + 𝑢𝑖𝑗−1
∗

Δ𝑦2
)Δ𝑥Δ𝑦 

𝑉𝒖

(2.44) 

Note that the index " ∗ " denotes the approximation of the velocity at time step 𝑛 + 1 as 

explained in section (2.2.3). 

The rest terms of the momentum equation are determined explicitly: 

iii. The pressure term:

∫ −∇𝑝 𝑑𝑉 

𝑐.𝑣

=
𝑝𝑖+1𝑗
𝑛 − 𝑝𝑖𝑗

𝑛

Δ𝑥
Δ𝑥Δ𝑦 (2.45) 

iv. The convection term:

∫ 𝒖𝒖 ⋅ 𝑛̂

𝑆𝒖

𝑑𝑆 = ∫[𝑢𝑢 ; 𝑢𝑣] ⋅ [𝑛𝑥 ; 𝑛𝑦]𝑑𝑆

𝑆𝒖

= 𝑢
𝑖+
1
2
𝑗
⋅ 𝑢

𝑖+
1
2
𝑗
⋅ Δ𝑦 + 𝑢

𝑖𝑗+
1
2
⋅ 𝑣

𝑖+
1
2
𝑗
⋅ Δ𝑥 − 𝑢

𝑖−
1
2
𝑗
⋅ 𝑢

𝑖−
1
2
𝑗
⋅ Δ𝑦

− 𝑢
𝑖𝑗−

1
2
⋅ 𝑣

𝑖+
1
2
𝑗−1

⋅ Δ𝑥, 

(2.46) 

Where: 

𝑢
𝑖+

1

2
𝑗
=

𝑢𝑖+1𝑗+𝑢𝑖𝑗

2
𝑢
𝑖𝑗+

1

2

=
𝑢𝑖𝑗+1+𝑢𝑖𝑗

2
𝑣
𝑖−

1

2
𝑗+1

=
𝑣𝑖𝑗+1+𝑣𝑖−1𝑗+1

2

𝑢
𝑖−

1

2
𝑗
=

𝑢𝑖−1𝑗+𝑢𝑖𝑗

2
𝑢
𝑖𝑗−

1

2

=
𝑢𝑖𝑗−1+𝑢𝑖𝑗

2
𝑣
𝑖−

1

2
𝑗
=

𝑣𝑖𝑗+𝑣𝑖−1𝑗

2

Note that from here on, the non-linear term is denoted by 𝑁(𝑢𝑛𝑖𝑗) for the sake of 

conciseness. Plugging in all the discretized terms back into Eq.(2.42) yields the discretized 

momentum equation: 
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(−
1

Δ𝑡
Δ𝑥Δ𝑦 −

2Δ𝑦

𝑅𝑒Δ𝑥
−
2Δ𝑥

𝑅𝑒Δ𝑦
)𝑢𝑖𝑗

∗ +
Δ𝑥Δ𝑦

𝑅𝑒

𝑢𝑖+1𝑗
∗ + 𝑢𝑖−1𝑗

∗

Δ𝑥2

+
Δ𝑥Δ𝑦

𝑅𝑒

𝑢𝑖𝑗+1
∗ + 𝑢𝑖𝑗−1

∗

Δ𝑦2
=
−𝑢𝑖𝑗

𝑛

Δ𝑡
Δ𝑥Δ𝑦 + 𝑁(𝑢𝑖𝑗

𝑛 )

(2.47) 

The left hand side of Eq. (2.47) constitutes the Helmholtz operator 𝐻(𝑢𝑖𝑗
∗ ) so that Eq. (2.47)

can be formulated as follows: 

𝐻(𝑢𝑖𝑗
∗ ) = −𝛥𝑥𝛥𝑦𝛻𝑝 −

Δ𝑥Δ𝑦

Δ𝑡
𝑢𝑖𝑗
𝑛 + 𝑁(𝑢𝑖𝑗

𝑛 ) (2.48) 

v. Mass conservation

The Poisson equation, Eq.(2.37) for the pressure correction field is discretized as: 

𝑝𝑖+1𝑗
′ − 2𝑝𝑖𝑗

′ + 𝑝𝑖−1𝑗
′

Δ𝑥2
+
𝑝𝑖𝑗+1
′ − 2𝑝𝑖𝑗

′ + 𝑝𝑖𝑗−1
′

Δ𝑦2

= −
1

Δ𝑡
(
𝑢𝑖+1𝑗
∗ − 𝑢𝑖𝑗

∗

Δ𝑥
+
𝑣𝑖𝑗+1
∗ − 𝑣𝑖𝑗

∗

Δ𝑦
)  

(2.49) 

2.2.5. Immersed boundary method (IBM) 

The IBM was introduced for the first time by Peskin [46], for implementation of 

complex and moving boundaries immersed within the fluid. This method discretizes the N-

S equations on a fixed Eulerian grid, even though the computational domain can contain 

moving, complex boundaries immersed into the fluid. The IBM helps to reduce 

computational costs due to the use of fixed numerical operators. In most cases, the IBM is 

used in order to enforce the kinematic constraint of no-slip for the fluid velocity at the 

immersed boundary. In the current study, the cell’s membrane plays the role of immersed 

boundary and used for the calculation of the surface tension forces developing at a 

membrane of each cell and its interaction with the surrounding fluid and other cells. In this 

chapter the formulation of the IBM is explained in detail. 

Let 𝑿(𝑠) = (𝑥(𝑠), 𝑦(𝑠)) be the Lagrangian points forming the set of points determining 

the surface of immersed body. The points are located above underlying Eulerian grid and 

move with velocity 𝑉(𝑋). To achieve the highest accuracy and to reduce stiffness of the 

discrete operators, the distance between the adjacent Lagrangian points should be 
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approximately equal to the grid step of the underlying Eulerian grid (see Figure 2.2.). The 

IBM formalism enforcing the non-slip kinematic constraint on the surface of immersed body 

incorporated within the SIMPLE algorithm (section 2.2.3) is as follows: 

i. Obtaining the intermediate predicted velocity by utilizing Eq.(2.33) (without

considering the presence of immersed body): 

𝒖∗−
1
2 − 𝒖𝑛

∆𝜏
+ ∇ ∙ (𝒖𝒖)𝑛 = −∇𝑝𝑛 +

1

𝑅𝑒
∇2𝒖∗−

1
2 (2.50) 

ii. Calculating the fluid intermediate velocity at the Lagrangian points using the

interpolation operator as described in section 2.2.2: 

𝑽′(𝑿) = ℐ (𝑿, 𝒖∗−
1
2(𝒙)) (2.51) 

iii. Calculating the Lagrangian forces acting on the fluid at the surface points to account

for the presence of immersed body: 

𝑭(𝑿) =
𝑽(𝑿) − 𝑽′(𝑿)

∆𝜏
(2.52) 

i. Smearing the Lagrangian forces to the corresponding locations on the Eulerian grid

using the regularization operator as described in section 2.2.2: 

𝒇(𝒙) = ℛ(𝑿, 𝑭(𝑿)) (2.53) 

ii. Solving the momentum equation with a modified RHS, to find the predicted non-

solenoidal velocity: 

𝒖∗ − 𝒖𝑛

∆𝜏
+ ∇ ∙ (𝒖𝒖)𝑛 = −∇𝑝𝑛 +

1

𝑅𝑒
∇2𝒖∗ + 𝑓(𝒙) (2.54) 

iii. Solving the Poisson equation for the pressure correction and updating   the pressure

and the velocity fields as described in section 2.2.3 (see Eq’s. (2.37)-(2.39)). 

If the Lagrangian forces are calculated by employing constitutive laws as is performed 

in the current study, the stages ii-iii are replaced by the procedure described in sections 

2.1.1 - 2.1.3. 
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2.2.6. Gradient decent 

The gradient descent method is used to find a local extremum of a given function. In 

the current study the key idea was to propagate repeatedly in the opposite direction of the 

function gradient until convergence with a given tolerance is reached to find the local 

minimum of the function. 

Let 𝑉 be an arbitrary scalar function of set of 𝑛 parameters: 

𝑉 = 𝑓(𝑥1…𝑥𝑛) (2.55) 

The gradient of 𝑉 is given by: 

∇𝑉 = (
𝜕𝑉

𝜕𝑥1
…
𝜕𝑉

𝜕𝑥𝑛
) (2.56) 

The iteration sequence that should be performed to find the local minimum, closest to the 

initial state, is defined as: 

(𝑥1…𝑥𝑛)
𝑘+1 = (𝑥1…𝑥𝑛)

𝑘 − 𝛼∇𝑉𝑛 (2.57) 

Parameter 𝛼 can be chosen  inteligently by using several strategies, a detailed discussion 

of which remained beyond the scope of the current study. 

2.2.7. Two-phase flow model 

A wide range of physical phenomena contains interactions between two or more fluid 

phases. Currently we present a two-phase numerical model that was developed by 

incorporating immersed boundary and front tacking methods. The model also accounts for 

the surface tension forces acting at interface between the two phases. Although two-phase 

modeling was not an inherent part of the current study, it might be used in future studies. 

Consider two Newtonian, incompressible fluids 𝐴 and 𝐵 within rectangular domain Ω. 

The interface between the two fluids Γ is determined by the boundary points 𝑿(𝑐, 𝑡) 

forming a closed contour. Far from the interface the two phases have their own densities 

𝜌1,2 and viscosities 𝜇1,2 while close to the interface there is a smooth transition between 

the properties of the two phases.  
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Figure 2.8 - schematic description of two-phase configuration. 

The transition is resolved by introducing scalar indicator function 𝐼(𝒙, 𝑡) allowing to 

determine the fluid density and dynamic viscosity as:  

𝜌(𝒙, 𝑡) = 𝜌1 + (𝜌2 − 𝜌1) ⋅ 𝐼(𝒙, 𝑡) (2.58) 

𝜇(𝒙, 𝑡) = 𝜇1 + (𝜇1 − 𝜇1) ⋅ 𝐼(𝒙, 𝑡) (2.59) 

where 𝐼(𝒙, 𝑡) is equal to 0 or 1 for liquids A and B, respectively and lies in the range between 

0 and 1 in close to the interface region.  

The indicator function is related to the interface geometry as: 

∇𝐼 = ∫ 𝒏𝑘(𝑋𝑘(𝑐, 𝑡))𝛿
2(𝑥 − 𝑋𝑘(𝑐, 𝑡))𝑑𝑠Γ

, (2.60) 

where Γ is the interface curve separating between the two fluids, 𝑐 is a coordinate along 

the fluid interface, 𝒏𝑘 is a unit vector normal to interface at point 𝑿𝑘(𝑠, 𝑡) and 𝛿 is the Dirac 

delta function. 

We next take the divergence of both sides of Eq. (2.60) yielding the Poisson equation for 

the indicator function 𝐼: 

∇2𝐼 = ∇∫ 𝒏𝑘(𝑋𝑘(𝑐, 𝑡))𝛿
2(𝑥 − 𝑋𝑘(𝑐, 𝑡))𝑑𝑠 ≡

Γ

∇𝑛 (2.61) 

Eq. (2.61) is discretized on the grid coinciding with that used for the pressure field as can be 

seen in Figure 2.7.  The solution was obtained by the Gauss–Seidel method, while boundary 

conditions for 𝐼 field were imposed in grid cells at which the value of  ∇𝑛 was equal to 0 and 

were set to 0 or 1 for liquids A and B, respectively. 

Fluid A:  𝜇1, 𝜌1

Fluid B:  𝜇2, 𝜌2

Ω 

Γ 

𝑿(𝑐, 𝑡) 
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Given the calculated indicator function, the non-dimensional governing equations for 

the described two-phase model are as follows: 

𝜌̅(𝐼) (
𝜕𝒖

𝜕𝜏
+ 𝛻 ∙ (𝒖𝒖)) = −𝛻𝑝 +

1

𝑅𝑒
[𝛻 ⋅ (𝜇̅(𝐼)(𝛻𝒖 + (𝛻𝒖)𝑇))], 

+
1

𝑊𝑒
𝒇𝜎 +

𝑒𝑦𝜌̅(𝐼)

𝐹𝑟2

(2.62) 

𝛻 ⋅ 𝒖 = 0, (2.63) 

where 𝜌̅(𝐼) and 𝜇̅(𝐼) are the non-dimensional fluid density and viscosity defined in Eq’s. 

(2.58) end (2.59) and normalized by 𝜌𝑚𝑖𝑛 and 𝜇𝑚𝑖𝑛 values, 𝑅𝑒 =
𝜌𝑚𝑖𝑛𝑈𝐿

𝜇𝑚𝑖𝑛
 is the Reynolds

number, 𝑊𝑒 =
𝜌𝑚𝑖𝑛𝑈

2𝐿

𝜎
  and  𝐹𝑟 =

𝑈

√𝑔𝐿
  are the Weber and the Froude numbers, 𝜎 is the 

two phases surface tension coefficient, 𝒇𝜎 is the surface tension force, and 𝑔 is the 

gravitational acceleration. 

The surface tension force is computed explicitly and related to the local curvature of 

the interface as: 

𝒇𝜎 = ∫ 𝜎
𝜕2𝑋(𝑐, 𝑡)

𝜕𝑐2
𝛿2(𝑥 − 𝑋(𝑐, 𝑡))𝑑𝑐.

Γ

 (2.64) 

Eq’s.(2.62) and (2.63) are solved by utilizing the SIMPLE algorithm as detailed in section 

2.2.3. Note that, the viscous term of Eq.(2.62) accounts for the spatial variation of the 

viscosity field, which requires additional processing when performing its discretization. 

Utilizing the divergence theorem, the viscous term of Eq. (2.62) can be rewritten as: 

∫ ∇ ∙ (𝜇(𝐼)(∇𝑢 + (∇𝑢)𝑇))

𝑐.𝑣

𝑑𝑣 = ∫[𝜇(𝐼)(∇𝒖 + (∇𝒖)𝑇)]

𝑐.𝑠

⋅ 𝑛̂𝑑𝑠, (2.65) 

Where the gradient of the velocity field  ∇𝒖 is defined as: 

∇𝒖 =

(

 

𝜕

𝜕𝑥
𝜕

𝜕𝑦)

 (𝑢 𝑣) =

[
 
 
 
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑦]
 
 
 

, (2.66) 

and therefore: 
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(∇𝑢 + (∇𝑢)𝑇) =

[
 
 
 
 2

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
2
𝜕𝑣

𝜕𝑦 ]
 
 
 
 

(2.67) 

Using Eq. (2.67)  in 𝑥 direction (top row), and integrating over the control volume 

surrounding  𝑢 velocity component (the same can be straight forwardly repeated for  𝑦 

direction) leads to: 

∫ 𝜇(𝐼)

𝑐.𝑠

[2
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
] ⋅ 𝑛̂𝑑𝑠

= 𝜇(𝐼𝑖+1𝑗) ⋅ 2
𝜕𝑢

𝜕𝑥
|
𝑖+
1
2
𝑗
Δ𝑦𝑣𝑗−1 + 𝜇 (𝐼𝑖+1

2
𝑗+
1
2
)

⋅ (
𝜕𝑣

𝜕𝑥
|
𝑖+
1
2
𝑗 
+
𝜕𝑢

𝜕𝑦
|
𝑖𝑗+

1
2

)Δ𝑥𝑣𝑖 − 𝜇(𝐼𝑖𝑗) ⋅ 2
𝜕𝑢

𝜕𝑥
|
𝑖−
1
2
𝑗
Δ𝑦𝑣𝑗−1

− 𝜇 (𝐼
𝑖+
1
2
𝑗−
1
2
) ⋅ (

𝜕𝑣

𝜕𝑥
|
𝑖+
1
2
𝑗−1 

+
𝜕𝑢

𝜕𝑦
|
𝑖𝑗−

1
2

)Δ𝑥𝑣𝑖 ,

(2.68) 

where: 

𝐼
𝑖+
1
2
𝑗+
1
2
=
1

4
(𝐼𝑖𝑗 + 𝐼𝑖𝑗+1 + 𝐼𝑖+1𝑗+1 + 𝐼𝑖+1𝑗), (2.69) 

𝐼
𝑖+
1
2
𝑗−
1
2
=
1

4
(𝐼𝑖𝑗 + 𝐼𝑖𝑗−1 + 𝐼𝑖+1𝑗−1 + 𝐼𝑖+1𝑗), (2.70) 

and: 

𝜕𝑢

𝜕𝑥
|
𝑖+
1
2
𝑗
=

1

Δ𝑥𝑢𝑖
(𝑢𝑖+1𝑗 − 𝑢𝑖𝑗) (2.71) 

𝜕𝑣

𝜕𝑥
|
𝑖+
1
2
𝑗 
=

1

Δ𝑥𝑣𝑖
(𝑣𝑖+1𝑗 − 𝑣𝑖𝑗) (2.72) 

𝜕𝑢

𝜕𝑦
|
𝑖𝑗+

1
2

=
1

Δ𝑦𝑢𝑗
(𝑢𝑖𝑗+1 − 𝑢𝑖𝑗) (2.73) 

𝜕𝑢

𝜕𝑥
|
𝑖−
1
2
𝑗
=

1

Δ𝑥𝑢𝑖−1
(𝑢𝑖𝑗 − 𝑢𝑖−1𝑗) (2.74) 
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𝜕𝑣

𝜕𝑥
|
𝑖+
1
2
𝑗−1 

=
1

Δ𝑥𝑣𝑖
(𝑣𝑖+1𝑗−1 − 𝑣𝑖𝑗−1) (2.75) 

𝜕𝑢

𝜕𝑦
|
𝑖𝑗−

1
2

=
1

Δ𝑦𝑢𝑗−1
(𝑢𝑖𝑗 − 𝑢𝑖𝑗−1) (2.76) 

Plugging in the above expressions into Eq.(2.68) reads: 

∫ 𝜇(𝐼)

𝑐.𝑠

[2
𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
] ⋅ 𝑛̂𝑑𝑠

= 𝜇(𝐼𝑖+1𝑗) ⋅ 2
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖

(𝑢𝑖+1𝑗 − 𝑢𝑖𝑗) + 𝜇 (𝐼𝑖+1
2
𝑗+
1
2
)

⋅ ((𝑣𝑖+1𝑗 − 𝑣𝑖𝑗) +
Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗

(𝑢𝑖𝑗+1 − 𝑢𝑖𝑗)) − 𝜇(𝐼𝑖𝑗)

⋅ 2
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖−1

(𝑢𝑖𝑗 − 𝑢𝑖−1𝑗) − 𝜇 (𝐼𝑖+1
2
𝑗−
1
2
)

⋅ ((𝑣𝑖+1𝑗−1 − 𝑣𝑖𝑗−1) +
Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗−1

(𝑢𝑖𝑗 − 𝑢𝑖𝑗−1)) 

(2.77) 

[−2𝜇(𝐼𝑖+1𝑗) ⋅
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖

− 𝜇 (𝐼
𝑖+
1
2
𝑗+
1
2
) ⋅
Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗

− 2
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖−1

𝜇(𝐼𝑖𝑗) − 𝜇 (𝐼𝑖+1
2
𝑗−
1
2
) ⋅

Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗−1

] 𝑢𝑖𝑗

+ [2𝜇(𝐼𝑖+1𝑗)
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖

] 𝑢𝑖+1𝑗 + [2
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖−1

𝜇(𝐼𝑖𝑗)] 𝑢𝑖−1𝑗

+ [𝜇 (𝐼
𝑖+
1
2
𝑗+
1
2
)
Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗

] 𝑢𝑖𝑗+1 + [𝜇 (𝐼𝑖+1
2
𝑗−
1
2
)
Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗−1

] 𝑢𝑖𝑗−1

+ 𝜇 (𝐼
𝑖+
1
2
𝑗+
1
2
) (𝑣𝑖+1𝑗 − 𝑣𝑖𝑗) − 𝜇 (𝐼𝑖+1

2
𝑗−
1
2
) (𝑣𝑖+1𝑗−1 − 𝑣𝑖𝑗−1) 

Which can be rewritten in a more convenient manner as: 

𝐴𝑢𝑢𝑖𝑗 + 𝐵𝑢𝑢𝑖+1𝑗 + 𝐶𝑢𝑢𝑖−1𝑗 +𝐷𝑢𝑢𝑖𝑗+1 + 𝐸𝑢𝑢𝑖𝑗−1 + 𝐹𝑣, (2.78) 

where: 

𝐴𝑢 = −2𝜇(𝐼𝑖+1𝑗) ⋅
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖

− 𝜇 (𝐼
𝑖+
1
2
𝑗+
1
2
) ⋅
Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗

− 2
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖−1

𝜇(𝐼𝑖𝑗) − 𝜇 (𝐼𝑖+1
2
𝑗−
1
2
) ⋅

Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗−1
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𝐵𝑢 = 2𝜇(𝐼𝑖+1𝑗)
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖

𝐶𝑢 = 2
Δ𝑦𝑣𝑗−1
Δ𝑥𝑢𝑖−1

𝜇(𝐼𝑖𝑗) 

𝐷𝑢 = 𝜇 (𝐼𝑖+1
2
𝑗+
1
2
)
Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗

𝐸𝑢 = 𝜇 (𝐼
𝑖+
1
2
𝑗−
1
2
)
Δ𝑥𝑣𝑖
Δ𝑦𝑢𝑗−1

𝐹𝑣 = (𝐼
𝑖+
1
2
𝑗+
1
2
) (𝑣𝑖+1𝑗 − 𝑣𝑖𝑗) − 𝜇 (𝐼𝑖+1

2
𝑗−
1
2
) (𝑣𝑖+1𝑗−1 − 𝑣𝑖𝑗−1) 

Note that 𝐴𝑢 , 𝐵𝑢 , 𝐶𝑢 , 𝐷𝑢 , 𝐸𝑢 can be determined implicitly, while 𝐹𝑣   must be determined 

explicitly as a consequence of the varying viscosity field. The final discretized form of 

momentum equation to be solved is as follows: 

[
𝛥𝑥𝛥𝑦

𝛥𝑡
𝜌(𝐼) −

1

𝑅𝑒
𝐴𝑢] 𝑢𝑖𝑗

∗ −
1

𝑅𝑒
[𝐵𝑢𝑢𝑖+1𝑗

∗ + 𝐶𝑢𝑢𝑖−1𝑗
∗ + 𝐷𝑢𝑢𝑖𝑗+1

∗ + 𝐸𝑢𝑢𝑖𝑗−1
∗ ]

= 𝛥𝑥𝛥𝑦(−𝛻𝑝𝑛 +𝑊𝑒−1𝑓𝜎
𝑛) − 𝜌(𝐼) ⋅ 𝑁(𝑢𝑖𝑗

𝑛 ) +
1

𝑅𝑒
𝐹𝑣
𝑛.

(2.79) 

The pressure correction scheme also requires a further modification because of the 

inhomogeneous distribution of the density field. As a result, Eq. (2.35 ) is rewritten as: 

𝒖𝑛+1 − 𝒖∗

∆𝑡
= −∇(𝑝𝑛+1 − 𝑝𝑛)

1

𝜌𝑛
≡ −𝛻𝑝′ ⋅

1

𝜌𝑛
. (2.80) 

Taking the divergence of both sides of the equation yields: 

1

∆𝑡
∇ ⋅ 𝒖∗ = ∇ ⋅ (∇𝑝′ ⋅

1

𝜌𝑛
) (2.81) 

The RHS of Eq. (2.81) is then discretized by assuming linear variation of the density field in 

the adjacent to the interface region: 
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∇ ⋅ (∇𝑝′ ⋅
1

𝜌𝑛
) = −(

2

(𝜌𝑖𝑗
𝑛 + 𝜌𝑖+1𝑗

𝑛 )∆𝑥𝑣𝑖∆𝑥𝑢𝑖−1
+

2

(𝜌𝑖𝑗
𝑛 + 𝜌𝑖−1𝑗

𝑛 )∆𝑥𝑣𝑖−1∆𝑥𝑢𝑖−1

+
2

(𝜌𝑖𝑗
𝑛 + 𝜌𝑖𝑗+1

𝑛 )∆𝑦𝑢𝑗∆𝑦𝑣𝑗−1
+

2

(𝜌𝑖𝑗
𝑛 + 𝜌𝑖𝑗−1

𝑛 )∆𝑦𝑢𝑗−1∆𝑦𝑣𝑗−1
)𝑝𝑖𝑗

+
2

(𝜌𝑖𝑗
𝑛 + 𝜌𝑖+1𝑗

𝑛 )∆𝑥𝑣𝑖∆𝑥𝑢𝑖−1
𝑝𝑖+1𝑗

+
2

(𝜌𝑖𝑗
𝑛 + 𝜌𝑖−1𝑗

𝑛 )∆𝑥𝑣𝑖−1∆𝑥𝑢𝑖−1
𝑝𝑖−1𝑗

+
2

(𝜌𝑖𝑗
𝑛 + 𝜌𝑖𝑗+1

𝑛 )∆𝑦𝑢𝑗∆𝑦𝑣𝑗−1
𝑝𝑖𝑗+1

+
2

(𝜌𝑖𝑗
𝑛 + 𝜌𝑖𝑗−1

𝑛 )∆𝑦𝑢𝑗−1∆𝑦𝑣𝑗−1
𝑝𝑖𝑗−1 

(2.82) 

Using the solution obtained for the Poisson equation (2.81), the projection of predicted 

non-solenoidal velocity to the divergence free subspace is performed by: 

𝒖𝑛+1 = 𝒖∗ − 𝛻𝑝′ ⋅
∆𝑡

𝜌𝑛 (2.83) 
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3. Verification Study

In this study, a solver for simulation of incompressible, Newtonian, unsteady flow with 

an incorporated IBM capability was developed. This chapter presents the verification study 

of the developed solver by comparing the presently obtained numerical results with the 

independent data known from literature for three benchmark problems.  

To prove the correctness of the implementation of the developed solver we simulate 

the flow for a number of benchmark configurations. A good agreement between the 

independent and the presently obtained results provides a solid basis for asserting that the 

flow currently simulated for novel configurations, by using the presently developed solver, 

is accurate and physically correct. The test cases presented in this chapter examine the 

accuracy of the Navier-Stokes equations solver for shear driven flow, the correctness and 

accuracy of implementation of the IBM, and the implementation of the gradient descent 

algorithm for finding the local minima of the given function. In addition, non-uniform grid 

solver which has been also used for the numerical experiments in this study needs a 

separate verification. The results obtained by the non-uniform grid solver are presented for 

two out of three benchmarks, while a comparison between the solutions obtained on 

uniform and non-uniform grids is presented for the first benchmark. 

3.1. Lid-Driven cavity flow 

The first benchmark, lid-driven cavity flow, is aimed at verifying the capability of the 

developed solver to simulate shear driven flows. A physical model including geometry and 

boundary conditions for the lid-driven cavity configuration are presented in Figure 3.1 . The 

flow was simulated for three different values of 𝑅𝑒 number.  

The physical model is governed by Eq.(2.31) and Eq. (2.32). No-slip boundary condition 

for all the velocity components was applied at all the cavity boundaries. The top lid was held 

at constant horizontal velocity 𝑢𝑙𝑖𝑑 . The 𝑅𝑒 number represents the ratio of the inertia to 

the viscous force and for the scales typical of the present physical model is defined as: 

𝑅𝑒 =
𝜌𝑢𝑙𝑖𝑑𝐿

𝜇
, (3.1) 
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where 𝜌 is the fluid density, 𝐿 is the side length of square cavity, 𝜇 is the fluid dynamic 

viscosity and 𝑢𝑙𝑖𝑑 is the velocity of the cavity top lid. 

The data collected for the quantitative verification includes the values of the horizontal 

and vertical velocity components taken along vertical and horizontal centerlines. A good 

agreement between the presently obtained results and the data reported in [48] is 

observed for the entire range of 𝑅𝑒 numbers as detailed in  Table 3.1 and 3.2. The maximal 

deviations between the results are observed at locations where the value of the 

corresponding velocity component is close to zero. Note that the same trend is also 

observed with respect to the grid independence study. For all other locations, the relative 

deviations between the independent and the presently obtained results do not exceed 5%. 

Distributions of velocity components in 𝑥 and 𝑦 directions along the vertical centerline 

calculated on 50 × 50 and 160 × 160 uniform grids for 𝑅𝑒 = 100 are presented in Figure 

3.2 and in 3.3, respectively.  

 Table 3.1 - comparison of the values of  velocity component in 𝒙 direction obtaibed  along vertical centerline of the 

cavity. The results were calculated  on 160×160 uniform grid 

y 𝑹𝒆 = 𝟏𝟎𝟎 𝑹𝒆 = 𝟏𝟎𝟎𝟎 𝑹𝒆 = 𝟓𝟎𝟎𝟎 

- Ref. Results Error % Ref. Results Error % Ref. Results Error % 

1.0000 1.0000 1.0000 0 1.0000 1.0000 0.00 1.0000 1.0000 0 

0.9766 0.8412 0.8436 -0.29 0.6593 0.6623 0.46 0.4822 0.4855 -0.68 

0.9688 0.7887 0.7919 -0.4 0.5749 0.5787 0.65 0.4612 0.4634 -0.48 

0.9609 0.7372 0.7404 -0.43 0.5112 0.5138 0.52 0.4599 0.4613 -0.30 

𝑢 = 𝑢𝑙𝑖𝑑    ,   𝑣 = 0 

𝑢 = 0   ,   𝑣 = 0 

𝑢 = 0 

𝑣 = 0 

𝑢 = 0 

𝑣 = 0 

Figure 3.1 - Lid-driven cavity flow, physical model. 
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y 𝑹𝒆 = 𝟏𝟎𝟎 𝑹𝒆 = 𝟏𝟎𝟎𝟎 𝑹𝒆 = 𝟓𝟎𝟎𝟎 

0.9531 0.6872 0.6908 -0.53 0.4660 0.4677 0.36 0.4604 0.4618 -0.30 

0.8516 0.2315 0.2365 -2.15 0.3330 0.3324 -0.19 0.3356 0.3374 -0.54 

0.7344 0.0033 0.0041 -23.61 0.1872 0.1859 -0.68 0.2009 0.1979 1.49 

0.6172 -0.1364 -0.1387 -1.71 0.0570 0.0561 -1.65 0.0818 0.0783 4.28 

0.5000 -0.2058 -0.2090 -1.53 -0.0608 -0.0613 0.87 -0.0303 -0.0316 -4.29 

0.4531 -0.2109 -0.2138 -1.37 -0.1065 -0.1068 0.29 -0.0740 -0.0743 -0.41 

0.2813 -0.1566 -0.1576 -0.61 -0.2781 -0.2772 -0.30 -0.2285 -0.2291 -0.26 

0.1719 -0.1015 -0.1017 -0.22 -0.3829 -0.3839 0.25 -0.3305 -0.3277 0.85 

0.1016 -0.0643 -0.0644 -0.13 -0.2973 -0.2967 -0.19 -0.4043 -0.4048 -0.12 

0.0703 -0.0478 -0.0466 2.37 -0.2222 -0.2207 -0.67 -0.4364 -0.4282 1.88 

0.0625 -0.0419 -0.0420 -0.12 -0.2020 -0.2005 -0.73 -0.4290 -0.4178 2.61 

0.0547 -0.0372 -0.0372 -0.15 -0.1811 -0.1798 -0.73 -0.4117 -0.3984 3.23 

0 0 0 0 0 0 0 0 0 0 

Table 3.2 - comparison of the values of velocity component in 𝒚 direction obtained along a horizontal  centerline of the 

cavity. The results were calculated  on uniform grid 

x 𝑹𝒆 = 𝟏𝟎𝟎 𝑹𝒆 = 𝟏𝟎𝟎𝟎 𝑹𝒆 = 𝟓𝟎𝟎𝟎 

- Ref. Results Error % REF. Results Error % REF. Results Error % 

1.0000 0 0 0 0 0 0 0 0 0 

0.9766 -0.0591 -0.0622 -0.0531 -0.2279 -0.2255 1.05 -0.4977 -0.4970 0.14 

0.9688 -0.0739 -0.0780 -0.0551 -0.2937 -0.2908 0.97 -0.5506 -0.5467 0.71 

0.9609 -0.0886 -0.0934 -0.0538 -0.3553 -0.3524 0.82 -0.5540 -0.5499 0.74 

0.9531 -0.1031 -0.1085 -0.0524 -0.4104 -0.4066 0.93 -0.5287 -0.5249 0.72 

0.8516 -0.1691 -0.1770 -0.0468 -0.5264 -0.5207 1.09 -0.4144 -0.4179 -0.84 

0.7344 -0.2245 -0.2337 -0.0411 -0.4265 -0.4227 0.88 -0.3621 -0.3652 -0.86 

0.6172 -0.2453 -0.2534 -0.0328 -0.3202 -0.3164 1.19 -0.3001 -0.3013 -0.40 

0.5000 0.0545 0.0575 -0.0549 0.0258 0.0259 -0.47 0.0095 0.0115 -21.05 

0.4531 0.1753 0.1794 -0.0237 0.3254 0.3221 0.99 0.2728 0.2730 -0.07 

0.2813 0.1751 0.1792 -0.0236 0.3340 0.3306 1.02 0.2807 0.2810 -0.11 

0.1719 0.1608 0.1647 -0.0242 0.3769 0.3719 1.33 0.3537 0.3549 -0.34 
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x 𝑹𝒆 = 𝟏𝟎𝟎 𝑹𝒆 = 𝟏𝟎𝟎𝟎 𝑹𝒆 = 𝟓𝟎𝟎𝟎 

0.1016 0.1232 0.1263 -0.0253 0.3330 0.3281 1.49 0.4295 0.4268 0.63 

0.0703 0.1089 0.1117 -0.0253 0.3099 0.3053 1.48 0.4365 0.4316 1.12 

0.0625 0.1009 0.1035 -0.0253 0.2963 0.2917 1.53 0.4333 0.4270 1.45 

0.0547 0.0923 0.0947 -0.0255 0.2807 0.2763 1.58 0.4245 0.4171 1.74 

0 0 0 0 0 0 0 0 0 0 

Figure 3.2 – Comparison of the presently obtained steady state values of velocity component in 

𝑥 direction calculated on 50 × 50 (∗) and 160 × 160 (solid line) grids  with the data reported 

by Ghia & Shin data [48] (o) for  𝑅𝑒 = 100. 
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Figure 3.3 - Comparison of the presently obtained steady state values of velocity component in 𝑦 

direction  calculated on 50 × 50 (∗) and 160 × 160 (solid line) grids  with the data reported by 

Ghia & Shin data [48] (o) for  𝑅𝑒 = 100 

The maximum relative deviation between the velocity values obtained on both grids 

does not exceed 5.5% and 8.2% for the velocity values in 𝑥 and 𝑦 directions, respectively, 

which successfully verifies the grid independence of the results.  

Additionally, a comparison between the results obtained on uniform grid and these 

calculated on non-uniform (stretched) grid is shown in Figure 3.4. For the lid-driven cavity 

configuration, the solver should be capable of resolving the flow characterized by high 

velocity gradients typical of the vicinity of the cavity walls. Therefore, we investigated the 

performance of the solver when utilizing non-uniform grids stretched towards the cavity 

walls. The simulation was performed on non-uniform 70 × 70  grid whose first step next to 

the cavity boundary was equal to ℎ = 1/100 (instead of ℎ = 1/70 characterizing that of 

the uniform grid).    

The capability to perform simulations on non-uniform (stretched) grid is critical for the 

configurations involving large computational domains compared to the regions 

characterized by high values of gradients of the flow characteristics. Without the above 

capability, the simulations can often be computationally prohibited. 
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Figure 3.4 - comparison between the results obtained on the uniform grid and on the non-uniform 

(stretched) grid: (a) velocity in 𝑥 direction (b) velocity in 𝑦 direction. 

We summarize the verification procedure for the lid driven cavity flow by verifying that 

the obtained velocity field is divergence free. The time evolution of the maximum value 

of the velocity divergence calculated at each time step is presented in  Figure 3.6.

It can be seen that the maximum value of the divergence velocity was obtained at the 

beginning of the simulation and was close  5 ⋅ 10−9. The maximum value of the divergence 

of the velocity decreases as the simulation progresses by about an order of 
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Figure 3.5 – (a) uniform and (b) non-uniform (stretched) grids. 
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magnitude, which successfully verifies the correctness of imposing the incompressibility 

constraint.  

 Figure 3.6 – maximum velocity divergence at each time step. 

3.2. Moving cylinder 

The second benchmark, focusing on the flow around cylinder at spontaneous start, is 

aimed at verifying the presently implemented IBM capability for the transient flows. The 

verification was performed by simulating a circular cylinder moving across the cavity after 

spontaneous start. Physical model including geometry and boundary conditions of the 

above configuration are shown in Figure 3.7. The flow was simulated for two different 

values of the 𝑅𝑒 number.  

The physical model is governed by Eq. (2.31) and Eq. (2.32) which includes additional 

body force stemming from forces exerted from the cylinder to the surrounding fluid as 

determined by the IBM formalism described in section 2.2.5. No-slip boundary condition for 

all the velocity components was applied at all the cavity boundaries. All through the 

simulation the velocity of the cylinder in horizontal direction was set to the value of 𝑢𝐷 

while the initial values of the velocity within the cavity was set to  𝑢 = 𝑣 = 0. The 𝑅𝑒 

number is based on the scales typical of the current configuration and is defined as: 
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𝑅𝑒 =
𝜌𝑢𝐷𝐿

𝜇
(3.2) 

The simulations were performed on a non-uniform grid with resolution 420 × 240 and 

grid step equal to  ℎ =
1

50
 near the cylinder boundary. The time step value was set to  ∆𝑡 =

10−4 . 

The time evolution of the drag coefficient 𝐶𝑑 was used for verification study. An 

excellent agreement between the presently obtained results and the data reported in 

[49], [50] and [51] is observed for both values of 𝑅𝑒 numbers as shown in Figure 3.8. The 

fluctuations that persist in the time evolution history are attributed to the numerical noise, 

similar to that reported in [49]. The noise can be reduced by using smaller time steps, or 

by using a smoothing technique for discrete Dirac delta functions [52]. 

The drag coefficient 𝐶𝑑 was calculated by taking advantage of the IBM formalism, as 

given in Eq.(2.52), explicitly yielding the values of singular forces 𝐹(𝑿(𝑠)) acting at the 

points of the immersed surface: 

𝐶𝑑 = −
∑𝐹𝑥(𝑿(𝑠))

2
(3.3) 

𝑢 = 0 

𝑣 = 0 

𝑢 = 0 

𝑣 = 0 

𝑢𝐷 = −1 

16.5𝐷 13.5𝐷 

15𝐷 

15𝐷 

𝐷 

𝑢 = 0   ,   𝑣 = 0 

𝑢 = 0   ,   𝑣 = 0 

Figure 3.7 - Moving cylinder: physical model. 
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3.3. Gradient descent 

In the current study, the gradient descent method is used in order to find the local 

minimum of several objective functions. In this section the implemented methodology has 

been validated based on three general test cases. 

All test cases consider 𝑁 circular particles with random radii 0.01 < 𝑟𝑖 < 0.1 

(dimensionless) and random initial location 𝒙𝑖 = (𝑥𝑖, 𝑦𝑖) inside square domain 𝐿 × 𝐿. The 

energy stored between any pair of particles is given by [53]: 

𝑒𝑖𝑗 = {
𝜖(1 − 𝑑𝑖𝑗 𝜎𝑖𝑗⁄ )

𝛽
𝛽⁄                        𝑑𝑖𝑗 < 𝜎𝑖𝑗

0 𝑑𝑖𝑗 ≥ 𝜎𝑖𝑗

(3.4) 

Where 𝜖 is the characteristic energy scale of the interaction, 𝑑𝑖𝑗(𝒙𝒊, 𝒙𝒋) is the separation 

between the center of the particles 𝑖 and 𝑗, and 𝜎𝑖𝑗 = 𝑟𝑖 + 𝑟𝑗. The total energy of a given 

configuration is: 

𝑉 =∑𝑒𝑖𝑗 (3.5) 
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Figure 3.8 - Comparison between the time evolutions of drag coefficient, obtained by the 

presented solver for 𝑅𝑒 = 40, 200 (– ) and the numerical results reported by in [48]  

(𝑅𝑒 = 40, 200, − −), [49] (𝑅𝑒 = 40, ∙ −) and [50] (𝑅𝑒 = 200 ,⋯ ) [50]. 
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The presented test cases used 𝜖 = 1 and 𝛽 = 2 (for repulsive harmonic springs). In each 

test case the gradient descent method has been used, as described in section 2.2.6, in order 

to get to the local minimum value of 𝑉: 

(𝒙1…𝒙𝑛)
𝑘+1 = (𝒙1…𝒙𝑛)

𝑘 − 𝛼∇𝑉𝑛 (3.6) 

For the first test, the algorithm has been used without imposing any constraints on 

the particles’ location. The simulation started from a random distribution of overlapping 60 

particles, presented in Figure 3.9 (a). At the final stage, the algorithm reached a non-

overlapped distribution while the total energy of the system decreased monotonically and 

until reaching a zero value. As discussed in section 2.2.6, the parameter α can be adjusted 

in order to accelerate convergence of the algorithm, although no adjustments were made 

for the present case as the total energy converged rapidly to zero by setting a constant 

value of 𝛼 = 1. 

For the second test, a similar configuration of 60 randomly distributed particles with 

random radii was chosen.  In this case the location of the particles was limited in a way that 

the particles circumference cannot get out of the square 𝐿 × 𝐿  domain at any time (Figure 

3.10). Similarly, to the first test, the energy decreased monotonically and reached zero 

value, although it took almost twice as many iterations. 

The third test case was similar to the second one with only difference that it was 

performed with additional 10 particles (70 particles in total). In this configuration the energy 

decrease was characterized by fluctuations and converged to the finite value higher than 

zero (see Figure 3.11) which indicates the existence of overlapped regions between some 

of particles.   
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Figure 3.9 – Rearrangement of randomly distributed particles by the gradient decent algorithm 

for the open boundaries test case: (a) initial random distribution of 60 cylinders with random radii 

(0.01 ≤ 𝑟 ≤ 0.1) located within square domain of 𝐿 × 𝐿; (b) rearranged distribution of the 

cylinders after applying the gradient decent algorithm; (c) iterations evolution of the energy. 
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Figure 3.10 - Rearrangement of randomly distributed particles by the gradient decent algorithm 

for the closed boundaries test case: (a) initial random distribution of 60 cylinders with random 

radii (0.01 ≤ 𝑟 ≤ 0.1) located within square domain of  𝐿 × 𝐿; (b) rearranged distribution of the 

cylinders after applying the gradient decent algorithm together with the closed boundaries 

constraint; (c) iteration evolution of the energy. 
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Figure 3.11 - Rearrangement of randomly distributed particles by the gradient decent algorithm 

for the closed boundaries jammed test case: (a) initial random distribution of 70 cylinders with 

random radii (0.01 ≤ 𝑟 ≤ 0.1) located within square domain of  𝐿 × 𝐿; (b) rearranged 

distribution of the cylinders after applying the gradient decent algorithm together with the closed 

boundaries constraint; (c) iteration evolution of the energy. 
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3.4. Two phase flow – drop under shear flow 

Although two-phase modeling was not an inherent part of the current study, it might 

be used in future studies. Hence, we focused on analysis of the configuration of bubble 

under a shear flow, which is the last test case used for the verification of two-phase model 

presented in section 2.2.7. 

The initial state of the problem is given in Figure 3.12. The circular drop is immersed 

into fully developed Couette flow and subjected to pure shear stress, while the gravity force 

is neglected. Under the action of shear stresses, the drop undergoes deformation until the 

increasing surface tension forces become equal to the shear forces and the drop shape 

reaches equilibrium. The square box domain is of dimensions [2𝐷, 2𝐷], and the center of 

the immersed circular drop with diameter 𝐷 coincides with the geometrical center of the 

box (point [𝐷, 𝐷] ).  

The simulations were performed for four different values of Reynolds number, 𝑅𝑒 =

1, 10, 50 , and 100. The viscosity ratio inputted to the simulation is 𝜇2/𝜇1 = 10 and the 

relation between the viscous and surface tension forces is defined by the capillary number 

𝐶𝑎: 

which was currently set to be Ca = 0.2,  0.4. The boundary conditions applied to the 

simulations were: 

Periodic boundary conditions were applied for the velocity and pressure fields in the 

horizontal direction.  

A comparison between the final shape of the drop obtained by our simulations to an 

independent data, reported in [54], is presented in Figure 3.13. The mass loss obtained at 

the final drop shape is detailed in Table 3.3. It can be seen that the maximum value of the 

mass loss obtained is 0.0628%, which indicates an appropriate implementation of the  

procedure providing  the solver incompressibility and the reconstruction tecnique (see 

Figure 2.5). 

Ca =
𝑅𝑒

𝑊𝑒
 , 

(3.7) 

u(𝑥, 𝑦 = 2𝐷) = u(𝑥, 𝑦 = 0) = U 

v(𝑥, 𝑦 = 2𝐷) = v(𝑥, 𝑦 = 0) = 0. 
(3.8) 
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Figure 3.12 - Initial configuration of drop under shear stress [55] . 

Figure 3.13 - A comparison between the final shape of the drop obtained by our simulations to an 

independent data. Solid line (-) refers to the presented results, stars (*) refers to data reported in 

[54]. 

 Table 3.3 - mass loss [%] at the obtained final drop shape. 
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4. Parametric study

In order to ensure that the developed model provides physical results, two parameters 

must be calibrated: the source strength - 𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠  [
𝑔

𝑠
] and the contractile spring stiffness -

𝑘𝑐𝑦𝑡𝑜  [
𝑔

𝑐𝑚⋅𝑠2
]. Although both parameters are artificial and do not have immediate physical 

analogue to the characteristics of realistic cell, they directly affect the duration of the 

mitosis process and therefore strongly correlate with proliferation rate. In addition, we will 

perform the grid independence study for the obtained results. 

4.1. Resolution of the grid 

This section presents the grid independence study. Resolution of the uniform grid is 

defined as 𝑟 = 𝑁/𝐿,  where 𝑁  is the number of steps in any direction of a quadradic domain 

with edge length 𝐿. The grid independence study was performed by performing the 

simulations on a  number  of representative grids, while the time required to complete the 

mitosis process (growth and division) of the first individual cell was measured on each grid. 

It turned out that the times measured on the different grids can differ significantly. The 

reason for the observed deviation between the times is related to the ability of the 

developed solver to preserve the cell volume (a key factor for any incompressible model) 

throughout the entire simulation when continuously rearranging the points of the cell 

boundary. We recall that in accordance with the IBM formalism the rearrangement 

procedure aimed at preserving an equal distance between the adjacent boundary points is 

required to provide the highest precision for obtained results. The points rearrangement on 

the cell boundary (see Figure 2.5) was performed every fixed number of time steps. In our 

experiments 3 values for the rate of the points rearrangement, namely every 3, 6 and 9 tine 

steps, were chosen.  

The volume loss is an inherent part of the boundary rearrangement process and can be 

minimized either by using a more sophisticated rearrangement scheme or by higher  grid 

resolution. Our numerical experiments revealed that overly frequent boundary 

reconstruction can increase the volume loss. For this reason, an effort was made to find a 

balance between the requirement to maintain an equal distance between the IB points and 

the need to accurately preserve the mass conservation of each individual cell. 
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The mitosis process (see Figure 2.4) has been simulated for a number of grid resolutions 

and the time required to complete the entire process was sampled. In addition to the grid 

resolution, the effect of the frequency of reconstruction of the cell boundary was examined . 

All the data collected shown in Figure 4.1, clearly demonstates that the duration of the 

mitosis proces decreases monotonically with incrising grid resolution  when the location of 

the  cell boundary points  is uptaded every 3 time steps. For more frequent reconstruction 

of the points the mitosis duration remains almost  unchanged  with respect  to the grid 

resolution. Note also that when the grid resolution is characterized by the value of  𝑁 ≥

260 the duration of the mitosis stabilizes for all the cell reconstruction frequencies.  

Figure 4.1 – Duration of the mitosis process as a function of grid resolution for different 

frequencies   of reconstruction of the cell boundary points. 

To sum up, the conclusion coming up from the performed analysis, is that the 

reconstruction rate of every 9 time steps and grid with resolution of 𝑁 = 300 can safely be 

chosen to provide a self-consistent duration of the mitosis process. We next focus on the 

calibration of the developed model with respect to cytokinesis and the cell growth duration. 
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4.2. Cytokinesis calibration 

Calibration of the developed model starts with the calibration of the cytokinesis 

process. According to [32], the cytokinesis process is much shorter compared to the 

complete mitosis process and takes no more than 50 min. The parameter governing the 

cytokinesis duration is the value of the contractile spring constant 𝑘𝑐𝑦𝑡𝑜 , activated when 

the mother cell doubles its size, and the cell division process starts.  

To precisely calibrate the developed model, a set of simulations corelating between 

𝑘𝑐𝑦𝑡𝑜 and duration of cytokinesis process was performed and the results are presented in 

Figure 4.2. It is important to note that as a result of cells interactions inherent to the growing 

tissue whose specific randomly chosen cells undergoe cytokinesis there are variations in the 

duration of the cytokinesis process measured for different cells. For this reason, averaging 

of the measured cytokenesis durations  should be done. In the current study the averaging 

was performed  for the cytokenesis durations measured for the first 50 divisions within the 

specific tissue for each value of 𝑘𝑐𝑦𝑡𝑜. It can be seen that the value of the contractile spring 

constant eaual to 2300 [
𝑔

𝑐𝑚⋅𝑠2
] yields the value of 30.09 minutes for the duration of 

cytokinesis process. The value of  𝑘𝑐𝑦𝑡𝑜 = 2300 [
𝑔

𝑠2
] was chosen for all further calculations

as it provides the best fit of the developed model to the observed experimental data [32], 

postulating that the average time typical of cytokinesis is 29.23 [𝑚𝑖𝑛].  
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Figure 4.2 – The cytokinesis duration versus the contractile spring rigidity as obtained from 

the numerical simulations. 𝑘𝑐𝑦𝑡𝑜 = 2300 [
𝑔

𝑐𝑚⋅𝑠2
] yields the desired value for cytokinesis 

duration. 

4.3. Cell growth calibration 

In the next step the entire mitosis process has to be calibrated. Acording to [32] the 

average time that takes a cell to double its size is 5.57 [ℎ], which detrmines the value of 

𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠 [
𝑔

𝑠
]. As shown in Figure 4.3  ,the doubling time value equal to  5.57 [ℎ] is obtained

by taking a value of the source strength equal to 6.7 ⋅ 10−8  [
𝑔

𝑠
]. 

Figure 4.3 – the duration of the cell area doubling versus the source strength. 
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with the experimental results reported in [56] postulating that that the viscosity and the 

rigidity values of the cytoskeleton (the complex network material in the cell cytoplasm, 

which gives the cell its mechanical properties) are in the range of  50 − 140 [
𝑔

𝑐𝑚⋅𝑠
] and of 

490 − 850 [
𝑔

𝑐𝑚⋅𝑠2
], respectively. According to [57], both phases that compose the 

cytoplasm (network and solution phase inside the cell membrane) can be treated as 

incompressible material with quite similar density. For this study, we assume that the fluid 

density is homogeneous and equal to 𝜌 = 1.35 [
𝑔

𝑐𝑚3
]. The adhesion links are modeled by

the linear springs with stiffness coefficient of 𝑘𝑎𝑑ℎ = 100 [
𝑔

𝑐𝑚⋅𝑠2
] , same as used by Rejniak 

in [32]. In addition, the calibration process yielded the value of the source strength equal to 

𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠 = 6.7 ⋅ 10−8  [
𝑔

𝑠
] and the value of contractile spring stiffness equal to  𝑘𝑐𝑦𝑡𝑜 =

2300 [
𝑔

𝑐𝑚⋅𝑠2
]. 

In order to normalize the NS equations, we need to define the characteristic values 

of  𝐿, 𝑈 and 𝑇 for length, velocity, and time scales, respectively.  For the verification 

purposes the characteristic scales were chosen in accordance with the study of Rejniak [32]. 

The characteristic length is equal to a diameter of a fully developed tumor 𝐿 = 0.0285 [𝑐𝑚] 

(according to figure in [32]). The time needed for one individual cell to progress to the 

tumor mentioned is 𝑇 = 153 [ℎ] = 550800 [𝑠]  as also mentioned in [1]. Basing on all the 

above data, the characteristic velocity can be obtained by: 

𝑈 =
𝐿

𝑇
= 5.174 ⋅ 10−8  [

𝑐𝑚

𝑠
] 

providing the value of Reynolds number: 

𝑅𝑒 =
𝜌𝑈𝐿

𝜇
= 1.991 ⋅ 10−11 

Table 4.1 - Summary of parameters value and its normalizing factor 

Parameter Symbol Dimensional value 
Normalizing 

factor 

Viscosity 𝜇 100 [
𝑔

𝑐𝑚 ⋅ 𝑠
] - 

Density 𝜌 1.35 [
𝑔

𝑐𝑚3
] - 
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Characteristic length 𝐿 0.0285 [𝑐𝑚] 

Characteristic velocity 𝑈 5.174 ⋅ 10−8 [
𝑐𝑚

𝑠
] - 

Source strength 𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠 6.7 ⋅ 10−8  [
𝑔

𝑠
] 

𝜌𝑈

𝐿

Contractile spring 

stiffness 
𝑘𝑐𝑦𝑡𝑜 2300 [

𝑔

𝑐𝑚 ⋅ 𝑠2
] 𝜌𝑈2 

Adhesion spring 

stiffness 
𝑘𝑎𝑑ℎ  100 [

𝑔

𝑐𝑚 ⋅ 𝑠2
] 𝜌𝑈2 

Surface tension spring 

stiffness 
𝑘𝑆𝑇 500 [

𝑔

𝑐𝑚 ⋅ 𝑠2
] 𝜌𝑈2 
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5. Validation study, results, and discussion

In this chapter we present a detailed validation study, quantitatively comparing 4 basic 

metrics typical of the tumor progression as proposed by Rejniak [32]. The purpose of this 

chapter is to validate that the currently implemented basic model produces realistic digital 

images of cell colonies.  

All the simulations were performed in a quadradic domain of [50𝑑 × 50𝑑], where 𝑑 is 

the initial cell diameter. An open boundary condition was applied on each boundary of the 

domain. The simulations started with one individual cell and eventually reached a well-

developed tumor containing about 700 cells (Figure 5.1). 

Figure 5.1 – Tumor development, from its very early stage to a well-developed tumor containing 680 

cells.   
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5.1. Area conservation after the cell division 

Following the study of Rejniak [32], the area of the daughter cells immediately after the 

mother cell division has been tracked. Quantitative comparison between the obtained 

results and the data reported in [32] is shown in Figure 5.2. As no preference is given to any 

of the daughter cells created in course of division of the corresponding mother cell, it would 

be reasonable to expect the same values (equal to  78.53 [𝜇𝑚2]) of both daughter cells 

areas right after the division process is completed. However, uneven discretization of the 

cell membrane and certain area loss are caused by the discretization errors. The discrepancy 

is quantified by measuring the area of each specific daughter cell and by calculating the 

average area of all the daughter cells as shown in Figure 5.2 (a).  

Figure 5.2 - Values of the daughter cell area measured immediately after division of the mother 

cell: (a) presently obtained results; (b) independent results [32]. 

It can be seen that all the obtained values of daughter cell areas are within the range 

of  ±10%  with respect to the calculated average value which is a bit lower than an expected 

value equal to 78.53 [𝜇𝑚2]. Nevertheless, the obtained results are consistent with the 

observations made in [1] (see Figure 5.2(b)) reporting the same order of scattering in area 

of daughter cells. Note also that the results obtained by the presently developed model 

provide a bit higher value of the average cell area, indicating a lower area loss. 

5.2. The cell area doubling time 

The next metrics chosen for validation of the developed model is the cell area doubling 
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until the moment the cell area has been doubled reaching the value of 2 ⋅ 78.53 =

157.06 [𝜇𝑚2] . 

Figure 5.3  – Time required for doubling of individual cells: (a) presently obtained result; (b) 

independent results [32]. 

Comparison of the doubling time metrics between the present and the independent 

results reported in [32] can be seen in Figure 5.3. It can be seen that the presently obtained 

results are characterized by a lower variance compared to that reported in [32], which can 

be attributed to specifically developed procedure accurately preserving the symmetry when 

modeling the cytokinesis process.

5.3. The duration of the cytokinesis process 

The third metrics chosen for validation of the developed model is the duration of the 

cytokinesis process, i.e., the time interval measured from the moment that a cell doubled 

its area to the moment of creating two daughter cells. Our simulation yielded quite similar 

results to these reported in Rejniak’s study [32], as can be seen in Figure 5.4. 

0 10 20 30 40 50 60 70 80 90 

Individual growing cell number 

3 

4

5 

6

7

8 

G
ro

w
th

 t
im

e 
[h

o
u

rs
] 

(a) (b)

𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒: 5.5059 ℎ𝑜𝑢𝑟𝑠 

0 10 20 30 40 50 60 70 80 90 

Individual daughter cell number 

15 

20 

25 

30 

35 

40 

45 

ti
m

e 
o

f 
cy

to
ki

n
es

is
 [

m
in

] 

(a

)
(b)

𝑀𝑒𝑎𝑛 𝑡𝑖𝑚𝑒: 30.379 [𝑚𝑖𝑛] 



68

Figure 5.4 - Time required for completing the cytokinesis process: (a) presently obtained result; 

(b) independent results [32]. 

It can be clearly seen that the results provided by the developed model are 

characterized by a higher scatter compared to the previously discussed metrics. The reason 

for such a behavior is that the cytokinesis is affected by the transient forces exerted both 

from the division spring and from the cell environment (such as adhesive connections or 

another mitotic cells). This is in contrast with the cell doubling time, which is primarily 

governed by the source strength and the incompressibility constraint of the fluid. 

5.4. Time evolution of the proliferation and the tumor area 

Time evolution of the proliferation and the tumor area shown in Figure 5.5  was chosen 

as the last metrics for validation of the presently developed model. This validation metrics 

is of significant importance as it reflects the global impact of the whole tumor on cytokinesis 

duration of every specific cell.  As has been already stated, the cytokinesis duration is 

affected by external forces exerted from the far cell environment, thus properly validated 

time evolution of the proliferation and the tumor area will provide correct picture of the 

tumor development in a long term.  

The quantitative similarity between the obtained and the previously reported 

results [1] is quite evident. Remarkable that an initially observed exponential trend of 

growth of the cell population is further relaxed to a linear growth, which is a qualitatively 

typical clinical behavior of realistic tumors [58].  
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Figure 5.5 - Time evolution of the proliferation and the tumor area: presently obtained results 

(a1-a2); independent results (b1-b2) [1].  Initially exponential growth of the tumor has changed 

to linear growth at t=40h. 
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6. Numerical design and analysis of the biological tissue

In this chapter, an extension of the basic model validated in the previous chapter is 

presented. Numerical algorithms, based on minimization of mechanical energy, 

determining the tissue development and progress were developed. Most of the developed 

algorithms utilize the gradient descent method (see section 2.2.6) applied either to the 

prebuilt tumor tissue or to the growth rate of individual cells during the tumor 

development. Two types of objective functions i.e., minimizing of either potential or kinetic 

energies were examined in the framework of the current research. 

6.1. Tumor energy relaxation 

In this section, the potential energy stored in the linear springs connecting between 

adjacent cells of the tissue and modelling adhesion forces within it, will be monitored. The 

springs along with the fluid located between the cells model the ECM of the tissue (see 

Figure 2.1). 

In order to build the tissue whose equilibrium state satisfies the local minimum of 

internal energy, an algorithm based on gradient descent method has been developed. At 

this stage the focus was on finding a local minimum of the potential energy stored in the 

adhesion springs, since it was assumed that it makes the main contribution to the overall 

energy stored within the tumor tissue. The energy stored in adhesion spring connecting 

between points 𝑿𝑖  and  𝑿𝑗  is defined as follows: 

𝑒𝑝(𝑿𝑖, 𝑿𝑗) = {

1

2
(‖𝑿𝑖 − 𝑿𝑗‖ − ℓ𝑎𝑑ℎ)

2
                         ‖𝑿𝑖 − 𝑿𝑗‖ ≤ 𝑟𝑎𝑑ℎ

0 ‖𝑿𝑖 − 𝑿𝑗‖ ≥ 𝑟𝑎𝑑ℎ

(6.1) 

where 𝑒𝑝 is the potential energy of the  single  adhesion spring, 𝑿𝑖  and 𝑿𝑗  are the 

coordinates of two boundary points belonging to two neighbor cells connected by the 

adhesion spring characterized by the free length ℓ𝑎𝑑ℎ , and 𝑟𝑎𝑑ℎ is the connection range (as 

defined in section 2.1). Therefore, the global internal energy stored within the tissue is given 

by: 



71

𝐸𝑝 = ∑ 𝑒𝑝𝑖,𝑗 . (6.2) 

We next introduce the coordinates of geometry center of an individual cell given by 

𝒙𝑐 = (𝑥𝑐, 𝑦𝑐). The relative location of a pair of  geometric centers of the neighbor cells 

determines  the existence of an adhesive connection between them and the amount of 

energy stored in the connection if exists .Note that the coordinates 𝑿𝑖  and 𝑿𝑗 belonging to 

the boundaries of a pair of adjacent cells entering Eq. (6.1) are function of 𝒙𝑐 of each cell. 

Therefore, the gradient of the potential energy is given by: 

∇𝐸𝑝 = (
𝜕𝐸𝑝

𝜕𝑥𝑐1
,
𝜕𝐸𝑝

𝜕𝑦𝑐1
…
𝜕𝐸𝑝

𝜕𝑥𝑐𝑛
,
𝜕𝐸𝑝

𝜕𝑦𝑐𝑛
) (6.3) 

For a given configuration of the tissue, the developed algorithm computes the 

gradient of the energy given by Eq. (6.3), and modifies the location of each cell in the 

opposite to the energy gradient direction: 

[
 
 
 
 
𝑥𝑐1
𝑦𝑐1
⋮
𝑥𝑐𝑛
𝑦𝑐𝑛]
 
 
 
 
𝑘+1

=

[
 
 
 
 
𝑥𝑐1
𝑦𝑐1
⋮
𝑥𝑐𝑛
𝑦𝑐𝑛]
 
 
 
 
𝑘

− 𝛼
∇𝐸𝑝

|∇𝐸𝑝|
, (6.4) 

Figure 6.1 - Potential energy 𝑒𝑝 stored in a adhesive spring as afunction of  ‖𝑿𝑖 −𝑿𝑗‖. At 

distance of  3ℎ the adhesion links disconnect an the energy becomes zero. 
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where 𝑘 corresponds to the iteration number and  𝛼 is a factor. In addition, no-overlapping 

constraint was enforced for all the cells entering the tissue.  

The iterations were performed until the convergence of the overall energy to the local 

minimum with a given precision was reached. To estimate the optimal value of the 

coefficient 𝛼 at each iteration four successive values of 𝛼 were tested and the value 

providing the highest rate of convergence was chosen. The energy state obtained in the 

current iteration was used as an input to the next iteration. Note that the energy value 

determined by Eq.(6.1) is normalized by the value of the spring constant 𝑘𝑎𝑑ℎ, as it allows 

to work with smaller numbers and does not affect the result provided by the gradient 

descent method.  

To answer the question whether the developed methodology yields tissue whose 

structure is close to that characterizing the tissues with minimal internal energy we next 

define the relative change between the potential energy of the original configuration and 

its counterpart obtained after applying the gradient descent method: 

∆𝐸𝑝=
𝐸𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐸𝑝𝑓𝑖𝑛𝑎𝑙

𝐸𝑝𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 , (6.5) 

and the tissue boundaries expansion in 𝑥 and 𝑦 directions: 

∆𝑥=
𝐿𝑓𝑖𝑛𝑎𝑙 − 𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐿𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 , 

∆𝑦=
𝐻𝑓𝑖𝑛𝑎𝑙 − 𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝐻𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 , 

(6.6) 

where: 

𝐿 = 𝑚𝑎𝑥(𝑥𝑐𝑒𝑙𝑙𝑠 𝑚𝑒𝑚𝑏𝑟𝑎𝑛) − 𝑚𝑖𝑛(𝑥𝑐𝑒𝑙𝑙𝑠 𝑚𝑒𝑚𝑏𝑟𝑎𝑛) 

𝐻 = 𝑚𝑎𝑥(𝑦𝑐𝑒𝑙𝑙𝑠 𝑚𝑒𝑚𝑏𝑟𝑎𝑛) − 𝑚𝑖𝑛(𝑦𝑐𝑒𝑙𝑙𝑠 𝑚𝑒𝑚𝑏𝑟𝑎𝑛) 
(6.7) 

The images of original and optimized tissue built of 24 cells can be seen in Figure 6.2 (a) 

and 6.2 (b), respectively. The iteration evolution of internal energy after employing the 

gradient descent optimization to the original tissue is shown in Figure 6.2 (c). It can be seen 

that the process of converging energy to its local minimum (Figure 6.2 [c]) is characterized 

by the high-frequency fluctuations, which are the result of the non-overlapping constraint 
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and of the discontinuity characterizing the potential spring energy of a single spring (see 

Figure 6.1). 

 Note the striking similarity existing between the original and the optimized tissues, 

although the internal energy of the optimized tissue decreased by 76%. This observation 

indicates that the structure of the tissue built by the developed methodology is physically 

justified as it is very close to that characterized by the minimized internal energy.  

Figure 6.3 shows that the impact of the optimization applied to the originally built tissue 

decreases with the tissue’s growth and proportional to  ~𝑒−0.01𝑁 where 𝑁 is the current 

cells number. In fact, the relative decrease in the internal energy stored within the tissue 

dropped from 87%  for the tissue built of 8 cells to 8% for the tissue built of 248 cells. 

Similar trend can be seen with respect to the rate of the spatial expansion of tumor 

proportional to ~𝑒−0.027𝑁   and ~𝑒−0.039𝑁  in 𝑥 and 𝑦 direction, respectively, although the 

quantitative decrease in the rate of spatial expansion amounted to a few percent.  

Important, as the tissue grows the global internal energy of the obtained tissue stabilizes 

and gets closer to its local minimum characterizing the equilibrium state. The above 

observation can be explained by the decreasing ratio of the number of growing cells to the 

total number of cells as the tissue grows. As a result, relatively small regions of the entire 

tissue are affected by the forces driving its motion. Additionally, loaded springs by their 

very nature tend to reach their equilibrium by pushing or pulling nearby cells alltrough the 

tissue development. 
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Figure 6.2 - Results obtained for the tissue consisting of 24 cells: (a) the  structure of the  tissue 

obtained without activating the optimization algorithm; (b) the  structure of the  tissue obtained 

as a result of  activating the optimization algorithm. The potential energy stored within the tissue 

converged to its local minimum; (c) history of itertion evolution of the potential energy.  
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Figure 6.3 - The  rate of  energy decrease and the rate of spatial expansion of the tumor versus 

number of cells entering the tumor.

6.2. Numerical model for the cell heterogeneity 

Experimental evidence provided by [42] indicates a small fraction of the tumor cells 

being involved into the cytokinesis process at any given time. Additionally, it has also been 

found that in big tumor the position of the cell within the tumor has an immediate impact 

on a probability of the cell to prolifirate and on prolifiration rate of the cell in a long term. 

At the same time in small tumors, the fraction of the mitotic cells was higher and their 

spatial distribution was more uniform compared to the corresponding characteristcis 

observed in large tumors. Moreover, in large  tumors, the  cells characterized by high 

prolifirating rate are more likely to be found next to the outer layer while in the intermidiate 
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zone the slowly prolifirating cells were recognized. In the current study we propose to 

correlate the proliferation rate of the mitotic cells with the criterion based on minimizing 

mechanical energy stored within the tumor and developed numerical framework 

supporting our hypothesis. In particular, we focussed on the analyzing the kinetic energy, 

since it was assumed that it makes the main contribution to the overall balance of internal 

energy during the active tumor development. Although the value of kinetic energy of a 

single cell may be very small (almost negligible) a criterion based on the value of kinetic 

energy is still meaningfull as it is based on comparison of the kinetic energies of  the 

neighboring cells, compeating  with each other for the growing space. Therefore the 

kinetic energy of a single  cell is not negligible when compared to that of its neighbors. 

6.2.1. Algorithm review 

For a given tissue configuration, containg a given number of mitotic cells, we define the 

kinetic energy of each cell as follows: 

𝑒𝑘𝑖 =
1

2
𝜌𝐴𝑖𝑣𝑐𝑖

2 , (6.8) 

where 𝑒𝑘𝑖   is the kinetic energy of the 𝑖 cell, 𝜌 is the cell density, 𝐴𝑖  is the area, and  𝑣𝑐𝑖 is

the velocity of the geometric center, respectively, of  𝑖𝑡ℎ cell. Note that we use the cell area 

instead of the cell volume because of 2D simulations. Therefore, the total kinetic energy of 

the entire tissue is given by: 

𝐸 =∑
1

2
𝜌𝐴𝑖𝑣𝑐𝑖

2

𝑁

𝑖=1

(6.9) 

The kinetic energy is, among other things, an outcome of the source strength s=

[𝑠1… 𝑠𝑁] constituting the driven force throughout the simulation, where 𝑠𝑖 has a binary 

value that is given by Eq. (2.2). Therefore, we use the gradient descent method to minimize 

the kinetic energy 𝐸𝑘 by modifying the source terms. The gradient of the kinetic energy with 

respect to the source terms is given by: 

∇𝐸 = (
𝜕𝐸

𝜕𝑠1
, … ,

𝜕𝐸

𝜕𝑠𝑖
) (6.10) 
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For a given tissue configuration and mitotic state, the developed algorithm computes 

the energy gradient given by Eq.(6.10), and updates the source strength vector in a direction 

opposite to that of the energy gradient: 

[

𝑠1
⋮
𝑠𝑁
]

𝑘+1

= [

𝑠1
⋮
𝑠𝑁
]

𝑘

− 𝛼
∇𝐸

|∇𝐸|
 , (6.11) 

where 𝑘 is the iteration number. 

We checked a number of successive values for 𝛼 (see Eq.(6.12)) and continue to the 

next iteration with the value of  𝛼 providing the fastest decrease of the kinetic energy.  

𝛼 = [0.1 0.5 1 2 4 8] ⋅
𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠
20

(6.12) 

Note that the gradient ∇𝐸𝑘 is calculated for only currently active sources, i.e., the algorithm 

does not activate resting cells. For the   𝑖𝑡ℎ resting cell the gradient component ∇𝐸𝑘𝑖 is equal

to zero. In addition, we applied two constraints on the source vector. The first constraint 

aims at limiting the maximum and minimum values allowed for individual source to 200% 

and 10% of the nominal value 𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠,  respectively. The second constraint was introduced 

to preserve the constant value of the sum of all the source terms equal to its initial value 

when the algorithm was activated.  

The first constraint is that an individual cell will not grow at an unrealistic rate. 

Indeed, an individual cell cannot grow with an infinite rate, regardless of energy 

considerations.  Therefore, we restrict the upper bound of the source value. Additionally, in 

the current study we choose not to model shrinking of an individual cell (𝑠𝑖 < 0), which 

determines the lower bound of the source value. The second constraint is necessary to 

exclude convergence to the trivial solution 𝒔 = [0 …  0] (or |𝒔| ≪ |𝒔𝑖𝑛𝑖𝑡𝑖𝑎𝑙|) satisfying the 

minimum of the kinetic energy. In addition, we want to preserve the global tumor growth 

rate (see Figure 5.5) that characterizes a realistic tumor proliferation. 

The first constraint was implemented by defining the objective function 𝑓(𝒔), that 

needs to be minimized, with an additional penalty for individual sources that exceed the 

bottom and the upper limits: 
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𝑓(𝒔) = 𝐸 +∑𝑝𝑖
𝑖

 , 
(6.13) 

where 𝑝𝑖 is the penalty applied to exceeding sources given by: 

𝑝𝑖 =

{
  
 

  
 𝐸1 ⋅

0.1 ⋅ 𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠 − 𝑠𝑖
𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠

𝑠𝑖 < 0.1 ⋅ 𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠

 𝑔 
0       0.1 ⋅ 𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠 ≤ 𝑠𝑖 ≤ 2 ⋅ 𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠

𝐸1 ⋅
𝑠𝑖 − 2 ⋅ 𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠

𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠
𝑠𝑖 > 2 ⋅ 𝑠𝑚𝑖𝑡𝑜𝑠𝑖𝑠,

 (6.14) 

where 𝐸1 is the total kinetic energy at the first iteration. 

This penalty can affect the chosen value of  𝛼 . If at any iteration one or more of the sources 

exceed one of the limits, the step along the gradient will be small so as not to exceed the 

bounds value even more. Once the source exceeds one of the limits, it will not participate 

in the next iteration, unless the corresponding gradient component returns the source 

back within the limits. 

The second constraint was implemented by adding one more modification step to 

the basic algorithm. First, the sum of all the initial sources has been calculated before the 

algorithm activation: 

𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≡∑𝑠𝑖
0

𝑖
(6.15) 

Where 𝑠𝑖 is the source term of the 𝑖 cell, and the upper index 0 denotes the initial state. 

The first step is similar to the basic gradient descent algorithm, the sources vector is 

updated in the opposite to gradient direction for each successive value of 𝛼𝑗, where the 

index 𝑗 corresponds to one of the  𝛼 values determined in Eq.(6.12). This time the obtained 

sources are stored in an intermediate array  𝒔
𝑘+1

2

𝑗
:

𝒔
𝑘+1

2

𝑗
= 𝒔𝑘 − 𝛼𝑗

∇𝑓𝑘
|∇𝑓𝑘|

(6.16) 

The obtained values 𝒔
𝑘+1

2

𝑗
  may   not satisfy the constraint requiring constant value of sum 

of all sources, i.e.: 
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∑𝒔
𝑘+1

2

𝑗

𝑖𝑖

≠ 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (6.17) 

Then, the array of sources 𝒔
𝑘+1

2

𝑗
 is modified in order to maintain the constant value of sum 

of all sources  ∑ 𝑠𝑘
𝑗

𝑖𝑖 = 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙. Two ways have been investigated for modifying the array 

of sources: the methodology of addition and multiplication. In the addition methodology 

the update has been made by adding to 𝒔
𝑘+1

2

𝑗
 the differences between the current sum 

∑ 𝒔
𝑘+1

2

𝑗

𝑖
𝑖   to 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙: 

𝒔𝑘+1
𝑗

= 𝒔
𝑘+1

2

𝑗
+

𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − ∑ 𝑠
𝑘+1

2

𝑗

𝑖
𝑖

𝑁
⋅ 𝜹 (6.18) 

Where 𝑁 is the number of the participating sources and the addon is performed only to the 

components corresponding to the active sources using 𝜹 vector, where: 

𝛿𝑖 = {
1  𝑠𝑘𝑖 ≠ 0

0 𝑠𝑘𝑖 = 0
(6.19) 

In the multiplication method the update has been made by multiplying 𝒔
𝑘+1

2

𝑗
 by the ratio 

between the 𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to the current sum∑ 𝑠
𝑘+1

2

𝑗

𝑖
𝑖   : 

𝒔𝑘+1
𝑗

= 𝒔
𝑘+1

2

𝑗
⋅
𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙

∑ 𝑠
𝑘+1

2

𝑗

𝑖
𝑖 (6.20) 

For both methods, after the modification step, the algorithm continues to the next iteration 

with the value of  𝛼𝑗 providing the fastest decrease of the kinetic energy. 

A comparison between the two methodologies can be seen in Figure 6.4. It can be seen 

that both methodologies provide similar results while utilizing the addition methodology 

provides much rapid convergence. For this reason, we used the addition methodology in 

all the further simulations. 
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vFigure 6.4 - Comparison between the addition and multipication methodologies applied to the 

sources update: (a) convergence of the kinetic energy versus a number of  iterations; (b) the final 

value of sources provided by both methodologies. 

6.2.2. Algorithm summary: 
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𝑓𝑘(𝒔𝑘) =∑
1

2
𝜌𝐴𝑖𝑣𝑐𝑖

2

𝑁

𝑖=1

+∑𝑝𝑖
𝑖

 

Calculate the objective function gradient: 

∇𝑓𝑘 = (
𝜕𝑓𝑘
𝜕𝑠1

, … ,
𝜕𝑓𝑘
𝜕𝑠𝑖

) 

Inner loop – choose  (1 < 𝑗 < 6): 

Step in the opposite to gradient direction: 

𝒔
𝑘+1

2

𝑗
= 𝒔𝑘 − 𝛼𝑗

∇𝑓𝑘
|∇𝑓𝑘|

Modify  𝒔
𝑘+1

2

𝑗
 for sum correction: 

𝒔𝑘+1
𝑗

= 𝒔
𝑘+1

2

𝑗
+

𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − ∑ 𝑠
𝑘+1

2

𝑗

𝑖
𝑖

𝑁
⋅ 𝜹 

Calculate the obtained target function: 

𝑓𝑘+1
𝑗
(𝒔𝑘+1
𝑗

) =∑
1

2
𝜌𝐴𝑖𝑣𝑐𝑖

2

𝑁

𝑖=1

+∑𝑝𝑖
𝑖

 

Continue to the next step with (𝒔𝑘+1
𝑗

)
𝑚𝑖𝑛

 that provides the minimum value for 𝑓𝑘+1
𝑗
:

𝒔𝑘+1
𝑗

= (𝒔𝑘+1
𝑗

)
𝑚𝑖𝑛

Check convergence of  𝐸𝑘. 

6.2.3. Results 

The presently used set-up is similar to that used in chapter 5. The simulations were 

initiated with a single cell, and once the cell population reached more than 30 cells, the 

algorithm, detailed in the previous section, was activated. The algorithm modified the 

strength of the mitotic cells sources each time the cell population increased by 8 new cells. 

Simultaneously, the mitosis process continued in the growing tissue by activating the source 

of a randomly selected resting cell of the colony every 10 min, similar to the simulations in 

chapter 5.  
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The results yielded by a single activation of the algorithm are presented in Figure 6.5. 

At the time the algorithm was activated the tumor contained 232 cells in total, of which 35 

were actively growing (𝑠𝑖 > 0) cells. When using the algorithm, the energy of the entire 

tissue converged after 4 iterations (see Figure 6.5 (a)). The source strengths before and 

after activation of the algorithm are shown in Figure 6.5 (b). Figure 6.5 (c) shows the final 

state of entire tissue in which the resting cells and cells with accelerating and decelerating

Figure 6.5 - Results yielded by a  single activation of the algorithm for the tumor  built of  232 

cells: (a) kinetic energy versus number of iterations; (b) initial (blue circles) and terminal (red 

circles) values of  the sources strength; (c) spatial distribution of  the resting cells and the cells 

characterised by increased and decreased growth rate. Black, green and red cells are resting, 

accelerated and decelerated cells, respectively.  
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growth are highlighted in black, green, and red, respectively. It can be clearly seen that in 

general, the growth rate of cells located on the periphery of the tumor increased, while the 

growth rate of cells located in the center of the tumor decreased. 

It should be noted that all the simulations of the tumor progression, performed in 

the framework of the current study, can be classified as an open system (i.e., system whose 

rigid boundaries do not contact with the periphery of the cell colony and the boundary 

effect on the cell colony is negligible).  In such systems the cells at the periphery are larger 

than those deep inside the colony and can be characterized by using a cell size distribution 

function (SDF) [59]. The principles underlying the developed methodology do not allow to 

directly obtain a realistic SDF, since for simplicity we have not introduced a large scatter in 

the cell division criteria (a cell necessarily divides when its area is doubled). Instead, in order 

to validate the obtained numerical results with the experimental data we next introduce 

and analyze two equivalent quantitative metrics, namely, the time required for the cell to 

double its size (the doubling time hereafter) and the fraction of area occupied by mitotic 

cells relative to the total area of the tumor. Specifically, we investigate how both metrics 

depend on a distance from the tumor center which will allow us, albeit indirectly, to validate 

the developed methodology against experimental evidence. 

Prior to taking each measurement, the entire tumor was bounded by an outer circle 

and partitioned into 𝑁 regions, by circles of decreasing radius as shown in Figure 6.6  )which 

presents a specific example when the entire tumor is partitioned into 5 different regions  ( . 

Throughout the simulation, the time that took for a cell to double its size and the location 

of that specific cell within the tumor have been monitored. The partition of the entire region 

occupied by tumor was performed each time one of the cells doubled in size. The average 

time, 𝑡𝑘̅, needed for a specific cell to double its size as a function of its normalized distance 

(𝑥/𝑅) to the tumor center is shown in Fig. 6.7.  Each point shown in Figure 6.7 corresponds 

to the doubling time value averaged over eight independently performed simulations. The 

scatter of the data at each point is indicated by the corresponding error bars.  
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Figure 6.6 – Sample example for post-processing: (a) right after an individual cell doubled in size 

(red cell) the tumor is partitioned into n regions (n=5 in this example); (b) the algorithm detects 

in which region the cell center of mas is located (highlighted in green), and measures  the time 

required to the cell to double in size (i.e. the  doubling time). The measuremnt is then used  to 

calculate the average doubling time in the detected region. 

The scaling of the doubling time, 𝑡𝑑̅𝑜𝑢𝑏𝑙𝑖𝑛𝑔 to the distance of the cell 𝑥 from the 

tumor center normalized by the external radius of the tumor, 𝑅 , was found by using the 

best fit to the decaying exponential function: 

𝑡𝑑̅𝑜𝑢𝑏𝑙𝑖𝑛𝑔 = 11.93𝑒−1.073⋅
𝑥

𝑅  [ℎ], (6.21) 

Note that 𝑅  value changes all through the simulation. 

It can be seen that the doubling time decreases with distance from the center of the tumor. 

Also, as shown in Figure 6.7, the scattering (error bars) of the doubling time values close to 

the tumor center is much higher than that typical of the tumor periphery. The above 

observation is consistent with the results obtained by applying an algorithm for a single 

activation of the tumor cell shown in Figure 6.5. In fact, the accelerating sources (belong to 

the cells at the periphery) are characterized by a lower scattering compared to that 

observed for the decelerating sources (belong to the cells close to the tumor center). 

The scattering nonuniformity is apparently a consequence of the incompressibility 

constraint imposed on the liquid filling the cells and the ECM. In fact, it is clear that while 

growing, a mitotic cell located close to tumor center directly affects a much larger number 

of cells compared to its counterpart located at the periphery of the tumor.  As a result, the 
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influence of a centrally located mitotic cell on the global energy of a tumor can differ 

significantly from tumor to tumor depending on the structure of a particular tumor. This 

observation explains the higher doubling time scatter, typical of centrally located mitotic 

cells. 

Figure 6.7 – Average doubling time obtained for 8 different simulations at different locations 

within the tumor (o), while the error bars represent the standard deviation of the results. The 

locations are normalized by the tumor radius, and the exponential fitted trendline (-). 

We start with analyzing the number of cell divisions that occurred in each region, as 

a function of the normalized distance 𝑥/𝑅 of the region to the center of the tumor. The 

analysis is performed in order to demonstrate that the developed model can adequately 

reproduce the experimental results according to which, in open systems, cells located close 

to the tumor periphery have tendency to divide more frequently than cells located in the 

center.  

Since each region has different area, it is reasonable to expect more divisions as the 

area of particular region increases, as a region with a larger area is more likely to contain 

more cells. However, at some distance, the number of cells per unit area decreases with 

the distance from the center of the tumor, which is sparser at its periphery (see  Figure 6.8). 
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For this reason, the absolute number of cell divisions occurring in each region must be 

adequately normalized.  

We next introduce universal normalization, which will allow us to compare between 

different regions in different tumors at any given time. Normalization of the absolute 

number of divisions, 𝑁𝑘 that has occurred in region 𝑘, could be based on the total number 

of cells within that specific region 𝑁𝑘𝑡𝑜𝑡𝑎𝑙 . However, the absolute number of cells within a

specific region changes with time as the cells proliferate and the tumor expands. For this 

reason, the normalization based on the total number of cells only will not provide the ability 

to compare different tumors at different stages of development. Therefore, constant in 

time characteristic values should be sought for normalizing a number of cell divisions. The 

first characteristic value is the tissue fractional area 𝜌𝑘 determined as the ratio of the area 

occupied by the tumor cells (highlighted in red in Fig. 6.8) to the total area of ring 𝑘 (contains 

both cells and ECM, highlighted in blue in Fig. 6.8). In fact, during the tissue growth  𝜌𝑘 

approximately remains constant as shown in  Figure 6.8 (b).  The second characteristic value 

is the ratio between areas of different regions (rings) into which the tumor was partitioned. 

We therefore use both characteristics values to normalize the total number of cells 𝑁𝑘𝑡𝑜𝑡𝑎𝑙

within any region 𝑘 in such a way that we can eliminate the dependence in time when 

comparing one region to another. 

Figure 6.8 – (a) Visualization of the tissue fractional number with respect to a given partition. The 

area occupied by cells is highlighted in red, the area occupied by the ECM is highlighted in blue. 

The tissue fractional area 𝜌𝑘 determined as the ratio of the area highlighted in red to the total 
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area of ring. (b) Tissue fractional area versus the distance from the center of the tumor. Results 

were obtained for tumor progression overtime for a single tumor. 

First, we will establish the ratio between the area of two given regions (rings). When 

dividing the tumor into 𝑁 regions, as described in Figure 6.6, the area of each region is given 

by: 

𝑠𝑘 = 𝜋((
𝑅

𝑁
𝑘)

2

− (
𝑅

𝑁
(𝑘 − 1))

2

), (6.22) 

where 𝑅 is the maximum radius of the tumor and 𝑘 = 1, 2…𝑁. 

Then, the ratio of the area of region 𝑘 to the area of the first region (𝑘 = 1): 

𝑠𝑘
𝑠1
= 2𝑘 − 1   , (6.23) 

therefore, the area of region 𝑘 (which is changing over time) is given by: 

𝑠𝑘(𝑡) = (2𝑘 − 1)𝑠1(𝑡). (6.24) 

The area occupied by the cells within region 𝑘 (highlighted in red in   Figure 6.8), can next be 

calculated by using the cells fractional area 𝜌𝑘 and the region area 𝑠𝑘(𝑡): 

𝑠𝑡𝑖𝑠𝑠𝑢𝑒𝑘 = 𝑠𝑘(𝑡)𝜌𝑘, (6.25) 

which can be rewritten by using Eq. (6.24) as: 

𝑠𝑡𝑖𝑠𝑠𝑢𝑒𝑘(𝑡) = 𝑠1(𝑡)(2𝑘 − 1)𝜌𝑘. (6.26) 

The total number of cells within the region 𝑘 can be evaluated as a ratio between the area 

occupied by the cells and the average cell area 𝑠̅𝑐𝑒𝑙𝑙: 

𝑁𝑘𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝑠𝑡𝑖𝑠𝑠𝑢𝑒𝑘

(𝑡)

𝑠̅𝑐𝑒𝑙𝑙
, (6.27) 

which can be rewritten by using Eq. (6.26) as: 

𝑁𝑘𝑡𝑜𝑡𝑎𝑙(𝑡) =
𝑠1(𝑡)(2𝑘 − 1)𝜌𝑘

𝑠̅𝑐𝑒𝑙𝑙
(6.28) 

Next the number of mitotic cells per number of the total cells within region 𝑘  at a specific 

time 𝑛𝑘(𝑡) can be calculated as: 
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𝑛𝑘(𝑡) =
𝑁𝑘

𝑁𝑘𝑡𝑜𝑡𝑎𝑙(𝑡)
=

𝑁𝑘
𝑠1(𝑡)(2𝑘 − 1)𝜌𝑘

𝑠̅𝑐𝑒𝑙𝑙
(6.29) 

Normalizing the value obtained by Eq. (6.29) by the total number of mitotic cells summed 

over all the tumor eliminates the dependence on time (by 𝑠1(𝑡)), and the dependence on 

the average cell area 𝑠̅𝑐𝑒𝑙𝑙 and yields the relative number of mitotic cells per total number 

of cells, as only a function of the distance from the center of the tumor: 

𝑛𝑘
∑ 𝑛𝑘𝑘

⋅ 100% =

𝑁𝑘
𝑠1(𝑡)(2𝑘 − 1)𝜌𝑘

𝑠̅𝑐𝑒𝑙𝑙

∑
𝑁𝑘

𝑠1(𝑡)(2𝑘 − 1)𝜌𝑘
𝑠̅𝑐𝑒𝑙𝑙

𝑘

⋅ 100% =

𝑁𝑘
(2𝑘 − 1)𝜌𝑘

∑
𝑁𝑘

(2𝑘 − 1)𝜌𝑘
𝑘

⋅ 100% (6.30) 

Relative part of mitotic cells per tumor area versus the distance from the center of 

the tumor is shown in Figure 6.9 . It can be recognized that despite the random mitosis 

initiation, the relative number of mitotic cells per total number of cells increases with the 

distance from the center of the tumor and was found by using the best fit to the quadradic 

function: 

𝑛𝑘
∑ 𝑛𝑘𝑘

= −3.4 (
𝑥

𝑅
)
2

+ 11.87 (
𝑥

𝑅
) + 8.92 (6.31) 

The obtained result is consistent  with experimental observations indicating that there are 

more mitotic cells at the tumor periphery compared to its center. 

To sum up, it was demonstrated that the developed model can consistently 

reproduce two major experimental observations indicating, higher growth rate of the cells 

and higher number of mitotic cells at the tumor’s periphery compared to its center. Note 

that the obtained trends were reproduced by solely basing on principles of finding a local 

minimum of the mechanical energy of the tumor and not an outcome of any explicitly made 

assumptions. This insight suggests a strong correlation between purely mechanistic 

characteristics and biologic events determining the tumor cells progression and 

proliferation. 
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Figure 6.9 – Relative part of mitotic cells per tissue area as a function of the distance from the 

center of the tumor. Results represent the average value of 6 simulations. 

6.3. Energetic prioritization for mitosis initiation 

In addition to the spatial variability in the growth rate of individual cells, a biological 

data points to the formation of fingers as one of the main characteristics of growing tumor 

[60], [17], [61] and plays a key role in the tumor invasive ability. The cells developing 

within the tumor are divided into two groups: “followers” and “leaders” [62], [17]. Leader 

cells are more often located on the periphery of the tumor and orient the direction and 

speed of the tumor development. The mechanism responsible for the selection of these 

cells remains to be elucidated. 

In [32] a nutrient-driven-grow is presented as a mechanism that creates the fingering 

formation. A uniform distribution of nutrients is set at the beginning of the simulation inside 

the computational domain, and the growth rate of each individual cell depends on the 

nutrient concentration level around it. As a cell grows, the nutrient stock around it 

decreases as a limited resource. This setup, at some point, allows only to the peripheral 

cells to grow because nutrients are available only near the outside boundaries of the tumor. 
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In the current study we propose an alternative model for the fingering formation 

observed at the periphery of a growing tumor. The key idea is that the unevenness of 

mitosis initiation during tumor growth is not a random process, as was previously assumed, 

rather it correlates with the energetic state of the entire tumor, tending to minimum 

increase in its kinetic energy. As in the previous simulations, in our model mitosis is initiated 

every 10 minutes, with the only difference being that the cell undergoing mitosis at the 

given moment is chosen to provide the minimum increase in the kinetic energy of the 

growing tumor. 

Results provided by using the above algorithm can be seen in Figure 6.10. Along the 

periphery of the tumor a fingering pattern can be clearly recognized, which is a direct 

consequence of mitosis initiation by cells located on the periphery of the tumor. 

Figure 6.10 - Digital image of the tumor obtained using the mechanism of mitosis initiation based 

on ensuring the minimum increase in tumor kinetic energy. Top row: tumor containing 359 (left) 
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and the outer contour of the tumor (right). Bottom row: tumor containing 521 (left) and the outer 

contour of the tumor (right). 

Summing up, the obtained fingering pattern is a direct consequence of a biased 

initiation of mitosis, which mainly occurred at the periphery of the tumor. Important that 

in the current study such a biased initiation is determined solely by the energy 

considerations, namely, by finding a local minimum of the kinetic energy of the developing 

tissue.  In fact, as a result of incompressibility constraint cells located close to the tumor 

center would have to affect much more neighboring cells when growing compared to 

their counterparts located close to the periphery of the tumor.  Therefore, mitosis 

initiation of cells within the center of the tumor will result in higher contribution to the 

total kinetic energy of the tumor compared to the contribution of cells located at the 

tumor’s periphery.  
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7. Summary and conclusions

In the framework of the current study, a rheological model for the tumor cell 

progression was developed. The developed model includes a deformable cell model (DCM), 

based on the solution of the Navier-Stokes equations for an incompressible Newtonian fluid 

filling the cells and the ECM. Intercellular interactions as well as the elastic behavior of the 

cell membrane are modeled at the mesoscale level by utilizing IBM.   

The developed model is able to simulate the growth and proliferation of cells. Cell 

growth is carried out by introducing distributed fluid sources in the geometric center of the 

growing cell, which leads to expansion of the cell membrane due to the incompressibility of 

the fluid. Surface tension, cytokinesis, and mechanosensory interaction with the 

environment are modelled by basing on constitutive body forces, generated by linear 

springs connecting both the points that form the cell membrane and neighboring cells in 

order to mimic cohesive forces within tumor tissue.  

The incompressible Navier-Stokes equations were solved by in-house developed solver 

incorporating IBM capabilities. The solver utilizes standard second order finite volume and 

second order backward finite difference schemes for spatial and temporal discretization, 

respectively. The pressure-velocity coupling was performed by utilizing the SIMPLE 

approach. The developed solver was extensively verified by comparing the results obtained 

for several representative one and two-phase flows with the corresponding data available 

in the literature. 

The model based on the developed solver has been extensively validated by 

comparing the characteristics of numerically modelled tumors with data available in the 

literature. In particular, the focus was on validating area conservation after cell division, the 

amount of time required for cell area doubling, the duration of the cytokinesis process, and 

the temporal evolution of the proliferation process and tumor area. All the above 

characteristics are closely related to accurate imposing the incompressibility constraint of 

the developed NS solver, and to the adequate implementation of cell growth, as well as the 

cytokinesis and division algorithms utilized in our model. 

Finally, a novel self-consistent approach based on finding the local minimum of 

mechanical energy stored in the tumor tissue using the gradient descent method was 
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developed to control cell proliferation within a tumor. The minimum of mechanical energy 

of the tissue was sought by basing on two different criteria. The first criterion is a local 

minimum of the kinetic energy calculated by basing on the source strength values 

distributed over already growing individual cells within the tumor. The second criterion is 

to a local minimum of the kinetic energy calculated by basing on the choice of specific 

cells for mitosis initiation. It has been shown that cells located near the borders of the 

tumor grow and divide at a much higher rate than those located within the center of the 

tumor.

       The 
  

numerical results obtained by using the first criterion consistently confirm the 

experimental results postulating that, in open systems, cells at the periphery proliferate at 

higher rate and are larger than cells deep inside the colony. At the same the numerical 

data obtained by using the second criterion has successfully reproduced fingering 

formation for the tumor periphery, being an inherent feature of the tumor and 

characterizing its invasive ability. The results obtained provide an alternative  explanation 

based on the fully mechanistic approach of not yet fully understood mechanism 

responsible for the choice of the “leader” cells that determine the direction of tumor 

growth.  
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תקציר

.  הכוללות שינויים מולקולריים ותאיים מתמשכים,  שגשוג של גידול תאי ושליחת גרורות הן תופעות מורכבות

ישנו , ם המניעים את התופעות הללולמרות התקדמות משמעותית שהושגה בהבנת התהליכים הביולוגים והגנטיי

המיקרו של  ההשפעה  הבנת  לטובת  לגישור  הנדרש  גדול  הגידול-פער  תחילת  על  המכאנית  שגשוגו  ,  סביבה 

- פיתוח תיאוריה המקשרת בין שגשוג של גידול תאי ושליחת גרורות לבין חריגות ביו,  לכן.  והתגובה לטיפול

 . הכרחי ובעל חשיבות רבה, מתמשכת של מאמצים מכאנייםכתוצאה מהתפתחות , מכאניות בגידול ובסביבתו

המבוסס על מכניקת ,  תכליתי-פיסיקלי ורב,  מציאותי,  המטרה המרכזית של מחקר זה הינה פיתוח של כלי נומרי

שיאפשר הדמיית תרחישים דינאמיים שונים של תאי סרטן ,  Navier-Stokesהזורמים ונשלט על ידי משוואות  

רת בין תופעות ביולוגיות לבין תהליכים ריאולוגיים מתמשכים המתרחשים בתוך מושבת  ויספק תיאוריה המקש

 . התאים הסרטניים

שפותח הנומרי  בכלי  שימוש  ידי  למנגנוני ,  על  הנוגעת  חדשה  תובנה  מספקת  אשר  תיאוריה  מציעים  אנחנו 

עדיפות לקצב גדילה שונה עבור תאים  התיאוריה מסבירה תופעות ביולוגיות מורכבות כמו מתן  .  התפתחות הגידול

בנוסף המחקר המוצג מספק תובנה חדשה  .  שונים באמצעות מונחים של צמצום אנרגיה מכאנית האגורה בגידול

על ידי ,  המתוארים בספרות  ”followers“  -ותאי ה  ”leaders“  -בנוגע למנגנון הלא מובהר של בחירת תאי ה

תוך שימוש בעקרון של מינימום אנרגיה  ,  אזור החיצוני של הגידולהמאפיין את ה,  שחזור של מבנה ״אצבעות״
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