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An extended immersed boundary method utilizing a semi-implicit direct forcing approach for the simu-
lation of confined incompressible viscous thermal flow problems is presented. The method utilizes a
Schur complement approach to enforce the kinematic constraints of no-slip and the corresponding ther-
mal boundary conditions for immersed surfaces. The developed methodology can be straightforwardly
adapted to any existing incompressible time marching solver based on a segregated pressure-velocity
coupling. The method accurately meets the thermal and the no-slip boundary conditions on the surfaces
of immersed bodies for the entire range of Rayleigh numbers 103 6 Ra 6 106. Strategies for further
increasing the computational efficiency of the developed approach are discussed. The method has been
extensively verified by applying it for the simulation of a number of representative fully 3D confined nat-
ural convection steady and periodic flows. Complex dynamic phenomena typical of this kind of flow
including vortical structures and convection cells and instability characteristics, were simulated and visu-
alized and the results were found to compare favorably with results known from literature.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Accurate simulation of viscous flows in the presence of bodies
of complex geometry is critical, both in pure science and in engi-
neering. The traditional, and probably still the most popular,
methodology for resolving the characteristics of viscous flows in
the vicinity of immersed bodies utilizes a body-conformal grid pre-
cisely matching the discretized body surface with the adjacent flow
domain (up to the discretization error). However, the ever-
increasing complexity of the flow configurations studied seriously
challenges the efficiency and precision of numerical methods
based on the body-conformal approach, as the grid orthogonality
and skewness may have a significant effect on the accuracy and
the stability of the methods. The immersed boundary (IB) method,
in which the body surface is determined by the location of a set of
discrete Lagrangian points that do not necessarily coincide with
the underlying Eulerian grid, comprises an attractive alternative
to the body-conformal grid approach. The method, initially devel-
oped by Peskin [1] for the simulation of the blood flow in the mitral
valve in the heart, has become very popular over the last three dec-
ades and comprises the basis for this rapidly developing field of
computational science.
Accurately imposing a body-force field in the vicinity of an
immersed surface to enforce the no-slip kinematic constraints is
critical for any IB method. Among a number of existing methods,
the present study focuses on the direct forcing approach, which
enforces the desired value of velocity directly on the boundary
without involving any dynamical process. The direct forcing
approach, initially formulated by Mohd-Yusof [2], has gained pop-
ularity over the years due to its simple implementation and robust-
ness. In the direct forcing approach, the Lagrangian body-force
field can be calculated either explicitly or implicitly. The fully
explicit formulation is typically implemented on the basis of the
segregated pressure-velocity coupling utilized for the solution
of incompressible Navier Stokes (NS) equations. In this case,
the kinematic no-slip constraints are applied to the intermediate
non-solenoidal velocity, which is further corrected to meet the
divergence free constraint (see e.g. [2–4]). The explicit approach
has been adopted in various engineering applications, as detailed
in the comprehensive review of Mittal and Iaccarino [5]. Recently
the approach has also been extended to thermal flow problems
[6–9]. Explicit calculation of the Lagrangian forces can be straight-
forwardly implemented without requiring any modification of the
existing time marching solvers, which explains its high popularity.
Despite its evident attractiveness, the explicit treatment has two
major drawbacks. First, the existence of local mass leakage through
blems:
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boundaries of the immersed body and second, the pointwise char-
acter of the calculation of Lagrangian forces and heat fluxes, which
does not reflect their mutual interaction in a given time step. While
the first limitation can be successfully remedied by simply
decreasing the value of time step, the second one can seriously
deteriorate the precision of the performed analysis, as it violates
the intrinsic elliptic character of NS equations. In particular, the
issue is of critical importance in confined natural convection
unsteady flows characterized by low and moderate Rayleigh num-
bers, which are the focus of the present study.

The limitations of the explicit direct forcing IB method moti-
vated further research aimed at improving the existing explicit for-
mulations. Su et al. [10] proposed a new forcing procedure based
on a solution of a banded linear system, coupling together all the
Lagrangian markers. A similar approach was then implemented
by Ren et al. [7,8], who implicitly evaluated all the Lagrangian
forces and heat sources by assembling them into a single system
of equations. The studies of Wang et al. [11] and Kempe et al.
[12,13], who introduced multi-direct forcing (MDF) schemes based
on iterative enhancement of Euler-Lagrange coupling, are also
worth mentioning. Although the developed approaches succeeded
in improving the accuracy of the imposition of no-slip and thermal
constraints, non-negligible inaccuracies attributed to the explicit
treatment of the diffusion term in the NS and energy equations still
remain. Moreover, correction of velocity and temperature fields by
the MDF schemes locally deteriorates the momentum and the ther-
mal balances close to the immersed boundaries and can result in
non-negligible inaccuracies in the estimation of local Nusselt num-
bers and drag and lift coefficients.

The fully implicit implementation of the Lagrangian forces and
heat fluxes offers an alternative to the fully explicit direct forcing
approach. The Lagrangian forces and heat fluxes implicitly embed-
ded into the corresponding energy and momentum equations play
the role of distributed Lagrange multipliers, which reflect the
impact of the immersed body on the surrounding flow. Together
with additional equations connecting between the corresponding
Eulerian and Lagrangian temperature and velocity fields, they form
the whole closed system of the coupled equations. Solution of the
system provides high fidelity results for a broad range of Reynolds
and Rayleigh numbers. Pioneering work in this field is due to
Golowinski et al. [14], who applied the distributed Lagrange multi-
plier method (DLM) for the simulation of 2D flow around a moving
disc. The method was then extended to the simulation of particu-
late flows [15–17] and to the simulation of fluid/flexible-body
interactions [18]. Another approach was proposed by Taira and
Colonius [19], who utilized the distributed Lagrange multiplier to
simultaneously satisfy the divergence-free and no-slip kinematic
constraints by the solution of the modified Poisson equation in
the framework of the projection method. The developed approach
was then applied in various engineering fields, including active and
passive flow control [19,20], optimization of performance of a hot
air balloon [21] and the dynamic interactions between rigid-body
systems and incompressible viscous flows [22].

The latest theoretical developments of the fully coupled
Lagrange multiplier approach are: due to the study of Kallemov
et al. [23], who presented a novel IB formulation for modeling
flows around fixed or moving rigid bodies that is suitable for a
broad range of Reynolds numbers, including steady Stokes flow;
the formulation developed by Stein et al. [24], who established
the immersed boundary smooth extension (IBSE) method and
demonstrated the superiority of its convergence for a wide spec-
trum of equations with both Dirichlet and Neumann boundary
conditions; the work of Feldman and Gulberg [25], comprising an
extended fully pressure-velocity-Lagrange multipliers coupled for-
mulation of the IB method, capable of performing accurate linear
stability analysis of incompressible viscous and thermal 2D and
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axi-symmetric flows; and the recent study of Liska and Colonius
[26] who proposed novel time integration schemes for the
efficient solution of the discrete momentum equations
coupled with the discrete divergence free and no-slip constraints.
It is also worth mentioning the recent works of Bao et al.
[27], who succeeded in substantially improving the volume
conservation for fluid-structure interaction applications in
periodic domains, as well as Stein et al. [28], who further
extended the IBSE method to allow for the imposition of a
divergence free constraint.

Although the fully implicit treatment of the Lagranginan forces
and heat fluxes succeeds in accurately satisfying the kinematic
constraints on the surface of an immersed body, it often includes
non-trivial intermediate stages requiring substantial modification
of time stepping codes which were originally developed without
IB capability. In our present work we pursue a different concept,
where the IB approach is not seen as a stand alone solver, but,
rather, it comprises a methodology of enforcing boundary condi-
tions. One of the main purposes of the present study is to demon-
strate the ways of plugging the IB approach in any of many
available open source CFD packages or in-house developed solvers
in a modular fashion. To achieve this we apply a semi-implicit
approach, which is applicable for the whole family of pressure-
velocity segregated solvers based, for example, on SIMPLE or
fractional step algorithms. The idea is to implicitly couple the
Lagrangian forces with an intermediate non-solenoidal velocity
field, further updated by the following correction step. The concept
has already been successfully implemented for the investigation of
isothermal viscous flows by Park et al. [29], who combined a block
LU decomposition technique with Taylor series expansion to
construct the implicit IB forcing in a recurrence form, and by Le
et al. [30], who used the FISHPACK [31] library for the solution of
modified Helmholtz and Poisson equations. The present study
demonstrates how the developed methodology can be embedded
into the generic incompressible NS solver based on the SIMPLE
algorithm [32] in order to endow it with the IB capability. The sol-
ver is based on the algorithm employing the tensor product factor-
ization (TPF) method [33] combined with the Thomas solver (TPT).
In this case the kinematic constraints for temperature and velocity
are satisfied by the machine zero precision. Although in the present
formulation the no-slip constraint is precisely satisfied only for the
intermediate non-solenoidal velocity field, it is shown that an inac-
curacy accumulated in the corrected velocity field in the vicinity of
an immersed surface is less than a discretization error. A number of
representative fully 3D confined natural convection flows are sim-
ulated and the obtained results are favorably compared with the
data available in the literature.

2. The theoretical background

2.1. Predictor-corrector approach with incorporated IB functionality

We start with a brief description of the standard predictor-
corrector approach based on the SIMPLE algorithm of Patankar
and Spalding [34] with incorporated IB capability. The flow is gov-
erned by the non-dimensional incompressible NS and energy equa-
tions, in which the buoyancy effects are introduced by applying the
Boussinesq approximation:

r � u ¼ 0; ð1Þ

@u
@t

þ ðu � rÞu ¼ �rpþ
ffiffiffiffiffiffi
Pr
Ra

r
r2uþ h~ez þ f ; ð2Þ

@h
@t

þ ðu � rÞh ¼ 1ffiffiffiffiffiffiffiffiffiffi
PrRa

p r2hþ q; ð3Þ
rsed boundary method for incompressible viscous thermal flow problems:
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where u = (u,v,w), p, t, and h are the non-dimensional velocity, pres-
sure, time and temperature, respectively, and ~ez is a unit vector in
the vertical (y) direction. In accordance with the Boussinesq approx-
imation the density field is given by q ¼ q0ð1� bðT � TcÞÞ, where q0

is the density value corresponding to the thermal equilibrium. The
equations are normalized by utilizing L, U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbLDT
p

, t ¼ L=U, and

P ¼ qU2 for length, velocity, time, and pressure scales, respectively.
The Rayleigh, Ra, and Prandtl, Pr, numbers are Ra ¼ gb

maDTL
3 and

Pr ¼ m=a, respectively, where m is the kinematic viscosity, a is the
thermal diffusivity and DT is the temperature difference between
the maximal and the minimal temperatures of the problem.

The approach is applied to the simulation of unsteady natural
convection incompressible flow in the presence of an immersed
body of irregular shape. The surface of the immersed body is deter-
mined by a set of discrete Lagrangian points, whose location does
not necessarily coincide with the underlying Eulerian staggered
grid, as shown in Fig. 1.

To provide the best accuracy, the method utilizes a uniform grid
in the vicinity of the immersed body surface. In this region, the
distance between the neighboring points of the immersed body
surface, Dl, and the width of a grid cell, DX, should be approxi-
mately the same. Away from the body, non-uniform discretization
can be used. The impact of the immersed body on the nearby flow
is reflected by the force, f , and the power, q, densities, each related
to the corresponding virtual volume located within the shadowed
region confined by internal and external concentric circles and
confining every Lagrangian point (see Fig. 1). The densities enter
as sources into the momentum, Eq. (2), and energy, Eq. (3), equa-
tions. The values of the sources are not known a priori and are part
of the solution along with the velocity, pressure and temperature
fields. To enforce the non-slip and thermal (temperature or heat
flux) boundary conditions on the surface of the immersed body,
the nearby velocity and temperature fields in the vicinity of every
Lagrangian point (dotted circle) are interpolated to the location of
the Lagrangian points.

Next, two adjoint operators are defined to exchange informa-
tion between Lagrangian points and the Eulerian grid: namely, an
interpolation operator I interpolating the values of Eulerian veloc-
ities uðxiÞ and temperatures hðxiÞ to the nearby Lagrangian points

Xk; and a regularization operator R smearing the values of the

Lagrangian force FkðXkÞ and the power QkðXkÞ densities to the
nearby Eulerian grid:
Fy

Fx

Vy
Vx

Fig. 1. A schematic description of the basic principles of the IB method on the
staggered Eulerian grid. The circles drawn by dotted and dashed lines denote the
vicinity of Lagrangian point in which the interpolation and regularization operators
act. The filled annular pattern corresponds to a collection of virtual volumes
surrounding Lagrangian points of the immersed body.
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RðFkðXkÞ;QkðXkÞÞ ¼
Z

S
ðFkðXkÞ;QkðXkÞÞ � dðxi � XkÞdVk

S ; ð4aÞ

IðuðxiÞ; hðxiÞÞ ¼
Z

X
ðuðxiÞ; hðxiÞÞ � dðXk � xiÞdVXi

; ð4bÞ

where S corresponds to all the cells belonging to the immersed body
surface, X corresponds to a group of flow domain cells located in the

close vicinity of the immersed body surface, dVk
S corresponds to the

virtual volume surrounding each Lagrangian point k, and dVXi
is the

volume of the corresponding cell of the Eulerian flow domain,
whose velocity and temperature values are explicitly involved in
enforcing the boundary conditions at point k of the immersed body.
Note that both interpolation and regularization operators use con-
volutions with the same discrete Dirac delta function d of the form

dðrÞ ¼

1
6Dr 5�3 jrj

Dr�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 1� jrj

Dr

� �2
þ1

r" #
for 0:5Dr6 jrj6 1:5Dr;

1
3Dr 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 jrj

Dr

� �2
þ1

r" #
for jrj6 0:5Dr;

0 otherwise;

8>>>>>>><
>>>>>>>:

ð5Þ
introduced by Roma et al. in [35]. Here Dr is the cell width in the r
direction. The chosen delta function, successfully utilized in a large
number of previous studies (see e.g. [12,19,25,36]), has been specif-
ically designed for performing calculations on the staggered grids
and became popular due to its compact kernel (only three cells in
each direction of the computational domain are involved). Follow-
ing the SIMPLE method [34], the NS and energy equations,
Eqs. (1)–(3), are discretized as:

3hnþ1

2Dt
� 1ffiffiffiffiffiffiffiffiffiffi

PrRa
p Lðhnþ1Þ � RðQkðXkÞÞ

¼ 4hn � hn�1

2Dt
� Nðhn;unÞ þ hn~ez; ð6Þ

3u�

2Dt
�

ffiffiffiffiffiffi
Pr
Ra

r
Lðu�Þ �RðFkðXkÞÞ ¼ 4un �un�1

2Dt
�NðunÞ þ hnþ1~ez �rpn;

ð7Þ

MðdpÞ ¼ 3
2Dt

r � u�; ð8Þ

unþ1 ¼ u� � 2Dt
3

rðdpÞ; pnþ1 ¼ pn þ dp; ð9Þ

where the second order backward finite difference scheme was uti-
lized for discretizing the temporal derivatives, while a standard
staggered mesh second-order conservative finite-volume formula-
tion [37] was used for discretizing all the spatial derivatives. Oper-
ators N and L read for non-linear convective and linear Laplacian
terms of the NS equations, respectively. For the confined natural
convection flows which are the focus of the present study
Eqs. (6)–(9) are solved with the Dirichlet (or Neumann) boundary
conditions for the temperature field and non-slip boundary condi-
tions for all velocity components. Neumann boundary conditions
(zero value of derivative in the normal to the boundary direction)
with a single reference Dirichlet point introduced anywhere inside
the computational domain are used for the solution of the Poisson
equation, Eq. (8), formulated for the pressure correction field.
Following the formalism of the SIMPLE method the pressure field
in the predictor, Eq. (7), is taken from the previous time step and
the solution is first obtained for the non-solenoidal velocity field
u�. Then, the pressure correction field is calculated by the solution
of Eq. (8). Finally, Eq. (9) are used to correct the pressure and the
velocity values at the next time step. Until now, nothing was said
rsed boundary method for incompressible viscous thermal flow problems:
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about the terms RðQkðXkÞÞ and RðFkðXkÞÞimplicitly entering into the
left-hand sides of the energy, Eq. (6), and the momentum, Eq. (7),
equations. These terms are related to the regularized power, q,
and force, f , densities imposing temperature (or heat flux) and kine-
matic no-slip constraints, respectively, on the surface of an
immersed body. Implicit treatment of the above terms implies
introducing additional relationships to achieve closure of the over-
all system of Eqs. (6)–(9), as detailed in the next section.

2.2. Formalism of the semi-implicit direct forcing IB method

Closure of the system of Eqs. (6)–(9) is achieved by introducing
additional relationships comprising thermal and kinematic no-slip
constraints for the energy and momentum equations, respectively.
The full system of equations extended with IB capability and allow-
ing for calculation of temperature, hnþ1, and intermediate velocity,
u�, followed by the correction of velocity, u, and the pressure, p,
fields can be compactly written as:

Hh;u RðQkðXkÞ; FkðXkÞÞ
IðhðxiÞ; u�ðxiÞÞ 0

" #
hnþ1;u�

Q ; F

" #
¼ RHSn�1;n

h;u

hb;Ub

" #
;

ð10aÞ

MðdpÞ ¼ 3
2Dt

r � u�; ð10bÞ

unþ1 ¼ u� � 2Dt
3

rðdpÞ; pnþ1 ¼ pn þ dp; ð10cÞ

where the first row of Eq. (10) is presented in a block-matrix
form of either the energy (see Eq. (6)) or the momentum (see

Eq. (7) equations), while Hh ¼ 3
2Dt ðhnþ1Þ � 1ffiffiffiffiffiffiffi

PrRa
p Lðhnþ1Þ

� �
and

Hu ¼ 3
2Dt ðu�Þ �

ffiffiffiffi
Pr
Ra

q
Lðu�Þ

� �
reads for the modified Helmholtz opera-

tor acting on the temperature and the velocity fields, respectively,
RHSn�1;n

h;u corresponds to the right hand sides of Eqs. (6) and (7),

R QkðXkÞ; FkðXkÞ
� �

corresponds to the entries obtained by regular-

ization of the power and force densities determined at Lagrangian
points of the immersed body to the nearby locations of Eulerian
grid, and IðhðxiÞ;uðxiÞÞ corresponds to the entries obtained by inter-
polation of Eulerian temperature and velocity fields to the Lagran-
gian points of the immersed body. Note that if discretized on a

uniform staggered grid, IðhðxiÞ;uðxiÞÞ ¼ RTðQkðXkÞ; FkðXkÞÞ, although
this property was not explicitly exploited while implementing the
curently developed approach.

3. The implementation details

3.1. The Schur complement approach

Recalling that the current study aims to develop a general
methodology to acquire the previously developed pressure-
velocity segregated solvers of incompressible NS equations with
the IB capability, we next present further details regarding imple-
mentation of a solution of the system of Eq. (10a). Utilizing the
Schur complement approach, the system of Eq. (10a) is analytically
split into two smaller equivalent systems:

½Q ; F� ¼ ½IH�1R��1½IH�1RHSn�1;n
h;u � hb;Ub�; ð11aÞ

½h;u�� ¼ H�1½RHSn�1;n
h;u � R½Q ; F��; ð11bÞ

solution of which is first performed for the distributed Lagrange
multiplier terms Q and F (Eq. (11a)), and then for the corresponding
Eulerian temperature, h, and intermediate velocity, u�, fields
Please cite this article in press as: Y. Feldman, Semi-implicit direct forcing imme
A Schur complement approach, Int. J. Heat Mass Transfer (2018), https://doi.o
(Eq. (11b)). A closer look at the structural characteristics of the
matrices H, I, and R gives rise to considerations regarding an effi-
cient solution of Eqs. (11a) and (11b). Matrix H, comprising the
modified Helmholtz operator built for the corresponding fields of
temperature and velocity components, is the largest m�m matrix,
where m reads for the total number of unknowns on the Eulerian
grid (typically Oð106 � 107Þ for realistic 3D problems). Matrix H is
typically a sparse matrix, and for the spatial and temporal discretiz-
tions utilized in the present study has non-zero entries arranged
along only 7 diagonals. For other spatial dicretizations which may
be based on stencils of higher orders and also include additional
non linear terms discretized in a semi-implicit manner, the matrix
H will include more non-zero entries, but will still remain sparse,
making it possible to perform simulations on dense grids with a
reasonable memory consumption. In particular, the maximum
amount of memory required to store all the four H matrices (one
for the temperature and three for all the velocity components) with
all auxiliary data did not exceed 6 Gb of the CPU RAM for the 3003

grid resolution. Matrices I and R containing entries related to the
acquired IB capability are of dimensions n�m and m� n, respec-
tively, where n reads for the total number of Lagrangian points (typ-
ically Oð103—104ÞÞ for realistic 3D problems) determining the
surfaces of all the immersed bodies involved in the simulation.
The amount of non-zero entries in any n� th row or column of
the matrices I and R, respectively, depends on a specific kernel of
the discrete delta functions or on an order of interpolations utilized
in the interpolation, I, and the regularization, R, operators, but on
any account is not higher than Oð102Þ. As a result, the matrices I
and R are extremely sparse; they both are stored in compressed
sparse row (CSR) format and their multiplication by any vector is
further implemented by using standard routines from the Intel
Math Kernel Library (MKL).

Recall next that the previously developed solver [32], or any
other solver for the solution of original (without IB functionality)
NS equations ½Hh;u�½h;u� ¼ ½RHSh;u�, based on the pressure-velocity
segregated approach, is available. The existing solver can be
straightforwardly exploited in a black box manner for computing
the product of the inverse modified Helmholtz operator, H�1, by
any given vector of dimension m� 1 comprising an essential part
of the presently developed algorithm for the solution of the system
of Eqs. (11a) and (11b), as detailed in Table 1.

The present study focuses on the configurations characterized
by the stationary surfaces of immersed bodies that make it possible
to precompute the matrix ½IH�1R� (see step 4� a in Table 1), which
comprises the most time consuming step of the developed
approach. The final solution of Eq. (11a) (see step 5-a in Table 1)
can be either completed by a direct method, which will include
LU factorization of the matrix ½IH�1R� performed once at the begin-
ning of the process followed by elimination and back substitution
stages, or, alternatively, by utilizing any of the available iterative
algorithms in each time step. Both options have been implemented
in the present study. Namely, the direct LU factorization of the
matrix ½IH�1R� has been performed by utilizing an open source
MUMPS package [38,39], while the iterative solution of Eqs. (11)
was performed by the bi-conjugate gradient (BICG) method based
on Krylov subspace iteration. Implementation of both direct and
iterative algorithms for completing step 5-a of the developed
approach increases its flexibility, making it possible to switch
between the algorithms depending on the hardware configuration,
as well as the structure and the size of the matrix ½IH�1R�. 1 It is
remarkable that, similarly to the explicit direct forcing method
[2,12], the single time step integration implemented in the present
rsed boundary method for incompressible viscous thermal flow problems:
rg/10.1016/j.ijheatmasstransfer.2018.06.099
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Table 1
A detailed description of the major steps of the developed algorithm for solution of equations, Eqs. (11a) and (11b).

The solution of ½Q ; F� ¼ ½IH�1R��1½IH�1RHSn�1;n
h;u � hb;Ub�, (Eq. (11a))

1-a. Calculation of H�1RHSn�1;n
h;u : Employs the original solver [32]. The result is a m� 1 vector.

2-a. Calculation of IH�1RHSn�1;n
h;u : Employs matrix–vector multiplication of the matrix I stored in compressed sparse row (CSR) format

by the vector H�1RHSn�1;n
h;u obtained in 1-a. The result is a n� 1 vector.

3-a. Calculation of IH�1RHSn�1;n
h;u � hb;Ub: Subtraction of two n� 1 vectors. The result is a n� 1 vector.

4-a. Calculation of ½IH�1R�: The procedure is repeated n times for every column ½R�n of the matrix R. The original solver [32] is

employed first to calculate H�1½R�n , followed by matrix-vector multiplication IH�1½R�n . The final

result is stored in the column ½IH�1R�n of the n� n matrix.

5-a. Calculation of ½IH�1R��1½IH�1RHSn�1;n
h;u � hb;Ub�: Either by employing LU factorization of the small n� n matrixa or by any iterative (e.g. Krylov space

or multigrid based) methodb.

The solution of ½h;u�� ¼ H�1½RHSn�1;n
h;u � R½Q ; F��, (Eq. (11b))

1-b. Calculation of R½Q ; F�: Employs matrix–vector multiplication of the matrix R stored in compressed sparse row (CSR) format
by the vectors [Q,F] calculated by the solution of Eq. (11a).

2-b. Calculation of ½RHSn�1;n
h;u � R½Q ; F��: Subtraction of two m� 1 vectors. The result is a m� 1 vector.

3-b. Calculation of H�1½RHSn�1;n
h;u � R½Q ; F��: Employs the original solver [32]. The result is a m� 1 vector.

a We use an open source MUMPS package [38,39].
b We use the bi-conjugate gradient (BICG) method.

2 For 3D simulation the factors of four of such matrices need to be stored.
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implicit formulation also involves dual employment of the original
solution of the NS (without IB functionality), as follows from steps
1� a and 3� b in Table 1.

3.2. Optimization strategies

With the aim of developing a generalized methodology capable
of solution of highly resolved 3D flows, much effort was made to
further optimize the developed algorithm in terms of memory con-
sumption and CPU time. The study yielded a number of important
optimization strategies, as detailed in the following.

3.2.1. Optimization of memory consumption
Optimization of the memory consumption is closely related to

the way the n� n matrix ½IH�1R� was built. In general, this is an
indefinite and non-symmetric matrix, with a structure depending
on a kernel of discrete Dirac delta functions utilized in the interpo-
lation and regularization operators, and on a spatial distribution of
Lagrangian points. Furthemore, all the tests performed in the
framework of the present study revealed that the matrix ½IH�1R�
is always full of non-zero entries with absolute values that are
mostly very small (Oð10�16Þ and smaller). Storing all these non-
zero entries is prohibitively expensive, so that it is necessary to
set up a sparsing threshold. Recalling that the matrix ½IH�1R� is
an operator determining the values of the Lagrangian forces and
heat fluxes enforcing the kinematic no-slip and thermal constraints
on the surfaces of immersed bodies, the threshold value satisfying
the required precision can be adjusted manually for any specific
flow configuration. In all the simulations performed in the present
study the absolute threshold values were in the range of
ð10�16—10�25Þ. For this range the thermal and kinematic no-slip
constraints were met with up to 6 decimal digits, which should
be less than the discretization error of the second order finite vol-
ume method utilized in the present study.

Another two factors which have a significant impact on the
overall memory consumption are the value of the time step, Dt,
and the Rayleigh number, Ra. The larger the time step the higher
is amount of entries of the matrix ½IH�1R� that are above the given
threshold value and therefore have to be stored in the memory. It
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was found that for a time step of ðOð10�2ÞÞ the relative amount of
non-zero entries of matrix ½IH�1R� was typically about 3% of the
total n� n matrix size. Decreasing the time step by a factor of 10
while keeping the same threshold value resulted in a steeper (by
an order of magnitude or even more) decrease in the percentage
of non-zero entries. Apart from the memory directly involved in
the storage of non-zero entries of the matrix ½IH�1R�, the time step
and the Ra values have a significant impact on the overall memory
consumption when performing LU factorization of the matrix. In
fact, the typical amount of memory required to store the factors
of a single ½IH�1R� matrix2 obtained on the 3003 grid for the
immersed body determined by approximately 2� 105 points is
about 40 Gb for a time step of ðOð10�2ÞÞ and only about 4 Gb for a
time step of ðOð10�3ÞÞ. Detailed information regarding memory con-
sumption versus the values of Ra number is given in Section 4 for all
the flow configurations considered in the study.

3.2.2. Optimization of CPU time
Optimization of CPU time was implemented on two levels. The

first level is related to building the matrices I and R and precom-
puting the matrix ½IH�1R�. Recalling that the originally developed
solver [32] was accelerated by utilizing a multithreading paral-
lelism based on the OpenMP approach, it was natural to use the
same parallelism paradigm when extending the code with the IB
capability. All the simulations were performed on a standard Linux
server having 128 GB DDR3 shared memory and 2 Intel Xeon 12C
processors, 24 threads each (48 threads in total). This also allowed
us to exploit a built-in multithreading parallelism of the matrix-
vector multiplication functions from the Intel MKL library. The typ-
ical times required for precomputing the matrices I and R when
running the simulation on 48 threads varied from a number of sec-
onds to several minutes for the surfaces of immersed bodies deter-
mined by Oð103Þ and Oð105Þ Lagrangian points, respectively. Much
more significant deviation in computational times was observed
when precomputing the matrices ½IH�1R� for all the velocity and
temperature fields, which involved performing n time integrations
rsed boundary method for incompressible viscous thermal flow problems:
g/10.1016/j.ijheatmasstransfer.2018.06.099
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Fig. 2. Physical model of a hot sphere inside a cold cube characterized by R ¼ 0:2L. The surface of the sphere is held at a constant hot temperature hh , while all the cube walls
are held at a constant temperature hc . The position of the sphere along the cube centerline is determined by the non-dimensional parameter j ¼ ðH � 0:5LÞ=L.
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by the original solver for the three components of velocity and
temperature. The typical times required at this stage varied from
a number of hours to a number of days for 2003 and 3003 grids,
respectively.

The second level is related to the stage of solution of the system
of Eq. (10a). As has been already mentioned, the solution of the
system of equations was performed by both direct and iterative
solvers. In the case of the direct solver (i.e. MUMPS [38,39]) the
LU factorization should be performed once at the beginning of
the process for the four ½IH�1R� matrices, corresponding to the
three velocity components and temperature. Again, a built-in mul-
tithread parallelism of the solver was employed at this stage, and
even for the most dense grids (consisting of 3003 finite volumes)
the overall process was completed within less than an hour. The
limitations of the direct solver show up at the intrinsically sequen-
tial forward elimination and back substitution stages which do not
enjoy multithread parallelism. While on the coarse and moderate
grids (up to 2003 finite volumes) the above drawback is not pro-
nounced, on denser grids (3003 finite volumes) it becomes critical
and drastically deteriorates the overall performance of the compu-
tations involving a large number of time steps. In this case the rem-
edy comes from utilizing an iterative solver which can be based
either on a Krylov subspace iteration3 or on multigrid algorithms.
We found, however, that the solver based on the BICG algorithm suf-
fers from poor convergence on non-uniform grids stretched close to
the boundaries of the computational domain.

In summary, none of the checked direct and iterative
approaches can be considered as the ultimate strategy for solu-
tion of the system of Eq. (10a). In general, the optimized strategy
can benefit from a combination of direct and iterative methods,
and will always depend on the flow configuration considered.
More details regarding the strategies applied to the analysis of
the specific benchmark flows are provided in the following sec-
tions of the paper. It should also be noted that after the matrix
½IH�1R� has been built, the solution of Eq. (10a) comprises an
independent algebraic problem completely detached from the
original solver and physical model and, therefore, can be
3 For example, presently employed BICG algorithm.
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separately solved by utilizing distributed memory parallelism,
e.g. a hybrid or MPI based approach. Parallelized iterative solution
of the system of Eq. (10a) by utilizing both hybrid and MPI para-
digms remained out of the scope of the present study and will be
the focus of future work.

4. Results and discussion

The results obtained by the developed method have been exten-
sively verified against available benchmark data provided for both
steady and periodic confined natural convection flows.

4.1. Natural convection from a hot sphere inside a cold cube

Buoyancy convection from a hot sphere placed inside a cold
cube is considered. The physical model of the problem is shown
in Fig. 2. The surface of the sphere is held at a constant hot temper-
ature hh, while the cold temperature hc is preserved at all the cube
walls. The cube edge length L is used for normalizing all the length
scales of the problem. The hot sphere is of a constant radius
R ¼ 0:2L. The center of the sphere is attached to the vertical center-
line of the cube and its position is determined by a non-
dimensional parameter j ¼ ðH � 0:5LÞ=L, where H is a non-
dimensional distance between the center of the sphere and the
bottom wall of the cube. The best accuracy of the IB method is
achieved by providing a uniform distribution of the Lagrangian
points over the surface of the sphere, implemented by the non-
iterative method of Leopardi [40], so that each point is confined
by a virtual surface of an equal area, as illustrated in Fig. 3. Defining
the Nusselt number, Nu, as the ratio of convective to conductive
heat fluxes from the given surface, its average value for the surface
of the sphere is obtained by:

Nu ¼
ffiffiffiffiffiffiffiffiffiffi
PrRa

p
DxQ ; ð12Þ

where the average heat flux Q is an arithmetic mean of all the
non-dimensional heat fluxes Qk at each Lagrangian point k of
the immersed surface, intrinsically calculated by the solution of
the system of Eqs. (10). We next define an average value of the
global Nusselt number NuG as a measure of global heat flux trough
the surface of confining cubic enclosure as:
rsed boundary method for incompressible viscous thermal flow problems:
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Fig. 3. Illustration of 100 Lagrangian points evenly distributed over the surface of a
unit sphere by the non-iterative method of Leopardi [40].
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NuG ¼ 1
N

XN
i¼1

@h
@n

; ð13Þ

where @h
@n is the temperature gradient averaged over the surface of a

given edge of the cubic enclosure and N is the number of thermally
un-insulated edges. The steady state flows were calculated for the
values of Ra ¼ 105 and Ra ¼ 106 and j ¼ �0:25. Convergence to
steady state was assumed when the value of the L1 norm calculated
for the difference between the flow characteristics obtained at two
consecutive time steps was less than 10�6 for all the flow fields.
Details regarding setup and characteristics of the numerical solu-
tion are given in Table 2. Although direct algorithms are known
for their high memory requirements for performing LU factoriza-
tion, the memory consumption for this specific configuration is
quite modest, not exceeding 21 Gb of RAM for the most memory
Table 2
Setup and characteristics of the numerical solution obtained on 2003 grid for the simulation
the value of R=L ¼ 0:2; j ¼ 0.

Ra Time step duration, s RAM, Gb Dt Method of solutio

103 2.5 20.70 10�3 Direct (LU)

104 2.4 15.04

105 2.3 9.734

106 2.2 6.892

Table 3
Comparison between the present and the previously published Nu and NuG values averaged
cube, respectively.

Nu

Ra ¼ 105 Ra ¼ 10

j Ref. [6] Ref. [9] Present Ref. [6] Ref. [9]

�0.25 13.665 13.774 13.489 20.890 21.993
�0.2 12.931 13.058 12.768 20.631 21.862
�0.1 12.729 13.105 12.819 20.772 22.164
0 12.658 13.415 13.160 20.701 23.344
0.1 12.351 13.446 13.230 20.367 22.525
0.2 12.254 13.635 13.462 19.664 22.208
0.25 12.944 14.426 14.277 19.721 22.393
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consuming configuration. It is remarkable that the lower the Ra
value, the higher is the memory consumption, which approximately
scales as Ra�0:16 when the threshold value for the matrix ½IH�1R�
sparsing is equal to 10�22. Recalling that the fullness of matrix
½IH�1R� reflects the intensity of mutual interactions between the
Lagrangian forces and heat fluxes, the above observation is not sur-
prising, since the intensity is higher for viscosity dominated flows. It
is remarkable that for the moderate memory consumption typical
of the present configuration the time step duration is almost inde-
pendent of the fullness of matrix ½IH�1R�, allowing for optimally
exploiting advantages of the direct solver. Note also that if the
sphere is positioned far enough (more than two grid cells) from
the cube boundaries the characteristics of the numerical solution
do not depend on the spatial location of the sphere inside. For this
reason the characteristics in Table 2 are presented for only a single
value of j ¼ 0.

Comparison between the obtained average Nu and NuG val-
ues and the corresponding values available in the literature is
presented in Table 3. An acceptable agreement is observed for
both Ra ¼ 105 and Ra ¼ 106 and the entire range of j values,
successfully verifying the present calculations. Natural convec-
tion flow is visualized by presenting vortical structures, deter-
mined by utilizing the k2 criterion proposed by Jeong and
Hussain [41]. According to the authors, the outermost outer
surface of the vortex can be revealed by connecting the same
negative k2 values close to zero. Following the recent study in
[42], the value of k2 ¼ �0:1 was chosen for the visualization
of convection cells. Fig. 4 presents the visualization vortical
structures obtained for the values of Ra ¼ 105 and Ra ¼ 106

and j ¼ 0:25;0;�0:25. As expected, the obtained fully 3D
steady state flow is symmetric relative to the X � Z and Y � Z
center planes, as well as relative to both main diagonal planes
of the cube. For all the configurations a large circumferential
convection cell is formed close to the top boundary of the cube.
For Ra ¼ 105 the cell is characterized by a nearly toroidal shape,
whereas for Ra ¼ 106 there is an entrainment of the bottom
surface of the cell into the cell interior. The entrainment
becomes more pronounced with decreasing the value of j.
of the natural convection from a hot sphere placed inside a cold cube characterized by

n of Eq. (11a) Number of time steps Sparsing threshold for ½IH�1R�

Oð103Þ 10�22

Oð103Þ
Oð104Þ
Oð104Þ

over the surface of hot a sphere placed within a cold cube and the surface of the cold

NuG

6 Ra ¼ 105 Ra ¼ 106

Present Ref. [6] Present Ref. [6] Present

20.611 1.1995 1.1113 1.8372 1.7246
20.517 1.1353 1.0507 1.8135 1.6680
21.216 1.1111 1.0542 1.8230 1.7246
21.589 1.1044 1.0821 1.8174 1.7524
21.674 1.0802 1.0880 1.7816 1.7522
21.487 1.0619 1.1082 1.7227 1.7368
21.757 1.1193 1.1771 1.7222 1.7588
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Fig. 4. Visualization of convection cells for the natural convection flow from a hot sphere placed inside a cold cube.
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The value of j is also directly correlated with the major radius
of the toroidal convection cell. It can also be seen that for smal-
ler values of j the center of the convection cell acquires an
elongated center-hollowed mushroom shape.
Please cite this article in press as: Y. Feldman, Semi-implicit direct forcing imme
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4.2. Natural convection from a hot horizontal cylinder in a cold cube

The natural convection flow from a hot horizontal cylinder of
radius R, whose axis coincides with the spanwise centerline of a
rsed boundary method for incompressible viscous thermal flow problems:
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Fig. 5. Physical model of a hot cylinder inside a cold cube.

4 The Nu and NuG values corresponding to unsteady flows reported in [42] were
averaged over time.
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cold cube of edge L is considered. The cylinder extends across the
whole width of the cube. The cylinder surface is held at a constant
hot temperature, hh, while its edges are attached to the adiabatic
walls of the cube. All other cube walls are held at a constant cold
temperature, hc , and the gravity force acts downwards (see
Fig. 5). In the present study the configurations with radii varying
in the range of 0:1 6 R=L 6 0:4 were investigated.

All the simulations were performed on 2003 uniform grids with
a time step of Dt ¼ 10�3. The convergence to steady state was
assumed when the value of the L1 norm calculated for the differ-
ence between the flow characteristics obtained at two consecutive
time steps was less than 10�6 for all the flow fields. Special treat-
ment should be applied when interpolating Eulerian temperatures
on the Lagrangian points of the cylinder attached to both adiabatic
walls of the cube, and when regularizing the volumetric Lagrangian
heat fluxes to the adjacent Eulerian grid. This is because of the
symmetric two-sided character of the discrete Dirac delta function
(see Eq. (5)) utilized in the present study. Therefore, just a naive
employment of the above delta function in interpolation (or regu-
larization) operators acting from only one side of the cube wall will
lead to an accumulation of computational errors. The remedy
comes from the fact that the adiabatic boundary condition is
equivalent to a mirror symmetry distribution of the temperature
field with respect to the thermally insulated wall. For this reason
one should double the impact of interpolated temperatures and
regularized volumetric heat fluxes when employing the delta func-
tion from one side of the adiabatic boundary. Note also that no spe-
cial treatment is required for the velocity fields at the same
Lagrangian points, as they are simply skipped when building the
corresponding R and I matrices. This is due to the fact that the
non-slip kinematic constraints are automatically enforced by the
imposed non-slip boundary conditions on the cube’s walls.

It should be noted that our simulations resulted in steady state
flows for the entire range of R=L and Ra values. This result differs
from the data recently published in [42], which reported quasi-
periodic and periodic flows for R=L ¼ 0:3 and R=L ¼ 0:4, respec-
tively, at Ra ¼ 106. In order to exclude the dependence of the cur-
rently obtained solution on grid resolution and time step,
additional simulations were performed for the above configura-
tions for which the values of maximal grid size and time step were
reduced by a factor of 2. Insignificant deviations (no more than
0.5% for all the flow variables) were found between the newly
obtained and the original steady state flows, which favorably ver-
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ifies the independence of our results on grid size and time step val-
ues. The apparent reason for the discrepancy observed between the
current and the previously published [42] results can be attributed
to the non-linear physics of the considered system, which can
simultaneously exhibit a number of different states at the same
value of Ra number. Performing a global linear stability analysis
which would formally prove the existence and character of the
bifurcated flow reported in [42] remained out of the scope of the
present study. In the following we will put forward a number of
arguments supporting the possibility that the currently observed
and the previously reported flows belong to different branches.
With all these caveats an acceptable agreement is observed when
comparing the present and the previously reported Nu and NuG val-
ues [42] averaged over the surface of a hot cylinder and the surface
of the cold cube, respectively,4 for the entire range of R=L and Ra val-
ues, as summarized in Tables 4 and 5, respectively. A spatial distri-
bution of temperature isosurfaces corresponding to the steady
state flows calculated for the entire range of R=L and Ra values is
shown in Fig. 6. For all the configurations and for the entire range
of Ra numbers the temperature distribution is symmetric relative
to the X � Z and Y � Z planes. As expected, all the configurations
are characterized by a linear temperature distribution with almost
concentric isosurfaces for a small value of Ra ¼ 103. With an increase
in the Ra values, the flow convection becomes more dominant and
the temperature isosurfaces acquire irregular shapes. For R=L ¼ 0:1
and R=L ¼ 0:2 the shape of temperature isosurfaces elongates
towards the top of the cube. The shape elongation is not uniform
and is more pronounced close to the isothermal boundaries, which
is a result of lower vertical velocities in these regions. This trend,
however, is not observed for configurations with higher R=L ratios.
To understand the reason for this difference we visualize convection
cells inherent to each configuration for the highest Ra ¼ 106 value by
plotting the k2 criterion (see Fig. 7). It can be seen that the configu-
rations with R=L ¼ 0:1 and R=L ¼ 0:2 are characterized by two major
convection cells which are symmetric relative to the Y � Z plane and
occupy the whole upper part of the cube. This is in contrast to con-
figurations with higher R=L ratios (0.3 and 0.4), both having four
major symmetric discrete convection cells located close to the top
boundary of the cube.

We next focus on the differences between the present and the
reported [42] time averaged spatial distributions of convection
cells obtained for Ra ¼ 106 and R=L ¼ 0:4. Both distributions are
symmetric relative to the X � Z and Y � Z planes. The currently
obtained distribution is characterized by four major discrete con-
vection cells appearing close to the cube top boundary. In contrast,
the distribution reported in [42] has only two major discrete con-
vection cells occupying almost the entire region adjacent to the top
boundary of the cube. The above argument supports a possibility
that the two flows belong to different branches, which can explain
the observed qualitative and qualitative differences between the
corresponding flow characteristics. The qualitative discrepancies
between the present and the reported [42] time averaged spatial
distributions of convection cells obtained for Ra ¼ 106 and
R=L ¼ 0:3 are not as significant as for R=L ¼ 0:4 and, apparently,
can be attributed to the differences between the implemented
numerical approaches. An accurately performed grid and time
independence analysis further corroborates the currently obtained
results.

Table 6 presents details regarding characteristics of the numer-
ical solution as a function of the Ra and R=L values. As has been
already observed for the configuration of a hot sphere inside a cold
cube, the memory consumption varies inversely with the Ra value.
rsed boundary method for incompressible viscous thermal flow problems:
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Table 4
Comparison between the present and the previously published Nu values averaged over the surface of a hot cylinder placed within a cold cube.

Ra ¼ 104 Ra ¼ 105 Ra ¼ 106

R=L Ref. [42] Present Ref. [42] Present Ref. [42] Present

0.1 6.2493 6.4880 11.138 11.662 18.326 19.250
0.2 5.1184 5.1500 7.2271 7.5800 13.361 13.937
0.3 5.8084 5.7304 6.4790 6.5169 11.272 11.401
0.4 8.7030 8.5544 8.7030 8.7643 10.716 10.832

Table 5
Comparison between the present and the previously published NuG values averaged over the surface of the cold cube.

Ra ¼ 104 Ra ¼ 105 Ra ¼ 106

R=L Ref. [42] Present Ref. [42] Present Ref. [42] Present

0.1 1.0201 1.0208 1.8099 1.8360 2.9945 3.0348
0.2 1.6161 1.6188 2.3766 2.3814 4.3985 4.3677
0.3 2.6216 2.9091 2.9726 3.0702 5.1956 5.3844
0.4 5.1919 5.3928 5.2651 5.5131 6.6106 6.8313
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In the present case it scales as Ra�0:16, Ra�0:15, Ra�0:12 and Ra�0:09 for
R=L ¼ 0:1, R=L ¼ 0:2, R=L ¼ 0:3, and R=L ¼ 0:4, respectively. At the
same time, for the given Ra value the memory consumption is lin-
early proportional to the number of Lagrangian points characteriz-
ing the surface of the immersed body. Regarding the
computational times, no clear trend was observed as a function
of the Ra and R=L values, while the average time required for per-
forming a single time step is equal to 3.4 s.

4.3. Differentially heated spherical shell

We consider the natural convection flow in a spherical shell
formed by two concentric spheres,5 as shown in Fig. 8. The internal
sphere of radius Ri is held at a constant hot temperature hH , while the
external sphere of radius Ro is held at a constant cold temperature hC .
The gravity force acts downwards. The difference between the tem-
peratures of the internal and external spheres, hh � hc , and the differ-
ence between the external and internal radii, L ¼ Ro � Ri, are used to
scale the temperature and length fields. An additional parameter,
/ ¼ Ri=Ro is introduced to define the ratio between internal, Ri, and
external, Ro, radii. Hence, the geometrical dimensions of the spheri-
cal gap are not constant and are determined by a non-dimensional
distance between the external and internal radii (which is always
equal to unity) and the value of parameter /. According to our pre-
vious research [43], a grid consisting of no less than 6� 106 finite
volumes is required to accurately capture both steady and unsteady
flow phenomena for this kind of flow. For this reason all the simula-
tions presented in this section were performed on a 3003 uniform
grid.

We start our analysis with an investigation of the steady state
flows developing inside the spherical shell characterized by the
value of / ¼ 0:5 for the range of 104 6 Ra 6 106. Fig. 9 presents
3D iso-surfaces of temperature distribution, along with the tem-
perature contours and pathlines of the steady flow observed at
the X � Z cross section.

It can be clearly recognized that the obtained steady state
flow is axi-symmetric for all Ra values, in agreement with
the previously published studies [9,44–46]. As expected the
5 Both shells are located at the center of a cube with all no-slip cold boundaries
which is not shown in Fig. 8 to avoid clumsiness. In all the simulations the minimal
distance between the external sphere and the cube walls was at least 10 grid cells, in
order to avoid high velocity and temperature gradients outside the external sphere.
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dominance of convective heat transfer increases with increasing
Ra, which is reflected by a prevalence of thin thermal and veloc-
ity boundary layers near the surface of the hot sphere and
higher temperature gradients inside the hot thermal plume
located at the top region of the gap. It can also be observed that
the center of the crescent convection cell typical of these kinds
of flow is shifted upwards as the Ra number increases. As can
be seen from Table 7, the values of the Nu number averaged
over the surface of the outer sphere by

Nu ¼
ffiffiffiffiffiffiffiffiffiffi
PrRa

p
DxQ=/; ð14Þ

are in good agreement with the corresponding Nu values previ-
ously reported in the literature for the entire range of Ra values.
It should be noted here that there is a small (no more than 2%)
discrepancy between the average Nu values calculated for inter-
nal and external spheres. This discrepancy is typical of numerical
methods which do not directly resolve the thinnest boundary lay-
ers near the solid surfaces, such as IB and lattice Boltzman meth-
ods. For example, a discrepancy of about the same magnitude
was reported by Gallegos and Málaga [47], who investigated
the natural convection flow in eccentric spherical shells by the
lattice Boltzman method. It is believed, however, that the
observed discrepancy does not lead to incorrect conservation of
the overall heat flux through the boundaries of the sphere (other-
wise the steady state regime would not have been reached),
rather, it only appears while postprocessing the obtained results
and can be further minimized by increasing the number of
Lagrangian points. Similarly to the previously discussed configu-
rations the memory consumption of the present flow also
depends inversely on the Ra value (see Table 8). At the same time
the memory demand is quite modest and does not exceed 21 Gb
of RAM for the most memory consuming case characterized by
the value of Ra ¼ 103.

To prove that the developed method can also accurately simu-
late unsteady fluid dynamics, the natural convection inside a con-
centric spherical shell characterized by the value of / ¼ 0:714 is
simulated at Ra ¼ 4:6� 104 and Pr ¼ 0:7. At these values, the nat-
ural convection flow developing inside the above configuration
exhibits complex periodic multi cellular dynamics in the form of
either pulsating or travelling waves, as detailed in a number of pre-
vious studies [48–50]. Fig. 10a presents a snapshot of the distribu-
tion of radial velocity v r on the midrange D ¼ ðDi þ DoÞ=2 spherical
rsed boundary method for incompressible viscous thermal flow problems:
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Fig. 6. Spatial distribution of temperature isosurfaces for the values of h ¼ 0; 0:25; 0:5; 0:75.
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surface. The distribution is characterized by 10 clearly distin-
guished discrete convection cells which have been formed as a
result of symmetry breaking Hopf bifurcation. This is in agreement
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with the results obtained by the linear stability analysis of Travni-
kov et al. [50], which predict the highest growth rate for the wave
number m ¼ 10 at Racr ¼ 3:9563� 104. Fig. 10b presents the time
rsed boundary method for incompressible viscous thermal flow problems:
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Fig. 7. Visualization of convection cells for the natural convection flow from a hot cylinder placed inside a cold cube.
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evolution of temperature acquired at point (0.01262, �2.1212,
2.1165) located on the midrange spherical surface on the meridian
circle along which the maximal v r component variations are
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observed. The Fourier transform of the temperature evolution
yields the value of angular frequency of the bifurcated flow
x ¼ 0:389. Note that this value is in excellent agreement with
rsed boundary method for incompressible viscous thermal flow problems:
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Fig. 7 (continued)

Table 6
Setup and characteristics of the numerical solution obtained on a 2003 grid for the simulation of the natural convection from a hot cylinder placed inside a cold cube.

Ra R=L Time step duration, s RAM, Gb Dt Method of solution of Eq. (11a) Number of time steps Threshold for the filling of ½IH�1R�

104 0:1 3.4 29.5 10�3 Direct (LU) Oð103Þ 10�25

0:2 3.2 50.3 Oð103Þ
0:3 7.5 68.0 Oð103Þ
0:4 5.2 92.1 Oð103Þ

105 0:1 3.2 19.1 10�3 Direct (LU) Oð104Þ 10�25

0:2 2.9 32.5 Oð103Þ
0:3 3.5 48.7 Oð103Þ
0:4 4.6 68.6 Oð103Þ

106 0:1 2.4 14.1 10�3 Direct (LU) Oð104Þ 10�25

0:2 2.8 25.5 Oð104Þ
0:3 3.2 40.6 Oð104Þ
0:4 4.3 62.1 Oð104Þ

Fig. 8. Physical model of the differentially heated concentric spherical shell.
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the critical frequency value xcr reported in [50].6 It is remarkable
that the average Nusselt number Nu is even more sensitive to the
flow oscillations, and oscillates with an angular frequency twice that
of the temperature (and the velocity) fields (see Fig. 10c), in agree-
ment with the recent study of Scurtu et al. [48]. Taking into account
that rotating wave is a pattern characterized by a rigid rotation
yielding constant values of the global Nusselt number, the presently
obtained oscillating behaviour of Nu indicates that the observed
instability is of pulsating mode.

The advantages of utilizing an iterative BICG algorithm for the
solution of Eq. (11a) for a large problem solved on a 3003 grid
can be seen from the setup characteristics summarized in Table 9.
In fact, despite the high resolution and the large amount of Lagran-
gian points determining the surface of two immersed bodies (more
than 3� 105) the simulation only required 10 Gb of RAM. This is
comparable with the memory required when simulating convec-
tion flow from a single sphere in a cube on a 2003 grid (about
2� 104 Lagrangian points) and approximately 6 time less than
maximal amount memory consumed when simulating convection
6 The xcr reported in [50] was renormalized by dividing it by
ffiffiffiffi
Ra
Pr

q
to fit the scaling

of the present study.
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Fig. 9. Flow characteristics of steady state natural convection flow in a spherical gap characterized by the value of / ¼ 0:5. Left column corresponds to 3D isosurfaces of
temperature, h ¼ 1; 0:75; 0:5; 0:25; 0; right column corresponds to the contours of temperature and path lines observed at Z � X cross-section.

Table 7
The Nu number values averaged over the surface of an external sphere.

/ Ra Present Ref. [9] Ref. [44] Ref. [45] Ref. [46]

103 1.1088 1.120 1.104 1.0990 1.1310

0.5 104 1.9648 1.987 1.9665 1.9730 1.9495

105 3.4649 3.452 3.4012 3.4890 3.4648
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Table 8
Setup and characteristics of the numerical solution obtained on a 2003 grid for the simulation of the natural convection inside a differentially heated spherical shell, characterized
by the value of / ¼ 0:5.

Ra Time step duration, s RAM, Gb Dt Method of solution of Eq. (11a) Number of time steps Sparsing threshold for ½IH�1R�

103 2.5 20.70 10�3 Direct (LU) Oð104Þ 10�16

104 2.4 15.04 Oð104Þ
105 2.3 9.734 Oð105Þ

Fig. 10. Flow characteristics of unsteady natural convection flow exhibiting instability of pulsating mode obtained for Ra ¼ 4:6� 104.
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Table 9
Setup characteristics of the numerical solution obtained on a 3003 grid for the simulation of the natural convection inside a differentially heated spherical shell characterized by
the value of / ¼ 0:714.

/ Time step duration, s RAM, Gb Dt Method of solution of Eq. (11a) Number of time steps Threshold for the filling of ½IH�1R�
0:714 15.1 10.1 5� 10�3 BICG algorithm Oð105Þ 10�25
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flow from a horizontal cylinder in a cube on a 2003 grid (about
1� 105 Lagrangian points).7 The relatively long duration of a time
step (15.1 s) is not surprising and is the result of both high grid
resolution and a low value of convergence criterion for the BICG
algorithm, which was set to n ¼ 10�7.
5. Conclusions

A novel formulation of the IB method based on a semi-implicit
coupling between the Lagrangian force and heat flux densities and
the Eulerian velocity and temperature fields has been developed
and successfully verified for a number of confined 3D natural con-
vection flows in the presence of immersed bodies of various
geometries. The obtained results were favorably compared with
available data for both steady and periodic flows. The existence
of qualitative differences between the obtained and previously
published study for the flow around a horizontal cylinder charac-
terized by high R=L ratios and a value of Ra ¼ 106 was attributed
to the flow non-linearity, which can exhibit different states at
the same Ra values.

The developed approach can be seen as a generic methodology
for acquiring existing time marching solvers of NS equations based
on a segregated pressure-velocity coupling (e.g. SIMPLE, fractional
step, projection methods and their derivatives) with the IB func-
tionality. The implemented semi-implicit coupling between the
Lagrangian force and heat flux densities and Eulerian velocity
and temperature fields has proved to be a highly efficient and high
fidelity methodology for simulating confined natural convection
flows in the presence of immersed bodies at moderate Ra values.
The high efficiency of the methodology stems from the Schur com-
plement decoupling of the governing equations, which allows for
precomputing the most time consuming operations of the
algorithm.

Performance of both direct and iterative methods was investi-
gated for the time marching stage of the algorithm. It was found
that the time marching stage of the approach utilizing the direct
method based on LU decomposition is attractive for the problems
solved on moderate (up to 2003) grid resolutions. On the other
hand, as a result of the poor scalability of the elimination and back
substitution stages, the performance of the direct method based
solvers deteriorates if high resolution grids are utilized. It was
demonstrated that replacing a direct LU factorization by an itera-
tive BICG algorithm at the time marching stage of the algorithm
provides a promising alternative if the solution is performed on
high resolution grids.

High memory consumption can be seen as a major bottleneck of
the developed approach. While the above limitation is not
expected to manifest itself if the program will run on a standard
Linux server equipped with 128 Gb RAM or more, some adjust-
ments are to be made if the developed approach is expected to
be used on a standard PC. Summarizing the tests made for the
benchmark flows discussed in the paper, the memory demand
can be controlled by modifying sparsing threshold when building
the matrix ½IH�1R� which will still remain small enough to
7 Both simulations are based on direct LU decomposition utilized for the solution of
Eq. (11a).
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precisely meet all kinematic constraints of the problem. A reason-
able amount of required memory can be achieved by either
decreasing the time step for flows characterized by the low values
of Re and Ra numbers or by both increasing the grid resolution and
decreasing the time step if the flows under consideration are char-
acterized by the high values of Re and Ra numbers. It should be
stressed again that for high resolution grids only iterative solvers
have to be used for the solution of Eq. (11b).

Although the present study focused on a demonstration of the
capabilities of the developed algorithm for stationary immersed
bodies, it should be noted that the developed methodology can also
be straightforwardly extended to configurations with periodically
moving immersed bodies. Such an extension is of high relevance
in the simulation of the undulatory motion of tiny sea creatures,
as well as in various biomedical applications, and will be the focus
of our future work. An emphasis will be put on parallelizing the
timemarching stage of the algorithm by employing hybrid and dis-
tributed memory paradigms. Recalling that the time marching
stage comprises a stand alone part completely detached from the
original solver and physical model, it is expected that the above
task can be accomplished with a reasonable programming effort.
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