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Abstract 
 

Today, a considerable amount of energy is required to maintain a comfortable 

indoor climate in residential and office buildings, as well as in public shopping centers. 

Efficient optimization of the thermal insulation properties of hollow blocks, widely used 

as building elements of ventilated facades and masonry structures, is an important step 

in the direction of enhancing indoor climate control. 

The goal of the present study is to develop a generalized method for the design 

of "smart" passive thermo-insulating materials based on statistical evaluation of the 

confined natural convection flow in the presence of heterogeneous porous media. 

Confined natural convection flow developing inside a differentially heated cavity 

(comprising a convenient model for the air-filled cavity in the mid-core of a hollow 

construction block) is chosen as a computational testbed.  

The heterogeneous porous media are modelled by unconnected packed beds of 

equi- and non-equi-sized cylinders. Each cylinder is intelligently placed in the bulk of 

the natural convection flow to efficiently suppress the momentum at the most energetic 

regions of the flow. The spatial location of each cylinder is obtained by applying linear 

stability analysis to the 2D natural convection flow in the presence of the modelled 

porous media. The flow is treated by the mesoscale approach, implicitly resolving the 

flow fields in the vicinity of the immersed cylinders by the immersed boundary (IB) 

method (IBM). The results obtained for 2D configurations were extensively validated 

for realistic 3D flows. 

Basic statistical evaluation of the generated porous media patterns is performed 

to generalize the developed method for the design of “smart” thermo-insulating 

materials. It is shown that the efficiency of the thermal insulation of the porous media 

is closely related to the diameter of the cylinders modelling it. The study comprises an 
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important milestone in the design and manufacturing of “smart” thermo-insulating 

materials from available off-the-shelf porous materials. 
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Nomenclature 
 

 Initials  

  Optimization criterion parameter ࡭

  An arbitrary immersed object ܤ

 ࡮ Linear stability diagonal matrix  

  ௢ Computational domain (IB related)ܦ

 ܦ Cylinder diameter (non-dimensional)  

 ࢌ Discrete volumetric force on the Eulerian grid  

 ࡲ Volumetric boundary forces (non-dimensional)  

݃ Gravitational acceleration  ሾ݉ ⁄ଶݏ ሿ 

  Helmholtz operator ܪ

  Interpolation operator (IB related) ܫ

 ܫ Identity operator  

  Jacobian matrix ܬ

 ܭ Smoothing value  

L Characteristic length (non-dimensional)  

N  Number of points belonging to the vertical boundary  

 ݑܰ Nusselt number   

,݌ ܲ  Pressure (non-dimensional)  

 ݍ Eulerian heat source (non-dimensional)  

ܳ  Lagrangian point’s heat fluxes (non-dimensional)  

 ݎ Distance (non-dimensional)  

ܴ Regularization operator (IB related)  

ܴܽ  Rayleigh number  

ܴ݁  Reynolds number  

ܵ  Corresponding to all the cells belonging to the surface of immersed 

body  

 

  Time (non-dimensional) ݐ

ܶ Temperature  [°K] 

∆ܶ Temperature difference [°K] 

 ࢁ Value of the boundary velocity (non-dimensional)  
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 ࢛ Velocity vector field (non-dimensional)  

 ࢄ Lagrangian position vector (non-dimensional)  

 ࢞ Eulerian position vector (non-dimensional) 

 

 

 

  Superscript  

݊ Time step index  

෩   Perturbations  

∗  Intermediate predicted velocity field  

୻  Value on body’s boundary  

ഥ   Averaged  

    

  Subscript  

ܾ  Body related  

 ݈ݕܿ Cylinder related  

݅,j  Indices of computational domain points  

݇  Index of Lagrangian points   

 ݌ Pressure component  

 ܪ Temperature hot   

 ܥ Temperature cold  

 ݎܿ Critical values  

 ݑ Velocity in the x direction component  

 ݒ Velocity in the y direction component  

 ݓ Velocity in the z direction component  

 ݔ x direction component  

 ݕ y direction component  

 ݖ z direction component  
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  Greek symbols  

 ߙ Thermal diffusivity ሾ݉ଶ ⁄ܿ݁ݏ ሿ

 ߚ Adiabatic coefficient of thermal expansion ሾ1 ⁄ܭ° ሿ 

 ߜ Discrete delta function  

ζ୩ Z coordinate of the Lagrangian point  

  Temperature (non-dimensional) ߠ

Θ  Temperature at the Lagrangian points (non-dimensional)  

 ߣ Leading eigenvalue  

 ߤ Dominant eigenvalue, can be related to the leading eigenvalue ߣ  

 ߥ Kinematic viscosity ሾ݉ଶ ⁄ܿ݁ݏ ሿ

 ௞ߦ X coordinate of the Lagrangian point  

 ߩ Mass density ሾ݇݃ ݉ଷ⁄ ሿ 

߱  Real part of the eigenvalue  

߶  Porosity  

߰௞  Y coordinate of the Lagrangian point  

  Angular frequency / standard deviation ߪ

Ω Corresponds to a group of flow cells located in the close vicinity of 

the surface of the immersed body 
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Chapter 1: Introduction and Literature 
Survey 

 

1.1 Motivation of the study 

 The rapid growth in energy consumption required for heating and cooling 

residential buildings and offices (presently accounting for more than one third of the 

total energy budget in the European Community [1]) stimulates the promotion of energy 

saving technologies when building and maintaining the premises [2]. Efficient 

optimization of the thermal and insulation properties of hollow blocks, widely used as 

the building elements of ventilated facades [3] and masonry structures [4], is an 

important step in this direction, enabling the enhancement of indoor climate control. 

The high popularity of hollow blocks is due to their light weight and high thermal and 

acoustic resistances, achieved due to a large air-filled cavity in the mid-core of the block. 

While partition of the air-filled cavity can vary significantly without compromising the 

strength of the block (typically between 2 and 8 equal parts and up to 100 parts for the 

coarse and dense partitioned configurations (see Fig. 1.1)), it has a substantial impact 

on the convective component of heat flux passing through the hollow construction block. 

This is because the internal walls of a partitioned cavity suppress the intensity of 

convective air circulation by two physical mechanisms: first, they enforce the non-slip 

(zero) velocities on the internal surfaces and second, they split the flow up and thus 

decrease the geometrical dimensions of the largest flow scales. 

Unfortunately, simply partitioning the air-filled cavity by introducing many 

internal walls is far from an optimal solution to improving thermal insulation. In fact, 

reducing the convective heat flux in such a way is not only apparently counterbalanced 

(at least partially) by the accompanying conductive and radiative heat fluxes, but also 

incurs the disadvantages of significant increases in weight and construction costs. While 
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there is a broad consensus about minimizing the conductive and radiative heat fluxes by 

increasing the porosity of the brick material ( [5], [6]) and by decreasing radiation 

emissivity of recesses and the external surfaces of hollow bricks ( [7], [8]), an efficient 

minimization technique for convective heat flux is still sought. Therefore, in the 

framework of the present study the focus is only on natural convection flow and does 

not consider the conduction and radiation. 

 

(a) 

 

(b) 

Figure 1.1: Typical hollow blocks: (a) Cement building block partitioned into 2 equal parts of air filled cavities, 
(b) Red clay building block partitioned into 40 equal parts of air filled cavities. 

 

1.1.1 Natural convection inside a differentially heated cavity 

Natural convection – the mechanism by which motion is generated in a fluid by 

density differences due to temperature gradients – is ubiquitous in our daily lives at a 

wide range of scales; these can vary from kilometers for open flows, such as atmospheric 

and oceanic circulations, to microns for confined configurations, such as blood and lymph 

flows inside human tissues. While moving, the fluid contributes to the exchange of 

thermal energy between the hot and the cold regions – a phenomenon known as 

convective heat transfer. The development of methods facilitating the efficient control 

of convective heat transfer has been the subject of intensive research in nuclear, civil, 

aerospace and mechanical engineering over the past few decades. Attention has been 

paid to decreasing convective heat transfer in a configuration known as a differentially 
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heated cavity, namely, a rectangular container in which one vertical wall is hot and the 

opposite vertical wall is cold, while all other walls are either insulated or perfectly 

conducting. This problem has become especially relevant in the past two decades as a 

result of the rapid growth in energy consumption for the heating and cooling of 

residential buildings and offices (presently accounting for more than one third of the 

total energy budget in the European Community [1]). As a result, new thermal design 

standards for the energy efficiency of residential buildings in hot summer/cold winter 

zones have recently been proposed [2]. A differentially heated cavity can be used as a 

convenient model for simulating the natural convection flow developing inside the 

double-skin facades and hollow bricks widely used in the modern building industry, (see 

Fig.1.2). 

 

Figure 1.2: Cross section of a partitioned building block with boundaries held at constant temperatures Tୌ and Tେ 
(hot and cold respectively). 

To date, the majority of studies investigating ways to decrease heat flux in 

confined natural convection flows have been heuristic in character and based on breaking 

down the large scale convection cells. The pioneering works of Tong and Gerner [9] and 

Kangni et al. [10] were followed by a large number of studies which included various 

configurations and orientations of voids ( [11], [12], [13], [14], [15], [16], [17], [18], [19]), 

insulating the boundaries of the voids ( [20], [21]) and inserting flow obstacles ( [22], 

[23], [24], [25], [26], [27], [28], [29]), to name a few. It is therefore necessary to develop a 
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formal generalized method that will facilitate intelligent control of heat flux in confined 

natural convection flows and will provide engineers with the tools to achieve optimized 

thermal insulation of buildings. 

 

1.1.2 “Smart” passive thermo-insulating materials 

 Despite significant progress in decreasing convective heat flux in confined 

enclosures, the state of the art research in this area relies mostly on heuristic rather than 

on systematic methodology. The first attempt to reformulate the problem in terms of 

“smart” passive thermal insulation behavior is due to Costa [11]. It was demonstrated 

that protuberances inserted into the bulk of convective flow exhibit increasing self-

adjusting inhibition of convection and radiation heat fluxes for higher temperature 

differences between the hottest and the coldest walls of the hollow construction block. 

Merrikh and Lage [23] studied the effect of equally spaced conducting solid square blocks 

on a differentially heated cavity with adiabatic horizontal boundaries using a continuum 

model, which treats the fluid and solid constituents individually. They tested the effect 

of the conductivity of the solid blocks and the effect of the number of solid blocks (a 

greater number of blocks requires smaller blocks) on the heat transfer across the 

enclosure for the Rayleigh numbers in the range of (10ହ ൑ ܴܽ ൑ 	10଼).   
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(a) (b) 

Figure 1.3: Methods for decreasing convective heat transfer in differentially heated cavity: (a) Filled with equally 
spaced conducting solid blocks [23], (b) Protuberances inserted into the bulk of the flow [11]. 

Afterwards, Braga and Lemos [30] compared the heat transfer characteristics across a 

square cavity filled with a fixed amount of conducting solid square and cylindrical 

obstacles. Some studies ( [31] and [32], for example) use the volume-averaging macroscale 

approach to solve fluid flow equations. The present study utilizes a different – mesoscale 

– approach, explicitly resolving flow near the boundaries of the obstacles by enforcing 

non-slip kinematic constraints. This approach has gained popularity in the last decade 

due to the rapid development of computational power. Gulbeg [33] studied the insulating 

efficiency of heterogeneous porous media of varying porosities modelled by equi-sized 

cylinders randomly filling the differentially heated cavity, as shown in Figs. 1.3 a-c. As 

can be seen from Fig. 1.3d, at high ܴܽ numbers there is no significant difference between 

the ܰݑ values obtained for porosity values of ߶ ൌ 0.8 and ߶ ൌ 0.7, which clearly 

indicates that a random arrangement of porous media is not optimal. The next step 

towards deriving a formal methodology for intelligent control of the confined natural 

convection flow is to determine an optimization criterion that will define the location of 

the porous media. Gulbeg [33] tested two criteria. The first related to the perturbation 

of kinetic energy and the second to the perturbation of the temperature of the natural 

convection flow. It was found that optimizing with relation to the perturbation of kinetic 

energy criterion is significantly more efficient in decreasing the average value of the ܰݑ 

number than with relation to the criterion comprising a perturbation of the temperature 

field. 
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      (a)       (b)       (c) 

 

(d) 

Figure 1.4: A typical flow field inside a differentially heated cavity filled with thermal insulating material for ܴܽ ൌ
10଻: (a) ߶ ൌ 0.9, (b) ߶ ൌ 0.8 (c), ߶ ൌ 0.7, (d) ܰݑ െ ܴܽ functionality for a differentially heated cavity filled with 
thermal insulating material, each trend represents different porosity [33]. 

The most energetic regions where the flow oscillations are to be suppressed are 

determined by linear stability analysis in the presence of modelled porous media, as was 

recently established in the work of Gulbeg and Feldman [34]. The authors employed 

heterogeneous porous media modelled by unconnected packed beds of equi-sized circular 

cylinders, and reported a twofold decrease of the overall convective heat flux through 

the square differentially heated cavity when using optimally designed implants of porous 

media that occupy only 5% of the total volume. 
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1.2 Objectives of the study 

The goal of the present work is to extend and generalize the concept of “smart” 

thermal insulators in the context of decreasing convective heat flux through the air-filled 

cavities in the mid-core of hollow construction blocks. The present study is divided into 

two parts. The first part of the study extends the results of Gulbeg and Feldman [35] 

by applying the methodology to the suppression of the most energetic regions of the 

confined natural convection flow that develop inside a differentially heated cavity of 8:1 

vertical to horizontal aspect ratio. The second part of the present study focuses on the 

generation, statistical evaluation and validation of the recently established concept of 

“smart” thermal insulation for several sets of similar systems, utilizing square and cubical 

differentially heated cavities as computational testbeds. 

Various implants of heterogeneous porous media modelled by sets (10 patterns in 

each set) of unconnected packed cylinders of non-uniform and uniform diameters were 

generated. Based on the obtained results, the shapes, spatial locations and porosity 

values of the modelled porous media which form implants are statistically evaluated. 

Each porous media implant embedded into the differentially heated cavity provides a 

twofold decrease in convective heat flux through the cavity boundaries. An emphasis is 

put on extensive validation of the established methodology for 3D realistic configurations 

obtained by extruding the porous media patterns obtained by the corresponding 2D 

analysis in the third direction, i.e. porous media will be modelled by arrays of 3D 

cylinders. A grid independence of all the obtained 3D results is established. It is also 

shown that the optimized hollow construction blocks operate with approximately the 

same insulation performance for both positive and negative temperature gradients across 

the block and can thereby benefit for both cooled and heated indoor environments. 
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Figure 1.5: Physical model of the hollow block with implants of “smart” porous media insulator: (a) General 
exploded view, (b) Cross section view determining 2D model of differentially heated cavity. 
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Chapter 2: Theoretical Background. 

 

2.1 Chapter overview 

 In this chapter, the physical model and numerical methodology utilized in the 

present study are presented. The first part of the study focuses on the concept of “smart” 

insulation implemented for the natural convection flow developing inside a differentially 

heated cavity of 8:1 vertical to horizontal aspect ratio. The rest of the study focuses on 

generalizing and validating the established concept of “smart” thermo-insulating 

materials by utilizing square and cubic thermally insulated differentially heated cavities 

as testbeds. Comprehensive generalization and validation of the established concept will 

promote the design of “smart” thermo-insulating materials from available off-the-shelf 

porous materials, which is of significant practical importance. 

 In section 2.2 the theoretical background regarding 2D and 3D simulations of 

incompressible natural convection flow in differentially heated cavities is presented. An 

emphasis is put on the presentation of the physical model and on detailed explanation 

of the immersed boundary (IB) method (IBM).  utilized in the present study to resolve 

the natural convection flow near the solid boundaries. 

 In section 2.3 the numerical methodology, established and verified by Gulbeg and 

Feldman [34], is presented. The idea underlying “smart” thermal insulation is based on 

the local suppression of the momentum of the natural convection flow. In practice, the 

implementation of local suppression is based on well-defined criteria. The criteria are 

formally provided by 2D linear stability analysis augmented by IB functionality. The 

milestones of the utilized linear stability analysis are given and the validation of the 

developed methodology for realistic 3D flows is established by utilizing the IB method 

based on the direct forcing approach. 

2.2 3D incompressible natural convection flow  



 

Theoretical Background  10 

2.2.1 Physical model 

 The natural convection flow inside a differentially heated cavity is described by 

the momentum, energy, and continuity equations. These equations are formulated in 

Cartesian coordinates (x,y,z) with the origin located at one bottom corner of the cavity 

and gravity (ࢍ) acting opposite to the positive direction of the y axis (see Fig. 2.1). 

 0 u  (2.1) 

   2p
t

          
g  

u
u u u  (2.2) 

   2T
T T

t


   


u  (2.3) 

where	࢛ሺݑ, ,ݒ  ,and ܶ are the velocity, pressure, time and temperature ,ݐ ,݌ ,ሻݓ

respectively, ߩ is the fluid's density, ߤ is the dynamic viscosity and ߙ is the thermal 

diffusivity. Incompressible flow is assumed. The buoyancy effects are modelled by the 

Boussinesq approximation - ߩ ൌ ଴ሺ1ߩ െ ሺܶߚ െ ஼ܶሻሻ; this assumption is accurate 

whenever the density changes can be neglected and when they have no effect on the 

velocity field except for the ensuing appearance of buoyancy forces. Following [36] and 

[37], the dimensionless form is utilized using characteristic parameters L,	ܷ ൌ

ඥ݃,ܶ∆ܮߚ		ݐ ൌ ܲ	 and ܷ/ܮ ൌ  .ଶ for length, velocity, time, and pressure, respectivelyܷߩ

Here, ܮ is the length of the square differentially heated cavity, ߩ is the mass density of 

the working fluid,	ߩ଴ is the constant density,  ߚ is the adiabatic coefficient of thermal 

expansion, ݃  is gravitational acceleration and ∆ܶ ൌ ுܶ െ ஼ܶ is the temperature difference 

between the hottest and coldest boundaries. The non-dimensional temperature ߠ is 

defined as	ߠ ൌ ሺܶ െ ஼ܶሻ/∆ܶ. The	ܴܽ and	ܲݎ numbers are ܴܽ ൌ ௚ఉ

ఔఈ
ݎܲ	ଷ andܮܶ∆ ൌ  ,ߙ/ߥ

respectively, where ߙ is the thermal diffusivity and ߥ is the kinematic viscosity. 

Consequently, an additional term appears as a source in the y-direction of the Navier-

Stokes (NS) equation (Eq. (2.2)), thereby accounting for the temperature–velocity 
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coupling. The hot and cold walls are held at constant temperatures ுܶ and ஼ܶ, 

respectively, and all other boundaries are non-slip and perfectly conducting. 

  

Figure 2.1: Physical model and system of coordinates for the differentially heated cavity. Colors correspond to the 
temperature distribution at the mid cross section typical of steady state flow. 

For the sake of simplicity, the notation of non-dimensional parameters is the same as 

that used for dimensional ones so that the non-dimensional forms1 of the continuity 

equation (Eq. (2.1)), the NS equation (Eq. (2.2)) and the energy equation (Eq. (2.3)) 

read: 

 0 u  (2.4) 

   2
y

Pr
p e

t Ra


      


u
u u u  (2.5) 

   21

t PrRa

  
   


u  (2.6) 

where	࢛ሺݑ, ,ݒ  are non-dimensional velocity, pressure, time and ߠ and ,ݐ ,݌ ,ሻݓ

temperature variables, respectively, and ݁௬ሬሬሬሬԦ is a unit vector in the vertical (y) direction. 

 

 

2.2.2 Space and time discretization 

                                                            
1 Full derivation appears in Appendix C. 

Tୌ 

Tେ 

Z  X 

Y 
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 The time derivatives in the unsteady momentum and in the energy equations are 

approximated by using the first order forward Euler’s scheme:  

 
1 1n n ns s s

t t

  


 
 (2.7) 

Utilizing the Euler’s scheme, Eqs. (2.4), (2.5) and (2.6) can be rewritten as follows:  

 1 0n  u  (2.8) 

  
1

2 1 1

Δ

n n
n n n n

y

Pr
p e

t Ra



 

      
u u

u u u  (2.9) 

  
1

2 11

Δ

n n
n n n

t PrRa

   



   u  (2.10) 

After carrying out the time discretization, Eqs. (2.8), (2.9) and (2.10) are presented in a 

block matrix form: 

 

0 0 0

0 0

0 0 0

0 0 0 0

00 0

x
uu p

y
vv y p

z
ww p

x y z
u v w

RHSuH

RHSvH e

RHSwH

RHSH

p

 

    
    

    
         
    
    
           



 (2.11) 

Here, ܪ௨ ൌ ௩ܪ ൌ ௪ܪ ൌ ට௉௥

ோ௔
∆ െ ఏܪ and ݐ∆/ܫ ൌ

ଵ

√௉௥ோ௔
∆ െ  are the Helmholtz ݐ∆/ܫ

operators for the scalar momentum and the energy equations, respectively, 	ܫ is the 

identity operator, ∆ is the Laplacian operator and	׏௫,	׏௬,	׏௭ are the first derivatives 

with respect to the x, y and z coordinates, respectively. The discrete differential operators 

on the LHS of Eq. (2.11) can contain different boundary conditions and, therefore, for 

the general case, ܪ௨ ് ௩ܪ ് ௨௫്׏	௪ andܪ ௩׏, ௣௫׏
௬് ௣׏

௬,	׏௪௭ ് ௣௭׏ . Dealing with the spatial 

differentiation2 the LHS of Eq. (2.11), known as the Stokes operator, is further discretized 

with a standard staggered mesh second-order conservative finite-volume formulation 

                                                            
2 Full spatial differentiation can be seen in [55]. 
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[36], while the non-linear terms, moved to the RHS of Eq. (2.11), are approximated by 

the conservative central differencing scheme to avoid the appearance of artificial 

numerical viscosity in the upwind scheme (see Ref. [37] for the discretization details). 

 

2.3 “Smart” thermal insulation – concept 

 The concept of “smart” thermo-insulation is an engineering representation in 

which the thermal insulator is built of heterogeneous porous material intelligently placed 

in the bulk of confined natural convection flow to significantly decrease the convective 

component of heat flux. The porous medium is modelled by unconnected packed beds 

consisting of immersed bodies – equi- or  non-equi-sized cylinders. In this section, the 

criterion for intelligent placement of the immersed bodies and the method for resolving 

the flow in the vicinity of the immersed bodies are described. The concept of “smart” 

thermo-insulating is formally established by utilizing the linear stability analysis of 2D 

natural convection flows augmented by the IB functionality. The obtained 2D results 

are further validated by performing the numerical solution of full 3D NS and energy 

equations for realistic 3D configurations. 

 The implemented numerical methodology, utilized for solving the 2D modelled 

flow, is based on the implicit formulation of the IB method and a fully pressure-velocity 

coupled approach. The methodology incorporates two solvers: a steady state solver based 

on the full Newton iteration and a linear stability solver for calculating the necessary 

part of the whole spectrum of the flow by utilizing the Arnoldi iteration method. The 

two solvers are based on a previously developed [38] fully pressure-velocity coupled direct 

(FPCD) solver, briefly described in section 2.3.2 for the sake of completeness. 

 The methodology utilized for solving the 3D NS and energy equations is based 

on implementation of the segregated (SIMPLE) method augmented by the IB 

functionality based on the direct forcing approach, as described in section (2.3.5). 

2.3.1 Immersed boundary (IB) method 
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 The IBM [39] was developed to resolve the flow near the complex boundaries of 

immersed bodies when the body surface is either moving or stationary. The key 

advantage of IBMs is that simulations can still be performed on Cartesian structured 

grids, thereby facilitating efficient exploitation of the simple structure of the algebraic 

stencils that are used for spatial discretization of the NS and energy equations. The 

impact of the body immersed into the flow on the surrounding fluid is expressed in terms 

of volumetric forces comprising kinematic constraints to enforce non-slip boundary 

conditions on the body surfaces. These forces appear as additional unknown variables, 

whose values – along with those for the pressure, temperature and velocity fields – are 

provided by solving the NS equation and are directly accounted for in the overall balance. 

The IBM is not a stand-alone solver; rather, it is typically embedded into an existing 

“driver” (numerical solver initially developed without IB functionality) and should be 

perceived as a “philosophy” of enforcing boundary conditions. In this study, the IBM 

was implemented for imposing non-slip boundary conditions at the surfaces of the 

unconnected packed beds immersed in the convective flow. It should be noted that in 

the present implementation the immersed bodies must neither intersect nor touch each 

other, and the minimal distance between the two adjacent IBs is at least the size of a 

single grid cell. The detailed IBM formulation implemented in the present study is 

described in the following. Fig. 2.2 shows the setup of a typical spatial discretization 

implemented on a staggered grid, characterized by an offset between the velocity field 

and the fields of temperature and pressure. The Eulerian grid points are defined as	ܠ௜ ൌ

ሺݔ௜,  ௢, (whoseܦ ,within a computational domain ,ܤ	,௜ሻ. An arbitrary immersed objectݕ

geometry does not, in general, have to conform to the underlying spatial grid) is 

represented by the surface, ߲ܤ, determined by a set of Lagrangian points, ࢄ௞. The same 

distance between neighboring points, approximately equal to the grid size, should be 

preserved to provide high accuracy [40]. 
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Figure 2.2: A schematic staggered grid discretization of a 2D computational domain	ܦ௢, with a slice of IB formulation 
for a body, ܤ. The virtual shell, whose thickness is equal to the grid cell width, is shaded to distinguish it from the 
rest of the grid. The horizontal and vertical arrows ሺ⟶, ↑ሻ represent the discrete velocity locations, ݑ௜ and ݒ௜, 
respectively. The pressure ݌௝ and the temperature ௝ܶ are applied at the center of each grid cell and designated by	ሺൈሻ. 
Lagrangian points ࢄ௞ ൌ ሺߦ௞, ߰௞ሻ along ߲ܤ are shownas black dots ሺ∙ሻ where volumetric boundary forces ࡲ௞ ൌ
൫ࡲ௞௫,  .ܳ௞, are applied [33]	௞௬൯ and volumetric boundary heat fluxes,ࡲ

 We next associate a discrete volume ݀ ௞ܸwith each Lagrangian point ࢄ௞ such that 

an ensemble of these volumes forms a thin shell with a thickness equal to the width of 

the grid cell. At the Lagrangian points, appropriate surface forces,	ࡲ௞, and heat fluxes, 

ܳ௞, are applied to enforce the non-slip velocity and the Dirichlet temperature boundary 

conditions along	߲ܤ. Since the location of the Lagrangian boundary points does not 

necessarily coincide with the underlying spatial discretization, regularization and 

interpolation operators must be defined to convey information about the immersed body 

in both directions. The regularization operator,	ࡾ, smears volumetric forces, ࡲ௞, and heat 

fluxes,	ܳ௞, on the nearby computational domain, while the interpolation operator,	ࡵ, acts 

in the opposite direction and imposes non-slip/thermal boundary conditions on the 

points located on the body surface: 

          , , ( )k k k k k k k k i k Sk

S

Q Q dV  X X X X x XR F F  (2.12) 
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          , , ( )i i i i i k idV   


  u x x u x x x XI  (2.13) 

where ܵ corresponds to all cells belonging to the immersed body surface, Ω corresponds 

to a group of flow cells located in the close vicinity of the immersed body surface,	݀ ௌܸ௞ 

corresponds to the infinitesimal volume surrounding each Lagrangian point,	݇, and ݀ ஐܸ௜ 

is the volume of the corresponding flow cell, whose velocity and temperature values are 

explicitly involved in enforcing boundary conditions at point	݇ of the immersed body. 

Convolutions with the Dirac delta function are used to facilitate the exchange of 

information to and from	߲ܤ. Among the variety of discrete delta functions available, the 

function described by Roma et al. [41], which is specifically designed for use on staggered 

grids where even/odd de-coupling does not occur, was chosen. This delta function was 

successfully utilized in a number of previous studies, [42], [40], [41], [43]. 
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

  
 (2.14) 

Δݎ is the cell width in the ݎ direction. The discrete delta function	ߜሺݎሻ is supported over 

only three cells, which comprises an advantage for computational efficiency. 

  

The discrete form of regularization and interpolation operators for the 3D domain are 

governed by: 

          3, ,i i k k k i
k

i k i kq x Q x y z            f F  (2.15) 

          3, ,
k

k k i i i k i k i kΘ x x zy             U u  (2.16) 
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 ௜ are the discrete volumetric force and heat source defined on the staggered gridݍ	௜ andࢌ

ሺݔ௜, ,௜ݕ  ௞ are the discrete boundary velocity and temperature defined at the߆	,௞ࢁ	௜ሻ andݖ

݇ െ ,௞ߦLagrangian point ሺ ݄ݐ ߰௞,   .௞ሻߞ

 

2.3.2 Fully pressure-velocity coupled direct (FPCD). 

 We consider the 2D formulation of the natural convection flows, in which 

buoyancy is introduced by the Boussinesq approximation. 

 The phenomenon is governed by the continuity, NS and energy equations for 

incompressible flow: 

 0 u  (2.17) 

   2
y
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p e

t Ra

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

u
u u u  (2.18) 

   21

t PrRa

  
   


u  (2.19) 

where ݑሺݑ,  are the non-dimensionalized velocity vector, the pressure ߠ ,ܴܽ ,ݎܲ ,݌ ,ሻݒ

field, the Prandtl number, the Rayleigh number and the temperature, respectively, and  

݁௬ሬሬሬሬԦ is the unit vector in the opposite direction to gravity. By applying a second-order 

backward finite difference scheme for the time discretization, Eqs. (2.17)-(2.19) can be 

rewritten as: 

 1 0n  u  (2.20) 
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Note that all the non-linear terms are taken from the previous time step and moved to 

the RHS of the above equations. This system can be compactly written in a block matrix 

form as: 

 

1

1

1

0 0

0

0 0 0

00 0

x n n
u p u

n ny
vv y p

n n

x y
u v

H u RHS

v RHSH e
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p
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




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     

          
     

          


 (2.23) 

Here, ܪ௨ ൌ ௩ܪ ൌ ௪ܪ ൌ ට௉௥

ோ௔
∆ െ ఏܪ and ݐ∆2/ܫ3 ൌ

ଵ

√௉௥ோ௔
∆ െ  are the Helmholtz ݐ∆2/ܫ3

operators for the scalar momentum and the energy equations, respectively; all of the 

other terms in the Stokes operator are the same as in section (2.2.2). Following Refs. 

[37], [38], the fully pressure-velocity coupled solution of Eq. (2.23) can be obtained by 

LU-factorization of the Stokes operator with a set of suitable boundary conditions for 

all the velocity components and a single Dirichlet reference point for the pressure field. 

The discrete Stokes operator remains unchanged during the solution, reducing the time 

integration of the NS equations to two backward substitutions at each time step. The 

high efficiency of the above approach (see Ref. [37] for the characteristic computational 

times) is achieved by utilizing a modern multifrontal direct solver for sparse matrices 

(MUMPS), exploiting the sparseness of the discrete Stokes operator at both LU 

factorization and back substitution stages. 

 

 

 

 

Immersed boundary augmentation 

 Note that the discrete pressure ݌ appearing in Eq. (2.23) does not actively 

participate in time propagation and, therefore, can be viewed as the Lagrange multiplier 

that constrains the solenoidal velocity field. It is therefore reasonable to augment the 
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existing Stokes operator with IB functionality by adding an additional set of Lagrange 

multipliers to enforce the appropriate boundary conditions at the Lagrangian points. 

The equations representing the following augmented Stokes operator are: 

 0 u  (2.24) 
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 ( ) b UI u  (2.27) 

 ( ) b  I  (2.28) 

Formally, the 2D formulation of the motion equation in its compact matrix form, with 

the extension of IB (Eqs. (2.24)-(2.28)), is formulated as: 
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The dashed lines appearing in Eq. (2.29) separate between the “original” Stokes operator, 

located at the top left corner of the matrix and the additional IB entries appearing in 

Eqs. (2.27)-(2.28). It also separates the corresponding elements appearing in the vector 

of unknowns and the RHS vector. These additional entries are formally divided into two 

types. The first type corresponds to the “weights” of the unknown non-dimensional 

volumetric forces and heat source,	ܨ௫, ܨ௬, and ܳ, respectively, obtained by applying the 

regularization operator ܴ smearing the forces and heat source over the vicinity of the 

Lagrangian points (ܴிೣ ,ܴி೤,ܴொ). The second type corresponds to the “weights” of the 
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unknown non-dimensional Eulerian velocity and temperature components ܫ௨,  ,ఏܫ		௩ andܫ

respectively, imposing Dirichlet boundary conditions at the neighboring Lagrangian 

points. To precisely impose non-slip boundary conditions, the sum of the “second type 

weights”, each multiplied by its Eulerian velocity component, should be equal to the 

velocities of the corresponding Lagrangian points ܷ௕ and ௕ܸ – which represent the 

velocity of the immersed object. In other words, entries of the second type are nothing 

more than the additional equations necessary to achieve closure of the whole system of 

Eq. (2.29), after the unknown forces and heat source,	ܨ௫, ܨ௬, and ܳ, have been added. It 

should be noted that as a result of the utilization of the same Dirac delta functions, Eq. 

(2.14), in both the interpolation and regularization operators (ࡵ and ࡾ) and the same 

uniform staggered grid in the near vicinity of the immersed body surface, the 

interpolation and regularization operators are transposed to each other, ܴࡲ ൌ  ௨். Noteܫ

also that for all rigid stationary immersed bodies the values of ܷ௕ and ௕ܸ are all equal 

to zero, and for time propagation solvers the extended Stokes operator in Eq. (2.29) does 

not vary in each time step. In this study, the FPCD solver is used to solve a 2D steady 

state flow, as detailed in the following subsections. As a result of the constant Stokes 

operator, LU factorization of the extended Stokes operator should be performed only 

once at the beginning of the computational procedure. For a problem involving moving 

or deforming bodies, the location of the Lagrangian points is updated at each time step, 

therefore requiring modification of the extended Stokes operator, as well as its 

subsequent LU factorization. The factorization of the extended Stokes operator, as well 

as the “basic” Stokes operator, can be efficiently performed on a massively parallel 

machine, taking advantage of the high scalability parallelization built into the MUMPS 

solver [44].  

 Precise estimation of the average ܰݑതതതത number comprises an essential criterion for 

verification of any numerical solver and is particularly critical for the IBM. The IBM 

relies on a uniform Cartesian grid, which does not allow further local stretching for a 
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more precise resolution of the thinnest boundary layers. In this case, a more precise 

estimation of the ܰݑതതതത values is achieved by utilizing the law of conservation of heat flux, 

rather than simply calculating the near-surface temperature gradient. 

Implementing the IB method restricts the grid to be uniform where Δݔ ൌ Δݕ - 

the dimension of the uniform Eulerian grid. The ܰݑതതതത value averaged over the vertical 

boundaries of the cavity reads: 

 
1

1 N
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Nu
N x







  (2.30) 

where the local డఏ
డ௫

 values at every point of the vertical boundaries (ܰ) are provided by 

the solution of Eq. (2.29). 

2.3.3 Steady state immersed boundary FPCD solver 

The steady state equations, solved by the FPCD solver, representing the incompressible 

buoyancy driven flow are: 

 0 u  (2.31) 
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The IBM, incorporated into a pressure-velocity coupled direct solver, is implemented by 

introducing the previously defined regularization and interpolation operators. The values 

of boundary force ࡲ∗ and volumetric heat flux ܳ∗ in Lagrangian points are implicitly 

obtained as a part of the overall solution. The steady state natural convection 

incompressible flow with an embedded IB functionality is governed by the following 

equations: 

 0 u  (2.34) 
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   0bI  u U  (2.37) 

   Θ 0bI     (2.38) 

Boussinesq approximation is utilized for simulating the buoyancy effects. Additional 

entries,	ܴࡲ,	ܴொ,	ܫሺ࢛ሻ,	ܫሺߠሻ, are introduced by applying regularization ࡾ and interpolation 

 operators to address the impact of the IB on the velocity and temperature fields, by ࡵ

utilizing discrete Dirac delta functions (see Eq. (2.14)). A second order backward finite 

difference scheme and a standard staggered grid second order conservative finite-volume 

method are utilized for the temporal and spatial discretization, respectively.  

Equations (2.34)-(2.38) can be presented in block matrix form: 
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 (2.39) 

where ܬ௫,  ܬ௬, 	ܬ௨, ܬఏ, 	ܬ௩, ܬ௣ are parts of the Jacobian ࡶ of a system of momentum and 

continuity equations that does not include IB functionality, corresponding to the discrete 

RHS ܨ௡ೣ, ܨ௡೤, ܨ௡ഇ, ܨ௡೛ calculated at iteration 	݊. The matrix is expanded by entries 

of	ܴிೣ , ܴி೤, ܴఏ and	ܫ௨, ܫ௩,ܫఏ as a result of embedded IB formulation. The IB entries also 

contribute to the RHS of Eq. (2.39). The volumetric forces ܨ௝ and interpolated velocities 

݊ ௜, both calculated at iterationݑ , are added to the corresponding RHS of the momentum 
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and interpolation equations. The index ݅ corresponds to Eulerian points and the index ݆ 

corresponds to Lagrangian points. The iterative Newton-Raphson method is used to 

solve Eq. (2.39).  

 

2.3.4 Linear stability immersed boundary FPCD solver 

The steady state solution calculated in the previous section was further used for 

performing a linear stability analysis based on the algorithm previously developed by 

Gelfgat [45] and extended by the IB functionality. The present method imposes no 

restriction on the number or shape of the bodies. However, due to the use of the IBM, 

the bodies should not touch or intersect each other or the boundaries of the cavity and 

the minimal distance between any neighboring immersed objects or between any 

immersed object and the cavity boundary shall not be smaller than the size of a single 

grid cell. We next consider a slightly perturbed steady state solution of the form: 

   u U u  (2.40) 

       (2.41) 

 p P p    (2.42) 

   f F F  (2.43) 

 q Q Q    (2.44) 

where	࢛෥, ,෨ߠ ,෤݌ 	෩ andࡲ ෨ܳ are perturbations of velocity, temperature, pressure and 

Lagrangian forces fields. Assuming infinitesimally small perturbations in the form of 

൛ݑ෤ሺݔ, ,ሻݕ ,ݔ෨ሺߠ ,ሻݕ ,ݔ෤ሺ݌ ,ሻݕ ,ݔ෩ሺࡲ ,ሻݕ ෨ܳሺݔ,  as ,ܳ ,ܨ ,݌  ,Θ ,ࢁ ሻൟ݁ఒ௧ from the steady state flowݕ

follows, and substituting them into Eqs. (2.34)-(2.38) yields: 

     0.5 2
yu u u p Gr e R           

   
F

U U u  (2.45) 

     1 0.5 2Θ
Q

u Pr Gr R           
  U  (2.46) 



 

Theoretical Background  24 

 0 u  (2.47) 

   0I u  (2.48) 

   0I    (2.49) 

where ߣ is the complex eigenvalue defined as: 

ߣ  ൌ ܴ݁ሺߣሻ ൅  ሻ (2.50)ߣሺ݉ܫ

where	݉ܫሺߣሻ, is the imaginary part of the complex eigenvalue	ߣ, corresponding to the 

angular frequency of the perturbation (ߪሻ, and	ܴ݁ሺߣሻ is the real part of the complex 

eigenvalue ߣ corresponding to the growth rate (߱ሻ. In linear stability analysis we are 

typically interested in finding the critical value of the control parameter (e.g. ܴܽ௖௥) at 

which ܴ݈݁ܽሺߣሻ 	ൌ 0	 (to a prescribed precision), where ߣ is the leading eigenvalue. Eqs. 

(2.45)-(2.49) rewritten in a block matrix form yield:  

 p p

Q Q
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   
   
   
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   
      

 
 

 
 
 

u u

B J

F F

 (2.51) 

where ࡶ is the Jacobian matrix calculated from the RHS of Eqs. (2.45)-(2.49) and ࡮ is 

the diagonal matrix whose diagonal elements, corresponding to the values of	࢛෥, ߠ෨, are 

equal to unity, whereas the diagonal elements corresponding to	݌෤,	ࡲ෩ ,	෩ܳ  are equal to zero. 

By this means matrix ࡮ is singular. Note also that since the discretization is performed 

on a structured staggered grid in Cartesian coordinates, the discrete forms of Jacobians 

  .appearing in Eqs. (2.39) and (2.51) are the same ࡶ
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The generalized eigenproblem in Eq. (2.51) cannot be directly transformed into a 

standard eigenproblem, since ݀݁ݐሺ࡮ሻ 	ൌ 0; instead it is solved in a shift-invert mode

   1 1
;p p

Q Q

 
 

 


   
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   
      

 
 

 
 
 

u u

J B B μ

F F

 (2.52) 

The solution is based on a standard Arnoldi iteration implemented within an open source 

ARPACK package, providing the dominant eigenvalue (i.e. the eigenvalue with the 

largest modulus). 

The dominant eigenvalue ߤ can be related to the leading eigenvalue ߣ (i.e. that 

of a zero real part) when the approach is applied to a shift-invert problem, where ߪ is a 

complex shift (see Eqs. (2.52)). In order to converge the approach, the complex shift ߪ 

should be close to the leading eigenvalue of	ߣ, the real part of which is close to zero and 

whose imaginary part ݉ܫሺߣሻ corresponds to the critical angular oscillating frequency,	ߪ௖௥ 

The latter is either known from benchmark problems or can be estimated by a series of 

successive direct numerical simulations of the slightly bifurcated flow. 

The linear stability analysis of a given steady state is studied by applying the 

shift-inverse Arnoldi iteration to the corresponding eigenvalue problem with the secant 

method, providing a precise value for the critical control parameter. The overall process 

requires numerous solutions of large systems of linear equations, which should be 

performed at each step of the Newton method and while building the Krylov basis for 

the Arnoldi iteration. Typically, no more than ten iterations are required for the 

calculation of the steady state solution (by the Newton method), while the shift-invert 

Arnoldi iteration needs ܱሺ10ସሻ iterations to converge, thus comprising the key issue 

determining the computational efficiency of the whole process.  

The fact that the operator	ሺࡶ െ  does not change during the building of ࡮ሻିଵ࡮ߪ

the Krylov basis for the Arnoldi iteration helps the efficiency of the calculation of the 
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operator ሺࡶ െ 	෩ࡲ෥	݌	෨ߠ	෥࢛ൣ by the vector  ࡮ሻିଵ࡮ߪ ෨ܳ൧்required at each Arnoldi iteration step. 

The product implementation is simply a solution ࢄ of the linear system	ሺࡶ െ ࢄሻ࡮ߪ ൌ

෩ߠ	෥࢛ൣ࡮ 	෩ࡲ෥	݌	 ෨ܳ൧
். By utilizing the direct solver MUMPS, the ࢁࡸ decomposition of the 

operator ሺࡶ െ  ሻ is performed once at the beginning of the process, exploiting the࡮ߪ

sparseness of the matrix, and then each vector of the Krylov basis is obtained by just 

two subsequent back substitutions – faster than any iterative solver. At the end of this 

stage, we receive the leading eigenvalue λ, and the leading eigenvectors of all the flow 

fields are calculated.  

 

2.3.5 Direct forcing approach  

  Despite being extremely efficient for analysis of 2D flows, the methodology based 

on a fully coupled pressure-velocity approach is not suitable for realistic 3D problems. 

This is because both operators described in Eq. (2.39) and in Eq. (2.52) are of the saddle 

point type, and for realistic 3D problems one should adopt iterative methods employing 

fractional-step or projection approaches. For a more detailed discussion on this topic, 

the section Pros and Cons of the Developed Method in the recent study of Feldman and 

Gulberg [34] should be consulted. Therefore, a different – direct forcing – method, 

incorporated with a segregated approach for the pressure-velocity coupling, is utilized to 

perform the 3D numerical simulations. The direct forcing method allows for a smooth 

transition between the Eulerian and Lagrangian representations, while the system of 

governing NS equations is solved using a SIMPLE method implementing a segregated 

approach. The purpose of the direct forcing scheme is to impose the desired non-slip 

velocity at the points belonging to the surface of the immersed body. In this study, the 

direct forcing approach is based on the work of Kempe and Fröhlich [46]. The direct 

forcing method approximates the boundary force ࡲ∗ and the volumetric heat flux ܳ∗ for 

rigid bodies with an intermediate predicted velocity field ࢛∗, initially calculated by 
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ignoring the presence of the immersed body. The forces at Lagrangian points are 

calculated explicitly: 

      Γ *

*
, ,

,
n n

k kn
k

t t
t

t






U X U X
F X  (2.53) 

where ࢁ∗ represents the values of the boundary velocity obtained by interpolation of the 

nearby predicted velocity field on the immersed body surface, and ࢁ୻	corresponds to the 

preset boundary velocity calculated by the rigid body motion of the solid object 

,௞ࢄડሺࢁ ௡ሻݐ ൌ ௖ࢁ ൅ ࣓ ൈ ሺࢄ௞ െ  ௖,࣓ are the translational and rotationalࢁ	௖ሻ, whereࢄ

velocities and	ࢄ௖ is the center coordinate of the immersed object (in this study the object 

is stationary and, therefore, the boundary velocity is zero). The calculated ࡲ∗ is smeared 

over the volumes of the computational domain by utilizing the regularization operator, 

 contribute as a source to the ∗ࢌ Computed in this way, discrete volumetric forces .ࡾ

momentum equation. 
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Lastly, the algorithm is finalized by the standard projection-correction step, which 

includes a solution of the Poisson equation, yielding the fields of corrected pressure and 

a divergence free velocity vector. The boundary temperature values,	Θ୻, of the surface 

of the immersed body are enforced by: 

      Γ *

*
Θ , Θ ,

,
n n
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t t
Q t

t


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

X X
X  (2.55) 

where the temperature at the Lagrangian points Θ∗ is an interpolation of the 

intermediate temperature field ߠ∗, initially computed by ignoring the presence of the 

immersed body, and ܳ∗ is a non-dimensional volumetric heat source, subsequently 

smeared over adjacent volumes by a regularization operator (Eq. (2.15)). As a result, 

the regularized volumetric Eulerian heat source, ݍ∗, enters as a source into the 

corresponding energy equations: 
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t PrRa
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    nu  (2.56) 

It should be emphasized that the source/sink ݍ∗ value is relevant only if the preset 

Dirichlet or Neumann boundary conditions have to be enforced (i.e. in the presence of a 

thermally active immersed surface). If the immersed body is exposed only to convective 

flow and does not actively emit/absorb the heat by itself, then only non-slip boundary 

conditions are enforced on the immersed surface. In this case, a zero value is assigned to 

the ݍ∗ term appearing in Eq. (2.56). Formally, this imposes zero thermal resistance in 

the direction normal to the body surface, in accordance with the assumption of zero wall 

thickness of embedded obstacles. Note also that, due to the stationary boundaries, the 

interpolation/regularization operators can be pre-computed for each prescribed 

immersed surface; there is no need to employ a delta function at each time step, since it 

will yield the same result, thereby considerably decreasing the computational effort.  
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Chapter 3: Results and Discussion  

 

3.1 Chapter overview 

 In this chapter, the results obtained in the framework of the current study are 

presented and discussed. The first part of the study (section 3.2) focuses on the design 

of a “smart” thermo-insulator in a differentially heated cavity with an aspect ratio 8:1. 

The effects of the modelled porous media implants embedded into the bulk of the natural 

convection flow are discussed in terms of their efficiency in suppressing the momentum 

of the flow. The impact of optimization parameter ۯ (related to the perturbation of the 

kinetic energy of the flow) on the insulation capacity of the modelled porous media 

implants is discussed. 

The second part of the study focuses on statistical evaluation of the number of 

generated sets of modelled patterns of porous media. The confined natural convection 

flow inside a differentially heated cubic cavity was chosen as a testbed.  A set containing 

10 implants of heterogeneous porous media was generated by utilizing both the steady 

state and the linear stability analysis solvers. Each implant was modelled by unconnected 

packed beds built of cylinders, whose diameters were drawn in accordance with a 

Gaussian distribution to encompass the whole set of porous media structures. The 

procedure of building the whole set of patterns and further statistical evaluation of its 

insulating properties are discussed in subsection 3.2.2. 

The third part of the study is based on the results that were obtained in the 

previous part and averaged in terms of porosity value, geometric center and shape of the 

porous media implant. The performed statistical analysis sheds light on the impact of a 

whole set of porous media structures on the insulating efficiency of the modelled porous 

media implants. Finally, a 3D validation of the established methodology was performed, 

revealing trends similar to those observed in 2D flows. 
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3.2  “Smart” thermal-insulation 

 The “smart” thermal insulator design method employs a linear stability analysis 

of natural convection flows in the presence of heterogeneous porous media, as detailed 

in a recent study of Gulberg and Feldman [35]. Following this work, the presently 

employed optimization procedure is based on minimizing the value of parameter ࡭, 

defined as ࡭ ൌ ෤௫|ଶݑ| ൅	 หݑ෤௬ห
ଶ, where |ݑ෤௫| and หݑ෤௬ห are the absolute values of the 

perturbations of the corresponding velocity components. The optimization procedure is 

an iterative process which will be described here. The iterations start with the linear 

stability analysis based on the solution of Eqs. (2.45)-(2.49), performed for the flow 

within the cavity with no obstacles. As a result, the value of the critical Rayleigh 

number,	ܴܽ௖௥, for the first Hopf bifurcation is obtained and two cylindrical obstacles are 

placed at the locations where the criterion ࡭ attains its maximal value3. The 

corresponding fields of values of ࡭ and of the temperature distribution at steady state, 

with superimposed streamlines, are shown in Fig. 3.1. In the next step, the linear stability 

analysis is repeated for the modified flow, which is characterized by a new value of	ܴܽ௖௥, 

at which a transition to unsteadiness takes place. The next pair of obstacles can again 

be positioned at places where the new values of ࡭ reach their absolute maximum. In the 

present study, the above procedure is repeated until a twofold decrease in the average 

 തതതത number is achieved4. Note that the boundary of each cylindrical obstacle is assumedݑܰ

to be of zero thickness; hence there is no need to employ any specific heat fluxes in Eqs. 

(2.36) and (2.46), nor boundary conditions for the temperature determined by Eqs. (2.38) 

and (2.49). As a result, the boundaries of the cylinders have no thermal resistance in the 

direction normal to the body surface. 

                                                            
3 The obstacles always come in pairs due to the skew-symmetry of the flow. 
4 The procedure can be also applied with another termination criterion. 



 

Results and Discussion  31 

Figure 3.1: Contours of criterion A and the corresponding steady state distribution of temperature, ߠ, with 
superimposed streamlines obtained at ܴܽ ൌ 2.15 ⋅ 10଺ for no obstacles. 

The basic assumption of the optimization methodology implemented in the present study 

is that the most energetic regions of the 2D convective flow predicted by the linear 

stability analysis coincide, with an acceptable degree of accuracy, with the corresponding 

regions observed in the 3D configuration built by extrusion of the corresponding 2D 

confinement along its normal direction. This idea is supported by the striking similarity 

existing between the spatial and temporal characteristics observed for 2D and 3D steady 

and bifurcated flows in differentially heated square and cubic cavities, respectively, with 

perfectly thermally conducting horizontal boundaries (see e.g. Ref. [47]). The above 

assumption was successfully validated by the recent study of Gulberg and Feldman [35], 

who demonstrated about the same enhancement of insulating efficiency of a 2D 

differentially heated cavity and its 3D counterpart, both optimized by embedded 

implants of porous media. Following the same principle, the efficiency of all the porous 

media patterns obtained by the 2D linear stability analysis was validated by the 

corresponding 3D simulations. The numerical solution of full 3D NS equations (Eqs. 

(2.24)-(2.28)) was conducted by the recently developed IB solver [48]. Extensive 

discussion on the implementation and verification of the developed solver for thermal 

flows in the presence of thermally active and passive immersed bodies can be found in 

Ref.  [48], and is omitted here for the sake of brevity. 
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3.2.1 2D differentially heated cavity with 8:1 aspect ratio  

 As a direct continuation of Gulbeg and Feldman's [35] study for the creation of 

a “smart” thermal insulator methodology, a 2D simulation of a differentially heated 

cavity was conducted to build a pattern of a porous medium using the steady state and 

the linear stability analysis solvers for a cavity with an aspect ratio of 8:1. The cavity 

has perfectly conducting horizontal boundaries, while its vertical left and right 

boundaries are held at constant hot and cold temperatures, respectively. Utilizing the 

optimization criterion ࡭, closely related to the perturbation of kinetic energy, a pattern 

modelled by  unconnected equi-sized cylinders with a diameter of ܦ ൌ 0.05 was 

generated using an iterative process; this process required, first, that at each iteration 

the cylinder's center is placed at the point with the maximal value of ࡭ and, second, 

that the minimal distance between the cylinder's boundary and the boundaries of the 

previously placed cylinders or the cavity walls is at least equal to the size of a single grid 

step, which is an intrinsic requirement of the discrete Delta functions utilized in the 

present study [41]. The cylinders (obstacles) are placed in pairs due to the skew-

symmetry of the flow.  If one of the above criteria is violated, the location of the next 

largest value of ࡭ is sought and the morphological structure of the current “candidate” 

of the porous media implant is tested for meeting all the restrictions. Similarly to the 

previously mentioned study [35], the iterative process of building the pattern is 

terminated when a twofold decrease in the Nusselt number ܰݑതതതത averaged over the cavity 

vertical boundaries is achieved5. 

                                                            
5 Heat flux passing through the differentially heated cavity can be estimated by calculating the averaged 
Nusselt number over the cavity vertical boundaries. 
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Figure 3.2: Evolutionary stages of the process of generation of implants of “smart” thermal insulator for a 
differentially heated cavity of aspect ratio 8:1: three pairs of diagrams each show (top) A criterion. (bottom) the 
corresponding temperature distribution. 
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For the non-slip boundary condition, the Nusselt number depends only on the 

temperature gradient normal to the wall direction. Note that for the steady state flow 

the temperature distribution is skew-symmetric relative to the cavity center. The stages 

describing the iterative procedure of implant pattern generation of “smart” porous media 

are shown in Fig. 3.2. It should be noted that due to the convergence difficulties of the 

linear stability solver we were able to insert only 28 cylinders into the cavity, and the 

final goal of a twofold decrease in the value of the averaged Nusselt number, ܰݑതതതത, was 

not achieved. Nevertheless, some representative trends revealed in the course of the 

generation of the porous media pattern are worth mentioning. First, it is clearly shown 

that for each pair of inserted cylinders, the active area characterized by non-zero values 

of the optimization parameter ࡭	 converges towards the center of the cavity, which 

resembles the flow behavior typical of differentially heated square cavities. Consequently, 

the impact of the cylinders placed in the upper and lower regions (hot and cold 

boundaries, respectively) of the cavity is less significant than that related to the cylinders 

placed in the central region of the cavity. The above statement is further confirmed by 

looking at Fig. 3.3-a, which quantifies the changes in ܰݑതതതത as a function of the number of 

embedded cylinders. Despite the almost monotonic decrease in the value of the average 

Nusselt number, ܰݑതതതത, the decrease rate is not as high as that typical of square 

differentially heated cavities [35]. Second, as shown in Fig. 3.2, the magnitude of 

optimization parameter ࡭ increases with the number of embedded cylinders. This 

observation is apparently a consequence of higher velocity values in the center of the 

cavity as a result of the blockage effects of embedded cylinders. The process of 

convergence of the maximal values of optimization parameter ࡭  is followed by a non-

monotonic increase in the critical ܴܽ௖௥ value, which starts to exhibit a monotonic rise 

only after embedding 20 cylinders (see Fig. 3.3-b).  
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(a) (b) 

Figure 3.3: (a) Value of the averaged ܰݑതതതത number obtained for the vertical hot wall of the cavity at ܴܽ௖௥ ൌ 3.32 ⋅
10ହ, (b) The critical Rayleigh, ܴ ܽ௖௥ number for the steady-unsteady transition obtained by the linear stability analysis 
as a function of ther number of cylindrical obstacles for a grid of 800x100. 

3.2.2 Generalized “smart” thermo-insulator in a cubical differentially 

heated cavity  

Following the recent work of Gulbeg and Feldman [35], all the 2D calculations that 

included calculation of the steady state flow and its subsequent linear stability analysis 

were performed on a 500 ൈ 500 uniform grid, thus providing grid independence of the 

obtained results. This study aimed at the generalization of the concept of “smart” 

thermal insulators in the context of decreasing convective heat flux through air-filled 

cavities of hollow construction blocks. To check the impact of porosity as a macro-

optimization parameter determining the insulating properties of the modelled 

heterogeneous porous media, we start with the most general configuration and build a 

set of 10 different patterns, each consisting of non-equi-sized cylinders. The diameters of 

the cylinders in each pattern were drawn in accordance with a Gaussian distribution 

characterized by an average value of ܦ௔௩ ൌ 0.1 and standard deviation of	ߪ ൌ േ0.02. 

The patterns were built by an iterative process: first, the cylinder center was placed at 

the point with the maximal value of criterion ۯ; second, the minimal distance between 

the cylinder's boundary and the boundaries of the previously placed cylinders (for the 
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second and subsequent placements) or the cavity walls was fixed to be at least the size 

of a single grid step. The second step is an intrinsic requirement of the discrete Delta 

functions utilized in the present study [41] for the implementation of interpolation ܫ and 

regularization ܴ operators. If the second condition could not be met, a new diameter of 

the subsequent cylinder was drawn. An additional limitation to be considered is related 

to the scenario where the distance between the point characterized by the maximal value 

of criterion ۯ and the closest boundary is smaller than the minimal allowed value of the 

cylinder radius (ܦ௔௩/2 െ  is ۯ In this case the location of the next largest value of .(ߪ1.5

sought and the morphological structure of the new "candidate" of the porous media 

implant is tested to verify that it complies with all the conditions.   

In Figs. 3.4 and 3.5, two typical sequences of the construction of different porous 

media patterns are shown, corresponding to the porous media materials characterized 

by the minimal (߶ ൌ 0.51) and maximal (߶ ൌ 0.64) values of porosity (from the set of 

10 different patterns), respectively. Colors represent the corresponding distributions of 

the control parameter	࡭. Note that only a single pair of cylinders was added at each 

iteration (due to the skew-symmetry of the flow) and, therefore, Figs. 3.4 and 3.5 show 

only a number of representative configurations. The final geometry of both implants6, 

yielding a twofold decrease in the Nusselt number, ܰݑതതതത, averaged over the cavity vertical 

boundaries, is confined by the white curve (see Figs. 3.4-f and 3.5-f). Note that in the 

present study the porosity of the porous media implant is defined as: 

 / ,
cyl

p N p
N

V V V
 

   
 

  (3.1) 

where ௣ܸ is the volume of the final configuration of the porous media implant.  

                                                            
6 The contours comprise closed Bezier curves of the third order (see Appendix A for more details). 
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Despite the evident differences between the structures of both patterns, a number 

of trends, which will be exploited for further generalization of the strategies for the design 

of “smart” thermally-insulating materials, can be clearly recognized. 

 

 

(a) (b) (c) 

 

(d) 

 

(e) (f) 

Figure 3.4: Successive stages of building the pattern of “smart” insulators characterized by the minimal porosity 
value,	߶ ൌ 0.51. The final pattern of the porous material is confined by the white solid line. The colors correspond to 
the distribution of the control parameter	ۯ. Figure (f) was obtained at ܴܽ ൌ 4.39 ൈ 10଻. 

First, both patterns have the shape of a bunch of grapes close to the hot vertical 

boundary (or the shape of inverted bunch of grapes close to the cold vertical boundary), 

and are flattened in the vicinity of the vertical walls. Second, the geometric center of 

both configurations is much closer to the vertical compared to the horizontal walls of 

the cavity. Third, the convective flows that initially rise or descend along the vertical 

hot and cold walls, respectively, are further redirected to the cavity center. As a result, 

the close vicinity of vertical walls of the cavities with embedded implants of porous 

medium is characterized by a more uniform distribution of the temperature (see Fig. 
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3.6). This, in turn, results in lower temperature gradients and, as a consequence, in lower 

values of the local ܰݑതതതത number. It is remarkable that the same trends were also observed 

for all other configurations from the same set characterized by the intermediate porosity 

values, as summarized in Table 1. Fig. 3.7 quantifies the dependence of the average ܰݑതതതത 

and the steady-unsteady critical ܴܽ௖௥ values versus the number of embedded cylinders 

observed for the porous media patterns characterized by the maximal and minimal 

porosity values. Note that the similar monotonic decrease in ܰݑതതതത and intermittent 

increase in ܴܽ௖௥ values as a function of the number of embedded cylinders was observed 

in [35] for the porous media patterns modelled by unconnected packed beds of equi-sized 

cylinders. It is interesting that, although ܰݑതതതത monotonically decreases, non-monotonic 

behavior is observed for ܴܽ௖௥, which could be related to the non-linearity of the system 

and reflects different physical branches existing for the same parameters. 
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(a) (b) (c) 

 

(d) (e) (f) 

Figure 3.5: Successive stages of building the pattern of “smart” insulators characterized by the maximal porosity 
value,	߶ ൌ 0.64. The final pattern of the porous material is confined by the white solid line. The colors correspond to 
the distribution of the control parameter	ۯ. Figure (f) was obtained at ܴܽ ൌ 5.13 ൈ 10଻. 

 

(a) (b) (c) 

Figure 3.6: Temperature distribution with superimposed streamlines for: (a) Configuration without porous implants 
obtained for	ܴܽ ൌ 2.15 ൈ 10଺, (b) Configuration with porous implants characterized by	߶ ൌ 0.51 obtained for	
	ܴܽ ൌ 4.39 ൈ 10଻, (c) Configuration with porous implants characterized by	߶ ൌ 0.64 obtained for	ܴܽ ൌ 5.13 ൈ 10଻. 
The transparency of the cylinders stresses the fact that their boundaries have zero thermal resistance. 
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(a) 
 

(b) 

Figure 3.7: Efficiency characteristics of the porous media implants characterized by the minimal (߶ ൌ 0.51) and the 
maximal (߶ ൌ 0.64) values of porosity, ߶, in terms of: (a) ܰ  തതതത  number, averaged over vertical (hot or cold) boundariesݑ
obtained for ܴܽ௖௥ ൌ 2.15 ൈ 10଺, (b) Critical ܴܽ௖௥ number at which the transition from steady to unsteady flow takes 
place via Hopf bifurcation. 

In the next step, the coordinates of the geometric centers of each of the 10 patterns were 

calculated by taking a weighted average of the positions and the areas of all the voids 

constituting the corresponding pattern. A further averaging of all the contours confining 

the obtained patterns and the coordinates of the corresponding geometric centers yielded 

the averaged shape and position of the two final porous media implants, as shown in 

Fig. 3.8. In the following, we present the insulating capacity of 

the constructed implant of porous media characterized by the average porosity value, as 

well its validation for the realistic 3D flows. 
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Figure 3.8: Averaged confining contour created using the heterogeneous patterns described above and the coordinate 
locations representing the center of the contour. 
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3.2.3 Insulating properties and 3D validation of equi-sized cylinder 

patterns 

We start with constructing the next set of patterns filled with equi-sized cylinders 

of diameter ܦ ൌ 0.074, which is equal to the weighted average of the diameters of all 

the cylinders involved in the previous set of porous media implants. All the patterns 

from this set are confined by the contour shown in Fig. 3.8 and are characterized by 

porosities approximately equal to ߶ ൎ 	0.5925, which is the average porosity of all the 

patterns from the previous set7. For all the patterns, the maximal deviation between the 

target and the actual porosity values did not exceed 5%. The set comprises a special 

case of a more general configuration, analyzed in the previous section, and aims to 

address the question of whether the porosity of the modelled porous implant is the 

dominant parameter determining its insulating capacity. The insulating efficiency of the 

obtained patterns was next analyzed by calculation of the average ܰݑതതതത value for vertical 

boundaries of the differentially heated cavity at	ܴܽ ൌ 2.15 ൈ 10଺. This value corresponds 

to the value of the critical ܴܽ number for the square differentially heated cavity without 

obstacles. The obtained results did not reveal a clear trend, indicating that porosity is 

the only parameter determining the insulating efficiency of the modelled porous implant. 

In contrast, the maximal and minimal values of the Nusselt number (ܰݑതതതത ൌ 6.3393 and 

തതതതݑܰ ൌ 3.9832, respectively), comprising 77.2% and 48.5% of the ܰݑതതതത value obtained for 

the configuration with no porous implants, were both obtained for the same porosity 

values (see Fig. 3.9). The high value of the standard deviation, ߪ ൌ 0.755, obtained for 

the set of 10 different patterns also indicates a considerable scattering in the ܰݑതതതത values. 

To further investigate the impact of the cylinder diameter on the thermally insulating 

capacity of the modelled porous media implant we constructed and simulated 4 more 

sets (10 patterns per each set) of porous media, each built of equi-sized unconnected 

                                                            
7 Note that in the most general case, a precise value of porosity cannot be exactly met by filling up the 
averaged contour with a discrete number of cylinders 
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cylinders. The diameter values of the cylinders, one of each set, were 

ܦ	 ൌ 0.04, 0.06, 0.1, 0.16. All the acquired results were used to obtain the basic statistics 

for ܰݑതതതത values, as summarized in Table 2. 

 

 

(a) 

 

(b) 

Figure 3.9:  Two configurations characterized by approximately the same porosity, ߶ ൎ 0.59, and different 
thermal insulating capacities: (a) ܰݑതതതത=6.3393, (b) ܰݑതതതത=3.9832. All the results are obtained for	ܴܽ ൌ 2.15 ൈ 10଺ for 
differentially heated square cavity. 

Table 2: Basic statistics for ܰݑതതതത values obtained as a function of the cylinder diameter for each set of the 2D 
simulations. All of the results were obtained for approximately the same porosity, ߶ ൎ 0.59, for	ܴܽ ൌ 2.15 ൈ 10଺. 

 ߪ തതതതݑܰ ௠௜௡ݑܰ ௠௔௫ݑܰ ௖௬௟ ௖ܰ௬௟ܦ

0.04 94 3.8086 3.4078 3.5491 0.012 

0.06 42 4.4449 3.7187 4.0300 0.105 

0.074 28 6.3393 3.9832 4.6759 0.755 

0.10 16 7.0326 4.1557 4.9890 0.851 

0.16 6 8.0419 3.6894 5.3500 2.004 

 

The porous media implants built of cylinders of smaller diameters exhibit higher 

insulating capacity, as a result of the decrease in the average values of ܰݑതതതത with the 

cylinder diameter. However, more importantly for increasing the insulating capacity is 

the rapid decrease in the standard deviation value, ߪ, which indicates that the porous 
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media implants filled with randomly positioned cylinders of smaller diameters are more 

successful in reproducing the same thermal insulating capacity when compared to the 

implants consisting of larger cylinders. A physical explanation of the observed 

phenomenon can be found by looking at contours of optimization parameter ࡭ and the 

corresponding temperature distributions superimposed by streamlines, obtained for 

representative porous media patterns (see Fig. 3.10). The patterns shown in Fig. 3.10 

have the ܰݑതതതത number which is closest to the averaged ܰݑതതതത value from the same set. There 

are no significant differences between the distributions of parameter ࡭ for various 

patterns (see Fig. 3.10). This is in contrast to the distributions of the flow temperature 

and streamlines. It can be seen that the implants built of smaller cylinders are uniformly 

permeable to the convective flow. As the flow infiltrates through the implants it slows 

down and redistributes evenly. As a result, the temperature distribution inside the 

implants is almost uniform, which provides their high insulation capacity. On the other 

hand, the implants built of the larger cylinders are characterized by a non-uniform 

permeability. In the vicinity of cylindrical obstacles the implants are almost impermeable 

and only redirect the flow. However, the flow succeeds in penetrating the implants in 

the outermost regions. Despite decreasing when changing direction, the flow velocity is 

still high and non-uniform inside a considerable part of the implants. As a result, high 

values of the temperature gradients are found in these regions, which significantly 

deteriorates the insulating efficiency of the implants. 
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(a) 

(b) 

(c) 
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Figure 3.10: Distribution of optimization parameter ۯ (left graphs) and the corresponding temperature field (right 
graphs) with superimposed streamlines obtained for the implants characterized by approximately the same porosity, 
߶ ൎ 0.59, for 2D flow. The implants embedded inside a square differentially heated cavity contain in total: (a) 94 
cylinders, (b) 42 cylinders, (c) 28 cylinders, (d) 16 cylinders, (e) 6 cylinders. 

 

 

(d) 

(e) 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 3.11: Distribution of temperature field in the mid cross section of a 3D cavity obtained for the implants 
characterized by approximately the same porosity, ߶ ൎ 0.59, for 3D flow. The implants contain in total: (a) 94 
cylinders, (b) 42 cylinders, (c) 28 cylinders, (d) 16 cylinders, (e) 6 cylinders. 
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To validate the observed trends, we performed numerical simulations for realistic 

3D flows by extending all the 2D configurations discussed above in the direction normal 

to the plane of the 2D cavity. As a result, the original 2D configurations are transformed 

into their 3D analogs (see Fig. 3.11), comprising cubic differentially heated cavities with 

perfect thermally conducting lateral walls and all non-slip boundaries. The 2D circular 

obstacles are, in turn, transformed into 3D circular cylinders, extending in a spanwise 

direction over the entire width of the cavity. 

Based on the simulation results, the ܰݑതതതത values of all the configurations were then 

obtained for both 400ଷ and 	500ଷ grid resolutions. Since our method is of second order 

accuracy, the zero grid size limit for the ܰݑതതതത value was estimated by applying the 

Richardson extrapolation for two consequent grids. All the results are summarized in 

Table 3. 

Table 3: ܰݑതതതത values obtained for 400ଷ, 500ଷ grids and ܰݑതതതത value corresponding to the zero grid size limit estimated 
by the Richardson's extrapolation. 

 (grid 500ଷ) ݑܰ (grid 400ଷ) ݑܰ ௖௬௟ ௖ܰ௬௟ܦ
 Richardson's) ݑܰ

extrapolation) 

0.04 94 4.7727 4.9899 5.3761 

0.06 42 5.2666 5.5046 5.9277 

0.074 28 5.9388 6.1333 6.4792 

0.10 16 5.6794 5.8894 6.2627 

0.16 6 6.0119 6.2189 6.5868 

 

It is remarkable that the 3D results demonstrate the same trend that was 

observed for the 2D simulations: the implants built of smaller cylinders provide better 

thermal insulation and yield the lower ܰݑതതതത values. The ܰݑതതതത values continuously rise with 

an increase in the cylinder diameters. The difference between the maximal and minimal  

 തതതത values (for approximately the same porosities) for 3D flow is about 22%. This isݑܰ

somewhat lower than the corresponding value obtained for the 2D flow, which is about 
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50%. The difference stems from the much lower ܰݑതതതത value predicted by the 2D 

simulations for implants built of the cylinders of the smallest diameter, which may be a 

result of the 2D idealization of the convective flow. Based on the results above, the 

question that needs answering is: which of the following is the preferable way of 

suppressing the most unstable flow modes? Is it precise positioning in accordance with 

the ࡭ criterion of covering the determined location with clusters of porous material? 

Further, how important is the impact of the heterogeneity of the porous material? 

Recalling that the study addresses the application of the developed method to 

the thermal insulation of construction blocks8, we investigate the sensitivity of the 

patterns obtained to the opposite temperature difference. In other words, we address the 

question of whether the thermally insulated construction block will be as efficient in 

both hot and cold seasons (for both air conditioned and heated indoors) with the 

enhanced thermal insulation obtained by the proposed method. Table 4 shows the results 

summarizing the differences in ܰݑതതതത values obtained for one of the representative 

configurations of the porous media implants from each set of 2D configurations and the 

corresponding 3D analog. No significant differences can be seen for all the cases checked. 

The deviations do not exceed 10% and 4% for 2D and 3D configurations, respectively. 

It is remarkable that for both 2D and 3D flows the maximal differences in ܰݑതതതത values are 

observed for implants built of smaller cylinders, which are characterized by the maximal 

insulation efficiency. 

 

 

 

 

 

                                                            
8 Calculations regarding the application of this study for a hollow construction block can be found in 
Appendix B. 
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Table 4: ܰݑതതതത deviation values for the implants described in Table 3 between the presented physical model and the 
case of vertical wall temperature replacement (implants throughout this study are based on clockwise flow circulation, 
temperature replacement causes the flow to pass through the existing implants in a counter clockwise circulation 
inside the cavity) for 2D and 3D. 

 ௖௬௟ ௖ܰ௬௟ܦ
Deviation in ܰݑതതതത 

value (2D flow) [%] 

Deviation in ܰݑതതതത 

value (3D flow) [%] 

0.04 94 9.37 3.34 

0.06 42 4.72 3.79 

0.074 28 4.78 0.34 

0.10 16 3.88 0.40 

0.16 6 3.31 0.16 
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Chapter 4: Summary and Conclusions 

The performed study generalized the concept of "smart" thermo-insulating 

materials built of heterogeneous porous media. In particular, the issue of confined natural 

convection flow in the presence of heterogeneous porous media was elaborated upon in 

detail. 2D differentially heated cavities with aspect ratios 8:1 and 1:1 were chosen as 

testbeds.  The obtained 2D results were extensively validated for realistic 3D 

configurations.   

The flow was treated using a mesoscale approach employing the IB method to fully 

resolve the flow fields in the vicinity of the porous media boundaries. Unconnected 

packed beds of hollow circular cylinders were used to model the porous media. Basic 

statistical analysis, encompassing the impact of a whole set of porous media structures 

consisting of both equi-sized and non-equi-sized cylinders on the insulating efficiency of 

the porous media implants, was performed. The generalized geometry of the optimized 

porous media implant and its relative position inside the square differentially heated 

cavity, comprising a convenient model of the cavity located in the mid-core of 

construction block, were determined. It may me concluded that: 

  The porosity is not the dominant parameter determining the insulating efficiency 

of the porous implant. Although the explicit determination of the permeability 

tensor of the porous media implants remained out of the scope of the present 

study, it was shown that the thermal insulating efficiency of the implants is 

strongly correlated with their ability to slow down and to uniformly redistribute 

the infiltrating flow. A more explicit analysis of the permeability of the modelled 

porous media will be the focus of future work. 

 The precise positioning of the cylinders in accordance with the defined 

optimization parameter ࡭ inside the porous media of a given porosity is not 

mandatory. The implants modelled by the randomly positioned small size 
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cylinders exhibit consistent insulating efficiency. On the other hand, it was 

observed that the variance in the insulating efficiency of the implants increases 

with the diameter of the cylinders that form the porous media implant modelled 

by unconnected packed beds. 

 The porous media implants modelled by unconnected packed beds of cylinders of 

smaller diameters are characterized by homogeneous internal patterns and 

succeed in consistently reproducing the same insulating efficiency. For this reason, 

among all the available porous materials only those characterized by 

homogeneous internal patterns should be used when producing the optimized 

porous media implants. 

 

 The results obtained by 2D analysis were extensively validated for realistic 3D 

flows. The 3D results exhibited the same trends as their 2D analogs, indicating an 

improvement in insulating efficiency of the implants built of cylinders of the smaller 

diameter. An acceptable 64% decrease in the ܰݑതതതത value was predicted by the 3D analysis 

of the flow inside the cubic differentially heated cavity with imbedded porous implants, 

compared to the original non-insulated configuration. It was also verified that the 

developed ''smart'' porous media insulation scheme is not sensitive to the opposite 

temperature difference; thus the insulating efficiency of construction blocks will remain 

the same in both hot and cold conditions.
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Appendix A: De Casteljau Bézier curve 

 

A De Casteljau Bézier curve is a spline method in linear algebra used in digital graphics, 

among other related fields, in order to create a smooth shape using a series of points.  

 
Figure A.1: Smoothing sharp-edged polygon using De Casteljau Bézier method. 

A De Casteljau Bézier curve basis is a linear connection between two coordinates, P଴ 

and	Pଵ, while the coordinate Q଴ is the convex combination of the two points. Its position 

along the line connecting P଴ and Pଵ depends on the parameter t, which varies from 0 to 

1 according to the function it represents (in our research, the parameter t varies linearly 

from 0 to 1. Note that Q଴ can be positioned before P଴ and after Pଵ by setting t to be less 

than zero or higher than one, respectively). The function which represents Q଴ can be 

written as: 

    0 0 1Q t 1 t P tP    (A.1) 
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Figure A.2:  ܳ଴ is a convex combination of ଴ܲ and ଵܲ, depending on the parameter	ݐ; example of a case where 
t=1/3 [49]. 

A De Casteljau Bézier parabolic curve is also called a Bézier quadratic curve and it 

depends on three coordinates, P଴, Pଵ and Pଶ so that there are two convex points, one on 

the line P଴ െ Pଵ and the other on the line 	Pଵ െ Pଶ, Q଴ and Qଵ, respectively. 

    0 0 1Q t 1 t P tP    (A.2) 

    1 1 2Q t 1 t P tP    (A.3) 

The two convex points travel along the lines, both depending on the parameter – t (as t 

increases, Q଴ departs from P଴ and moves towards Pଵ, and Qଵ departs from Pଵ and moves 

towards Pଶ, see Fig. A.3-b), and another point can be extracted using a convex 

combination between the two new points (Q଴ and Qଵ) - R଴, which will also travel along 

the Q଴ െ Qଵ line (as a function of – t). The function which represents R଴ can be written 

as: 

    0 0 1R t 1 t Q tQ    (A.4) 

Combining the three equations, Eqs (A.2), (A.3) and (A.4), we get that R଴ሺtሻ is a convex 

combination of  P଴, Pଵ and	Pଶ. Note that the curve R଴ሺtሻ is made of points tangent to the 

line Q଴ െ Qଵ (Fig. A.3-a): 

      2 2
0 0 1 2R t 1 t P 2 1 t tP t P      (A.5) 

 

Q଴

P଴ 

Pଵ 

ݐ ൌ 1 

ݐ ൌ 0 

ݐ ൌ 1
3ൗ
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(a) 

 

 
(b) 

 

Figure A.3: (a) Example of an arc where t=1/2, (b) Illustration of how the points ܳ଴, ܳଵ and ܴ଴ advance as t 
increases from 0 to 1 while ܴ଴ draws the curve [49] and [50]. 

It can be noted that the coefficients within the convex equations act according to the 

binomial theorem so that we can write the generalized formulation: 

    
n

n i i
i

i 0

n
P t 1 t t P

i




 
  

 
  (A.6) 

while it is known in the binomial theorem that: 

 
 

n n!

i i! n i !

 
   

 (A.7) 

As shown in Fig. A.3-a the curve between P଴ and Pଶ is created by following point R଴ 

while t goes from 0 to 1. The curve does not go through Pଵ, but this point is highly 

significant and it determines how the curve will be tangential at points P଴ and	Pଶ; the 

significance of the point will be further discussed in the following. 

Applying Eq. (A.6) with a third linear interpolation gives the cubic Bézier (a curve 

which relies on 4 points): 

                3 2 2 3
0 0 1 2 3S t 1 t P t 3 1 t tP t 3 1 t t P t t P t        (A.8) 

As written before, Fig. A.4-a presents a curve that does not intersect points Pଵ and Pଶ, 

but those points will nevertheless define the behavior of the curve, so it can be concluded 

that the position of the coordinates Pଵ and Pଶ effects the curve’s behavior, while the 

 
Qଵ 
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coordinates P଴ and Pଷ are the points at which the curve is tangent. P଴ and Pଷ can be seen 

as the “anchors” and Pଵ and Pଶ as the “control points”. Fig. A.4-b demonstrates the 

difference between two curves depending on the “anchor” points and the “control” 

points. As mentioned earlier, another way to control the orientation of the curve is to 

define the parameter ݐ to be a deferent function between two adjacent polygon points 

so that the convex combination will go from 0 to 1 at a different rate compared to 

another convex point. 

 
(a) 

 
(b) 

Figure A.4: Cubic Bézier: (a) ݏ଴ defines the curve using the anchors and the control points, (b) The effects of the 
control points on the curve [49]. 

A De Casteljau Bézier curve can use more points to further increase the flexibility in the 

orientation of the curve. In the present study only the cubic De Casteljau Bézier curve 

was utilized. Using cubic De Casteljau Bézier curves it is possible to smoothe different 

polygons to newly defined forms by defining every two adjacent coordinates of the 

polygon to be anchors of a curve drawn between them. In order to use the method, two 

control points have to be created to define the curve; using an algorithm developed in 

[51] we can create control points and scale them to adjust the curve according to the 

predefined constraints. Figure A.5 describes the process of determining the control 

points. First, the middle points of each edge of the polygon must be found (A୧) and then, 

using the line segments (C୧), the middle points are connected. The locations of points 

(B୧) on the line segments (C୧) are proportional to the ratio of the length of the polygon 

edges upon which the middle points are located. For example, the location of a point on 

Pଶ Qଵ
Pଵ 

Q଴ 
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Pଷ 
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the left line segment splits the segment (d1 and	d2) in the same ratio as L1 related to	L2 

(see Fig. A.5b). The final step of creating the control points is described in Fig. A.5c. 

Each point (B୧) shifts along the line segment to the corresponding vertex, so that the 

line’s segment orientation remains untouched. As a result, all of the polygon’s vertices 

(anchors) and their control points are gained together.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure A.2: Steps used by Maxim [51] in order to find the optimal control points which will best represent the 
polygon. 

In order to adjust the overall shape of the resulting curves, the control points can be 

moved along the line connecting it to the corresponding anchor point by using the 

multiplication factor	ܭ (see Fig. A.5-d that visualizes the described procedure). In the 

present study, the 0.3 value was assigned to the multiplier ܭ to empirically generate the 
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smooth closed curve determining the external boundaries of the implant of the modelled 

porous media. 

 
Figure A.3: From left to right, Bezier curve made with 0.5 smoothing value and 0.3 smoothing value. 
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Appendix B: Estimation of dimensions of 
realistic hollow construction blocks 

 

Recalling that the above study was performed on the basis of non-dimensional analysis, 

it would be of practical interest to estimate the dimensions of realistic construction 

blocks to which the developed method of “smart” thermal insulation could be applied. 

Without loss of generality we will assume that the cavity located in the mid-core of a 

construction block is of cubic geometry. We will next estimate the range of the length 

of the cavity edge, L, for the given range of temperature difference, 20ሾܭሿ ൑ Δܶ ൏

	40ሾܭሿ, between the indoor and the outdoor environment. Note that the final dimensions 

of the construction block, including the wall and the bottom thicknesses, should account 

for features inherent to technological processes and comply with the requirements 

imposed on the strength of the block and, therefore, should be further determined by 

the manufacturer. 

 

Figure B.1: Cross section of a hollowed block (WൈHൈL) with ݐ as its wall thickness. 

The expression for the length ݔ can be obtained from the definition of the ܴܽ 

number as	ݔ ൌ ට
ோ௔⋅ఔఈ

௚ఉ୼்

య , where ݔ ൌ ܪ െ 	ܶ The physical properties of dry air at .ݐ2 ൌ

W 

H 

L 

t 

2t 
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	300ሾܭሿ indicate the values of	ߥ ൌ 1.568 ൈ 10ିହ ቂ௠
మ

௦௘௖
ቃ,	ߙ ൌ 22.07 ൈ 10ି଺ ቂ௠

మ

௦௘௖
ቃ,	ߚ ൌ ଵ

்
ቂଵ
௄
ቃ. 

We next recall that the non-dimensional analysis was performed for the value of ܴܽ ൌ
௚ఉ

ఔఈ
Δܶܮଷ ൌ 2.15 ൈ 10଺ and that the value of gravitational acceleration g is equal to	݃	 ൌ

	9.81 ቂ ௠

௦௘௖మ
ቃ. Substitution of all the above values into the expression for ݔ yields the 

characteristic dimensions of ݔ ൎ 	0.1ሾ݉ሿ for Δܶ	 ൌ 	20ሾܭሿ and ݔ ൎ 	0.08ሾ݉ሿ for	Δܶ	 ൌ

	40ሾܭሿ, which are typical of realistic construction blocks. 

 


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Appendix C: Deriving the dimensionless 
equations of motion 

 

In chapter 2 the governing equations for the incompressible buoyancy driven flow are 

presented: 

 0 u  (C.1) 

   2p
t

          
g  

u
u u u  (C.2) 

   2T
T T

t


   


u  (C.3) 

After utilizing the assumptions mentioned in chapter 2, the momentum equation can be 

rewritten: 

   2
0 0 (1 ( ))Cp T T

t
             

g  
u

u u u  (C.4) 

At the next step, a new definition of the pressure is introduced, which includes both the 

hydrodynamic and hydrostatic pressure components, reading 	 ധܲ ൌ ݌ ൅  so that in ,ݕ଴݃ߩ

the equation ׏ ധܲ ൌ ݌׏ ൅  .(axis ݕ the gravity acts in the negative direction of the) ଴݃ߩ

The momentum equation can be rewritten as: 

   2
0 0 ( )CP T T

t
            

g  
u

u u u  (C.5) 

The generalization of the problem was made by introducing characteristic scales for 

the length	࢞, velocity	࢛, time	ݐ, pressure ݌ and temperature ܶ fields as follows:	

ܷ ൌ ඥ݃ܮߚΔܶ		; ଴ݐ	 ൌ
ܮ
ܷ
		; 		ܲ ൌ ;		଴ܷଶߩ 		Δܶ ൌ Tୌ െ ஼ܶ		; 		ܴܽ ൌ

ߚ݃
ߙߥ

Δܶܮଷ		; ݎܲ		 ൌ
ߥ
ߙ
 

where ݃ is the gravitational acceleration, ߚ is adiabatic coefficient of thermal expansion,  

 ∆ܶ is the temperature difference		is the length of the square differentially heated cavity, ܮ
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between the hottest and coldest boundaries and ߩ is the mass density of the working 

fluid. ܴܽ and	ܲݎ are the Rayleigh and Prandtl numbers, where ߙ is the thermal 

diffusivity and ߥ is the kinematic viscosity. 

The dimensional variables of the problem can then be normalized as: 

∗࢞ ൌ
࢞
ܮ
		; ∗࢛		 ൌ

࢛
ܷ
		; ∗ݐ		 ൌ

ݐ
଴ݐ
		 ; 		 ധܲ∗ ൌ

ധܲ

ܲ
		; ߠ		 ൌ

ܶ െ ஼ܶ

ுܶ െ ஼ܶ
		 ; 		ܶ∗ ൌ

ܶ

଴ܶ
 

Continuity equation: 

Using the above normalization, the continuity equation (C.1) yields: 

 * * * *0 0
U

L
    u u   (C.6) 

Momentum equation: 

Dividing Eq. (C.5) by ߩ଴ yields: 

 
  2

0

( )C

P
T T

t
 




      


g


 
u

u u u
  

Utilizing the normalization parameters gives: 

 
* 2 *2 * 2

* * * *2 *0
* 2

0

( )C

U PU U U
T T

L t L L L

  



      


g


 

u
u u u

 

Dividing the equation by	௎
మ

௅
 and rearranging, it can be rewritten as: 

 
*

* * * * * *2 *
* 2

( )C
y

g T T L
P e

t LU U

 
     




  

u
u u u

 

Plugging the characteristic parameters into the equation yields: 

  
*

* * * * * *2 *
*

( )C
y

g T T L
P e

t g TLL g TL





     
 


  

u
u u u  (C.7) 

By rearranging the coefficient of ݁௬ሬሬሬሬԦ, it is noticeable that only t ߠ remain, and, by looking 

at the coefficients of	׏∗ଶ࢛ଶ and the definition of the dimensionless numbers	ܲݎ and	ܴܽ, 

it follows that: 
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Δ

Pr

RaL g TL





 

Hence, the non-dimensional momentum equation can be written as: 

  
*

* * * * * *2 *
* y

Pr
P e

t Ra


     



  

u
u u u  (C.8) 

Energy equation:  

Eq. (C.3) rewritten in terms of non-dimensional parameters reads: 

  
*

* * * *2 *0 0 0
* 2

UT UT TT
T T

L t L L


   


u  (C.9) 

Dividing equation (C.9) by	௎ బ்

௅
 and using ߠ ൌ ்ି்಴

்ಹି்಴
 as non-dimensional temperature 

yields: 

 
 

*
* * * *2 *

*t LU

  
   


u

  

Plugging the characteristic parameters into the equation: 

  
*

* * * *2 *
*t L g TL

  



   

 
u  (C.10) 

By looking at the coefficients of ׏∗ଶߠ and the definition of non-dimensional numbers	ܲݎ 

and	ܴܽ it is can be seen that: 

1

ΔL g TL Pr Ra





  

Hence, the non-dimensionless momentum equation reads: 

  
*

* * * *2 *
*

1

t Pr Ra

  
   

 
u  (C.11) 

For the sake of simplicity, the stars attached to non-dimensional parameters are omitted 

yielding the following normalized system of the governing equations: 

 0 u  (C.12) 
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   2
y

Pr
p e

t Ra


      


u
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 76  תקציר

 תקציר
  

. כיום, כמות בלתי מבוטלת של אנרגיה דרושה לצרכי מיזוג בבנייני מגורים ומשרדים ואפילו מרכזי קניות

אופטימיזציה יעילה של תכונות הבידוד התרמי, עבור אבן בניין חלולה אשר נפוצה בתור חומר בניה 

  ם המקורה.אקליבתעשייה, היא צעד חשוב בכיוון הגברת השליטה ב

חום פאסיביים "חכמים" -פתח מתודולוגיה מוכללת עבור תכנון חומרים מבודדיהיא ל מטרת המחקר

בהתבסס על הערכות סטטיסטיות של הזרימה התחומה עבור זורם המונע על ידי מנגנון הסעה טבעית 

המהווה י (בנוכחות חומר נקבובי. הסעה טבעית תחומה המתפתחת בתוך חלל המחומם באופן דיפרנציאל

 בתור פלטפורמה עבור הסביבה החישובית.) נבחרה מודל נוח עבור חלל אוויר בליבת אבן הבניין החלולה

גודל אשר לא מחוברים זה לזה. כל -שונישווי/מצע גלילים צפופים  החומר הנקבובי ההטרוגני מודל על ידי

בנקודות האנרגטיות ביותר של התנע ל יעיצילינדר ממוקם בצורה אינטליגנטית בתוך הזורם כך שיצור דיכוי 

יישום עבור אותו זורם אשר מונע כתוצאה ממנגנון ההסעה הטבעית. מיקום מרכז כל גליל הושג על ידי 

-בגישת ה. התייחסות לזורם ממדית בנוכחות חומר נקבובי-ליניארית עבור הסעה טבעית דואנליזת יציבות 

mesoscale גישת הגוף השקוע בקרבת הגלילים השקועים על ידי  פותר באופן מפורש את שדה הזרימה

)IBM(.  תממדי-תלת באופן נרחב עבור זרימה מציאותיתהתוצאות אוששו.  

להכליל את הפיות של חומרים בוצע ניתוח סטטיסטי בסיסי של תצורות החומרים הנקבוביים על מנת 

בובי תלויה בקוטר הגלילים . נמצא, כי יעילות מבודד החום המכיל חומר הנקחום "חכמים"-מבודדי

-הנמצאים בתצורות החומר הנקבובי. המחקר קבע גישה מוכללת אשר מאפשרת תכנון וייצור חומרי בידוד

ם "חכמים" מחומרי "מדף" נקבוביים.חו
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