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In this paper, the concept of “smart” thermally insulating materials intelligently adapted to specific
engineering configurations is established and extensively validated. Thermal insulation is achieved by
local suppression of the momentum of the confined natural convection flow in the most critical regions,
as determined by a linear stability analysis of the flow in the presence of implants of heterogeneous
porous media. The implants are modelled by unconnected packed beds of equi-sized cylinders. The
concept is based on a mesoscale approach in which the non-slip boundary conditions in the vicinity of
the packed beds are explicitly imposed by utilizing the immersed boundary (IB) method. Two different
patterns for the “smart” porous media are established, and their thermal insulation properties are
quantified. It is shown that the optimized patterns for implants of heterogeneous porous media, occu-
pying approximately only 5% of the overall volume, can drastically delay the steady-unsteady transition
of the 2D natural convection flow in a square differentially heated cavity with thermally perfectly
conducting horizontal walls. In addition, it is demonstrated that the implants facilitate a consistent
decrease in the heat flux through a cubic differentially heated cavity with all being thermally perfectly
conducting lateral walls.

© 2016 Elsevier Masson SAS. All rights reserved.
1. Introduction

Utilizing porous media for the enhancement of flow control in a
wide spectrum of scientific and engineering fields has gained a
considerable attention in the past two decades. We cite, for
example, studies aimed to: control heat flux rates in confined [1,2]
and open [3] natural convection flows; investigate means for wake
regularization and reducing the drag coefficient of incident flows
around bluff bodies [4]; control the velocity profile in industrial
crossflow filtration systems [5]; delay the transition to turbulence
over the surface of a wing [6]; determine the axial pressure dis-
tribution of fluid transport in blood vessels [7]; and characterize the
flow and transport through fractured geological formations [8].

Traditionally, the analysis of flow and heat transfer in porous
media is based on applying volume-averaging techniques to fluid
flow equations. In such cases, the complex geometry of solid
boundaries is modelled by assuming a continuous phase that
overlaps solid and fluid regions and is treated by macroscopic
erved.
averaged equations (see e.g., [9e14]). Flow fields near the solid
boundaries are not resolved explicitly, and interface effects are
modelled by a priori provided correlations. The drawback of
volume-averaging techniques is their lack of generality, resulting
from the considerable morphological variations of porous mate-
rials. Therefore, important flow characteristics of a particular
porous material can be predicted accurately only if the corre-
sponding experimental data is available. However, experimental
data is typically acquired for specific porous materials and flow
conditions, thereby severely restricting the application of volume-
averaging techniques.

A mesoscale approach, explicitly resolving the flow near solid
surfaces, offers an alternative to the volume-averaging technique.
This approach has gained popularity in the past decade with the
rapid development of computational power. Studies performed to
date typically treat porousmaterials as composite voids and beds of
solid particles and address the flow through ordered, staggered or
randomly packed beds of different particle shapes that correspond
to various porous media configurations. Although the mesoscale
modeling of porous media is typically restricted to non-contacting
packed beds of solid particles, the characteristic distance between
the particles is sufficiently close to significantly affect the heat and
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mass transfer processes. This allows for further generalization of
the obtained results to elucidate the fundamental macroscale
mechanisms and geometrical characteristics of the corresponding
heterogeneous porous media. Results obtained by mesoscale
analysis are widely utilized for developing universal macro corre-
lations for estimating the following: the average Nusselt number of
the natural convection process inside porous enclosures [15], the
pressure gradient for a wide range of Reynolds numbers [16e18],
the flow dispersivity [19], the drag force exerted by the flow on the
porous medium [20e22], and finally the permeability of various
porous media configurations [20,23e27]. Another widely used
application of the mesoscale approach is related to the passive
control of confined natural convection flows in terms enhancement
of their thermo-insulating efficiency. Research in this area is
motivated mainly by the need to control the heat flux through
confined enclosures partially filled with solid products of various
forms, orientations and distributions and is relevant to indoor
environmental control [28,29], refrigeration equipment and ther-
mal management of greenhouses [30], cooling of electronic devices
[31,32], etc.

The present paper reports our efforts to develop a systematic
methodology based on a mesoscale approach to control incom-
pressible natural convection flows in confined enclosures by
exploiting heterogeneous porous media. This task has so far been
performed only heuristically, attributing the reduced heat flux to
the blocking effects of solid non-connected obstacles and the
redirection of the flow away from the vertical cold and hot walls
toward the cavity center. The principal novelty of the present study
lies in the control of the flow by intelligent suppression of the
fluctuations of the major flow characteristics (for example, per-
turbations of velocity components, temperature, pressure, or their
combinations) in the most critical regions, as determined by linear
stability analysis. Intelligent control is facilitated by explicit placing
of the heterogeneous porous media, whose geometry characteris-
tics have been optimized for the specific flow configuration, into
the bulk natural convection flow. Porous media implants, created
by this methodology, form the basis of the concept of “smart”
thermo-insulating materials, which intelligently suppress the os-
cillations of the thermal flow in accordance with given optimiza-
tion criteria. The efficiency of the proposed concept of “smart”
thermo-insulation is demonstrated by applying it to the natural
convection flow in square (for 2D) and cubic (for 3D) differentially
heated cavities. It is shown that optimized non-homogenous
porous media implants, occupying approximately only five
percent of the overall volume, can drastically delay the steady-
unsteady transition of the 2D natural convection flow and pro-
duce a consistent decrease of the heat flux through a cubic differ-
entially heated cavity with all being thermally perfectly conducting
lateral walls.
1 Note that the normalized pressure field contains both hydrostatic and hydro-
dynamic components.
2. Theoretical background

The methodology for the intelligent control of heat flux in
confined natural convection flows, developed in the framework of
the present study, is based on a linear stability analysis of natural
convection flows in the presence of heterogeneous porous media.
The heterogeneous porous media are modelled by implants con-
sisting of unconnected packed beds of circular equi-sized cylinders.
The heterogeneous spatial distribution of the cylinders inside the
implants is a function the two optimisation criteria, as follows. The

first criterion, A, is defined as A ¼
���ux0���2 þ ���uy 0���2 , where

��ux0�� and���uy0��� are the absolute values of the perturbations of the corre-

sponding velocity components. The idea originates from the
definition of the turbulent kinetic energy, ek0, which is equal to the
sum of the squares of the fluctuations of the velocity components,
although the proposed criterion, A, cannot be formally related to ek 0

due to the phase differences between
��ux0�� and ���uy 0���. The second

criterion, B, is directly related to the absolute value of the pertur-
bation of the temperature field B ¼ ��q0��. The insulating efficiency of
the embedded porous implants, whose patterns are designed in
accordance with the two criteria, is discussed in the following
sections.
2.1. Governing equations

The mesoscale approach utilized in the present study for the
simulation of the natural convection flow in porous media requires
that we explicitly impose the no-slip constraint on all the surfaces
of the unconnected packed beds. The requirement is satisfied by
utilizing the immersed boundary (IB) method introduced by Peskin
[33]. No-slip boundary conditions are set at all external walls of the
computational domain. In accordance with the formalism of the IB
method, the unconnected packed beds immersed in the convective
flow are determined by a set of Lagrangian boundary points that do
not necessarily coincide with the underlying Eulerian grid. This
requires the introduction of additional terms and relationships,
corresponding to interpolation and regularization operators, to
convey information to and from the immersed surfaces. Applying
the Boussinesq approximation for simulation of the buoyancy ef-
fects, the unsteady natural convection flow with the embedded IB
functionality is governed by the following system of continuity,
Navier-Stokes (NS), and energy equations (Eqs. (1)e(3)), and by Eqs.
(4) and (5), which are introduced to satisfy the kinematic con-
straints of no-slip and the determined temperature (or heat flux)
boundary conditions on the surfaces of the embedded unconnected
packed beds that model implants of porous media:

V,u ¼ 0 (1)

vu
vt

þ ðu,VÞu ¼ �Vpþ
ffiffiffiffiffiffi
Pr
Ra

r
V2uþ q e!y þ f (2)

vq

vt
þ ðu,VÞq ¼ 1ffiffiffiffiffiffiffiffiffiffi

PrRa
p V2qþ q (3)

UbðXkÞ ¼ IðuðxÞÞ (4)

QbðXkÞ ¼ IðqðxÞÞ; (5)

where u¼(u,v,w), p, t, and q are the non-dimensional velocity,
pressure, time and temperature, respectively, and e!y is a unit
vector in the vertical (y) direction. The temperature-density
coupling is implemented by applying the Boussinesq approxima-
tion r ¼ r0(1-b(T�Tc)). The problem is scaled by L, U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbLDT

p
,

t ¼ L/U, and P ¼ rU2 for length, velocity, time, and pressure,1

respectively. Here, L is the length of the square differentially
heated cavity (which is further used as test bed in our numerical
experiments), r is the mass density of the wotking fluid, g is the
gravitational acceleration, b is the isobaric coefficient of thermal
expansion, and DT ¼ Th�Tc is the temperature difference between
the hottest and coldest boundaries. The non-dimensional temper-
ature q is defined as q¼ (T�Tc)/DT. The Rayleigh, Ra, and Prandtl, Pr,
numbers are Ra ¼ gb

naDTL
3 and Pr¼n/a, respectively, where n is the



Fig. 1. Schematic representation of a staggered grid discretization of a two-
dimensional computational domain D with a segment of an immersed boundary of a
body B. A virtual shell, whose thickness is equal to the grid cell width, is shaded. The
horizontal blue and vertical red arrows (/,[) represent the discrete ui and vi velocity
locations, respectively. Pressure pi and temperature Ti are applied at the center of each
cell (�). Lagrangian points Xk(Xk, Yk) along vB are shown as black circles � where the
volumetric boundary forces Fk¼(Fxk, Fyk) (/, [) and the volumetric boundary heat
sources Qk are applied. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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kinematic viscosity and a is the thermal diffusivity. All the simu-
lations were performed for Pr¼ 0.71, corresponding to air. The force
f and the heat source q, appearing as volumetric sources in Eqs. (2)
and (3), reflect the impact of the immersed surfaces of the porous
media on the surrounding flow. These sources are not known a
priori and are an inherent part of the overall solution, along with
the unknown velocity, temperature and pressure fields. Equations
(4) and (5) provide additional relationships between the Eulerian
velocity u(x) and the temperature q(x) fields interpolated on the
Lagrangian points Xk to achieve closure of the overall system.

In practice, both interpolation and regularization of the desired
quantity are implemented by calculation of the corresponding
volume integrals involving convolution of the quantity with the
discrete function d. These integrals determine the interpolation I
and regularization R operators as:

IðuðxiÞ; qðxiÞÞ ¼
Z
U

ðuðxÞ; qðxÞÞ,d
�
Xk � xi

�
dVUi ¼ ðUb;QbÞ;

(6a)

R
�
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�
Xk

�
;Qk

�
Xk

��
¼

Z
S

�
Fk

�
Xk

�
;Qk

�
Xk

��
,d
�
xi � Xk

�
dVk

S

¼ ðf ; qÞ;
(6b)

where U and S correspond to the Eulerian and Lagrangian cells,
respectively, dVUi is the volume of the corresponding Eulerian cell,
and dVS

k corresponds to the virtual volume surrounding each
Lagrangian point k (see Fig. 1 for additional details). The interpo-
lation operator I in Eqs. (4) and (5) is used to satisfy the prescribed
values of the surface velocity Ub and the surface temperature Qb.
The regularization operator R is used in the calculation of the
volumetric force f and the volumetric heat source q in Eqs. (2) and
(3). The type of interaction between the immersed surface and the
surrounding flow is determined by the specific choice of the delta
function. In the present study, we used the discrete delta function
introduced by Roma et al. [34].

dðrÞ¼

8>>>>>>>>><>>>>>>>>>:
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0 otherwise;

(7)

where Dr is the cell width in the r direction. The accuracy of the
chosen delta function has been successfully verified in a number of
previous studies [35e39]. This delta function was specifically
derived for use on staggered grids and involves only three cells in
each computational direction, which significantly boosts its
computational efficiency. We note in passing that to achieve high
accuracy, the method should be implemented on a uniform grid in
the vicinity of the immersed body surface, which is an intrinsic
limitation of the delta function utilized. As a result, the Dl value
corresponding to the distance between neighboring points of the
immersed surface and the size of the Eulerian grid cell adjacent to
the immersed surface should be approximately the same (i.e.,
DlzDx¼Dy¼Dz and dVS

kzdVUi, see Fig. 1 for additional details).
Away from the body, non-uniform spatial discretization can be
utilized. In the present study, we used the same delta functions for
interpolation and regularization operators as those proposed by
Peskin [33] and Beyer and LeVeque [40].
2.2. Numerical solution

Embedding the IB functionality into NS equations (1)e(5) can be
implemented either implicitly, based on the Lagrange multiplier
approach [39,41,42], or explicitly utilizing the direct forcing
approach [43,44]. The present study used both formulations to
establish and formally validate the concept of “smart” thermal in-
sulators. The key idea is to locally suppress the most energetic re-
gions of the convective flow, formally revealed by the linear
stability analysis of the two-dimensional convective flow in the
presence of immersed bodies of arbitrary shapes. The bodies play
the role of local unconnected obstacles, suppressing the mo-
mentum of the convective flow. The linear stability analysis was
performed by applying a linear stability solver with the embedded
IB functionality recently developed by Feldman and Gulberg [39].
The solver is based on fully implicit coupling of the pressure and
velocity fields. Kinematic constraints of no-slip and temperature
boundary conditions are satisfied by introducing additional un-
knowns in the form of Lagrange multipliers. Although the solver
was extensively verified for both isothermal and natural convection
flows in our previous work [39], a verification study for the
configuration relevant to the present research was performed for
the sake of completeness, as detailed in the next section.

The assumption underlying the basis of the present study is
that the linear stability analysis predicting the most energetic
regions for the two-dimensional confined natural convection flow
will also be valid for the three-dimensional configurations built by
extension of the corresponding two-dimensional confinement
along its normal direction. The idea originates from the striking



Fig. 2. Schematic representation of a geometrical model of the computational domain
showing vertically aligned cylinders confined in a square cavity. Arrow indicates the
direction in which the force of gravity acts.
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similarity between the spatial and temporal characteristics
observed for two- and three-dimensional steady and bifurcated
flows in differentially heated square and cubic cavities, respec-
tively, with perfectly thermally conducting horizontal boundaries,
see e.g. Ref. [45]. The assumption made in the present study was
validated by simulation of three-dimensional natural convection
flows in a differentially heated cubic cavity with embedded cy-
lindrical obstacles, the location of which was determined by the
linear stability analysis of the corresponding two-dimensional
flow. The recently developed IB solver [38] was used for con-
ducting the three-dimensional simulations. Details of the imple-
mentation of the solver, along with its extensive verification for
thermal flows in the presence of thermally active and passive
immersed bodies, can be found in Ref. [38] and are omitted here
for the sake of concision.

2.3. Verification study of the linear stability analysis

The verification study focuses on the analysis of the natural
convection flow around two cylinders confined in a square cavity
(see Fig. 2). The ratio between the cylinder diameter, d, and the
cavity side length, L, is equal to d/L¼0.2. The cylinders are aligned
along the cavity's vertical centerline and are symmetrically
distanced from the cavity's horizontal centerline. The distance
d between the cylinder centers, normalized by the cavity side of
length L, is equal to d¼0.5. Both cylinders are held at a constant hot
temperature qH¼1, whereas all the cavity boundaries are held at a
constant cold temperature, qC¼0. The force of gravity acts in the �by
direction. The above configuration was chosen for two main rea-
sons. First, it is relevant to the configurations under consideration
in the present study, the only exception being that the porous
media are modelled by thermally passive unconnected thin-walled
cylinders, characterized by zero temperature gradient in the radial
direction. Second, the considered flow undergoes a transition to
unsteadiness through the first Hopf bifurcation [39], which allows
us to compare the patterns of the absolute values of the leading
eigenvectors of the temperature and velocity fields obtained by the
linear stability analysis with those obtained by calculation of the
time averaged maximal oscillation amplitudes.2

Fig. 3 presents a comparison between the contours of the
leading eigenvectors obtained for ux, uy and q fields and the cor-
responding contours of the oscillating amplitudes averaged over 20
2 The contours of the maximal time averaged amplitudes of bifurcated flow
conveniently approximate the contours of the absolute values of the corresponding
leading eigenvectors [46e48].
oscillating periods. Both simulations were performed on 500�500
grids. The excellent agreement between the corresponding spatial
distributions verifies the correctness of the performed linear sta-
bility analysis. Note the significant quantitative discrepancy
observed between the values of the oscillation amplitudes and the
absolute values of the corresponding eigenvectors. This fact is not
surprising, since themagnitude of the leading eigenvector obtained
by the linear stability analysis indicates the spatial distribution of
the intensity of the oscillations exhibited in bifurcated flow and is
determined up to multiplication by a constant.

3. Results and discussion

In this section, the concept of “smart” thermally insulating
materials is presented first for 2D confined natural convection flow.
The square differentially heated cavity with perfectly thermally
conducting horizontal boundaries is used as a test bed. Thereafter,
the proposed concept is validated for the realistic 3D flow in a
differentially heated cubic cavity with thermally perfectly con-
ducting lateral walls and all no-slip boundaries.

3.1. “Smart” thermally insulating materials for 2D flows

The heat flux through the differentially heated cavity can be
estimated by calculation of the average Nusselt number, Nu, at the
cavity boundaries, which for the no-slip boundary conditions de-
pends only on the temperature gradient normal to the wall direc-
tion. Note that the temperature distribution of the considered
steady state flow is skew-symmetric relative to the cavity center
(i.e., q(x,y)¼qH�q(L�x,L�y)), and therefore the net heat flux is
determined only by the average Nu values calculated at the vertical
boundaries. At steady state, both Nu values should be equal to
provide conservation of the total heat flux. It is commonly known
(see e.g., [49,50]) that for this type of steady natural convection
flow Nu~Ra0.25. As the Rayleigh number increases, the flow un-
dergoes a steady-unsteady transition through the first Hopf bifur-
cation. A further increase in the Ra number eventually leads to a
turbulent flow regime, characterized by an increased heat flux
through the cavity boundaries, governed by the Nu~Ra0.33 relation
[49,50].

It is clear that the most intuitive way to considerably decrease
the heat flux through the cavity boundaries would be complete
filling of the cavity interior with any kind of homogeneous ther-
mal insulator. However, this naive approach would significantly
increase the cost and the overall weight of such thermal insu-
lation. Another alternative, embodying the key idea of the present
study, is to considerably decrease the heat flux through the cavity
boundaries by intelligently suppressing the momentum of the
flow in accordance with a priori defined criteria. In the present
study, we demonstrate the impact of local suppression of the
momentum of the flow by positioning cylindrical thermally pas-
sive thin-walled obstacles of uniform diameter d¼0.04 in the re-
gions with maximal values of the criteria A and B defined in the
previous section.

Fig. 4 demonstrates the procedure used for the design of a
“smart” thermal insulator aimed at decreasing the heat flux for the
natural convection flow inside a differentially heated cavity with
thermally perfectly conducting lateral walls. The procedure is
iterative and utilizes the A criterion. In the first iteration, the linear
stability analysis is performed for the flow within the cavity
without obstacles, yielding the value of the critical Rayleigh
number, Ra0cr , for the first Hopf bifurcation. The corresponding
fields of the values of A and the temperature distribution at steady
state with the superimposed streamlines are shown in Fig. 4a.
Thereafter, a pair of cylindrical obstacles are positioned at places



Fig. 3. Contours of the maximal amplitudes averaged over 20 oscillating periods and the corresponding absolute values of the leading eigenvectors obtained for: (a) velocity
component ux; (b) velocity component uy; (c) temperature, q. Both simulations were performed on 500�500 grids, Ra ¼ 5:0514� 105.



Fig. 4. Contours of criterion A and the corresponding steady state distribution of the temperature, q with superimposed streamlines obtained at Ra0cr ¼ 2:11� 106 for: (a) no
obstacles; (b) 2 obstacles; (c) 4 obstacles; (d) 6 obstacles; (e) 8 obstacles; (f) 10 obstacles; (g) 20 obstacles; and (h) 40 obstacles. The diameter of all the obstacles is equal to d¼0.04.
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Fig. 4. (continued).
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Fig. 4. (continued).
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where A reaches its absolute maximum.3 In the next step, the
linear stability analysis is performed for the modified flow inside
the cavity containing 2 embedded obstacles (see Fig. 4b). We then
obtain a new value of Ra2cr , at which the modified flow charac-
terized by a new distribution of A undergoes a transition to un-
steadiness. Next, a pair of obstacles can again be positioned at
places where the new values of A reach their absolute maximum.
The above procedure is repeated until an a priori chosen stop
condition e a twofold decrease in the average Nu number
Ra ¼ Ra0cre is achieved. Fig. 4 (ceh) demonstrate the evolutionary
stages of the modelled implants of porous media, which can be
seen as a prototype for a “smart” thermally insulating material
based on criterion A.

In the next stage, an alternative design for implanting the
porous media was obtained by applying an iterative procedure
based on the value of the second optimization parameter, B. The
3 Note that for the configuration discussed, the distribution of A is skew-
symmetric relative to the cavity center, i.e., A(x,y)¼A(L�x,L�y), and therefore the
obstacles always come in pairs.
evolutionary stages of the design, corresponding to different
numbers of embedded cylindrical obstacles, are shown in Fig. 54.

It should be stressed that in the present study themorphological
structure of the modelled implants of porous media is restricted to
unconnected packed beds (due to the limitations of the IB method).
The above limitation can, however, be violated if the distance be-
tween any global maxima of A or B is equal or less than the
diameter of the cylindrical obstacle. In addition none of the ob-
stacles should touch or intersect any of the cavity boundaries. In
both cases, the location of the next largest value of A or B is sought,
and the morphological structure of the current ”candidate” for the
porous media implant is tested for meeting all the restrictions. The
procedure of seeking a new location for the next pair of cylindrical
obstacles should be repeated until all the above restrictions are
4 Note that for the configuration discussed, the distribution of B is skew-
symmetric relative to the cavity center, i.e., B(x,y)¼B(L�x,L�y), and therefore the
obstacles always come in pairs.



Fig. 5. Contours of criterion B and the corresponding steady state distribution of the temperature, q with superimposed streamlines obtained at Ra0cr ¼ 2:11� 106 for: (a) no
obstacles; (b) 2 obstacles; (c) 4 obstacles; (d) 6 obstacles; (e) 8 obstacles; (f) 10 obstacles; (g) 20 obstacles; (h) and 40 obstacles. The diameter of all the obstacles is equal to d¼0.04.
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satisfied.5

Embedding cylindrical obstacles is characterised by a twofold
mechanism, which can increase the insulating efficiency of the
cavity. First, for the given value of the Ra number, it suppresses the
overall momentum of the convective flow, which in turn leads to
increasing thickness of thermal boundary layer and results in
lower temperature gradients in the direction normal to the ver-
tical walls. Second, it delays the onset of unsteadiness, which
means that the natural convection flow in the cavity with
embedded obstacles remains laminar and steady, even at rapidly
increasing Ra numbers. The effect of both mechanisms was
quantified as shown in Fig. 6.

Indistinguishable differences were observed for both averageNu
and critical Racr values obtained on 500�500 and 600�600 grids,
which successfully verifies the grid independence of the results. It
canbe also seen thatutilizing the implants of porousmediadesigned
5 Typically, only one iteration was required for the configurations considered in
the present study.
in accordancewith thefirst criterionA (see Fig. 6-a) allows fora rapid
decrease of the average Nu number value, which attains half of its
original value for 40embeddedcylinders6Note also that40 cylinders
occupy only 5% of the total volume of the cavity. The dependency of
theRacr value on the numberof obstacles is notmonotonic, although
the Racr of the final configuration consisting of 40 cylinders is higher
by an order of magnitude than its original value.

The implants of porous media designed by utilizing the second
criterion B (see Fig. 6b) exhibit much lower efficiency in terms of
thermal insulation. In fact, embedding implants consisting of 40
cylinders (the same number as for criterion A) leads to only an
approximately 20% decrease in the average Nu value. Moreover,
after embedding 24 cylinders, the average Nu number reaches its
asymptotic value, which does not deviate significantly with
increasing numbers of embedded cylinders. Similarly to the
6 All the simulations were performed at Racr
0¼2.11�106, at which the flow

without obstacles undergoes a steady-unsteady transition.



Fig. 5. (continued).
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(a) A optimization criterion

(b) B optimization criterion

Fig. 6. Variation of the values of the averaged Nu number obtained for the vertical hot wall of the cavity at Racr0¼2.11�106 and the critical Rayleigh number, Racr for the steady-
unsteady transition obtained by the linear stability analysis as a function of the number of cylindrical obstacles for: (a) A optimization criterion; (b) B optimization criterion.
The calculations were performed on 500�500 and 600�600 grids.
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previous configuration, the dependency of the Racr value on the
number of obstacles is notmonotonic. It is remarkable that here too
a difference of one order of magnitude is observed between the
initial and final values of Racr. It is worth noting that a similar trend
was also observed by Costa et al., who reported a 30% decrease in
the average Nu value [51] when investigating the influence of solid
inserts placed at the inner corners of differentially heated square
enclosures, where the thermal conductivity of the inserts was equal
to or less than that of the fluid. According to the authors, the
rationale for the choice of those inserts could be explained by the
stagnation regions that develop in the vicinity of the corners. In the
present study, we revisit and explain formally the observed
decrease of the heat flux by means of a linear stability analysis of
the natural convection flow.
3.2. “Smart” thermally insulating materials for 3D flows

In this section the concept of “smart” thermally insulating
materials is validated for realistic 3D flows. The 2D configurations
containing implants of porous media embedded into the square
differentially heated cavity are extended in the direction normal
to the plane of the 2D cavity. As a result, the original 2D con-
figurations are transformed into their 3D analogs, comprising
cubic differentially heated cavities with thermally perfectly con-
ducting lateral walls and all no-slip boundaries. The 2D circular
obstacles are, in turn, transformed into 3D circular cylinders,
extending over the entire width of the cavity. An example of four
such 3D configurations, corresponding to the optimization
criteria A and B with patterns containing 20 and 40 cylinders, are
shown in Fig. 7.

All the simulations were performed for Ra¼2.11�106 corre-
sponding to the value of the critical Rayleigh number Ra0cr that
characterizes the transition to unsteadiness of the 2D flow inside a
differentially heated cavity with thermally perfectly conducting
horizontal walls. We note in passing that for a differentially heated
cavity Racr2D<Racr3D due to the damping effect of the lateral walls,
which determines the steady state regime of all the 3D flows
considered in the present study. It is assumed that convergence to
steadiness is reached when the maximal point-wise relative dif-
ference for the field at two consecutive time steps is less than 10�5.
Note also the striking resemblance between the 3D and the cor-
responding 2D temperature distributions (see Fig. 4-g,h and Fig. 5-
g,h), which is typical of this kind of convective flow.

Table 1 presents the grid independence study for the Nu values
averaged over the hot wall of the cavity as a function of the number
of embedded obstacles. The results were obtained on 2003, 3003

and 4003 grids. It can be seen that the maximum deviation in the
averaged Nu values for 3003 and 4003 grids did not exceed 1%,
thereby successfully verifying the grid independence of the results.
All the calculations of the 3D flow presented further in this section
were obtained on a 4003 computational grid. It was also verified
(not shown here) that the values of Nu numbers averaged over the
hot and the cold walls were equal up to the fourth decimal digit,
which proves conservation of the overall heat flux through the
cavity boundaries.

The final validation of the concept of “smart” thermally insu-
lating materials designed by utilizing both A and B optimization
criteria for 2D and 3D flows is summarized in Table 2. It is
remarkable that in the 3D differentially heated cavity, the ultimate
morphology of the implants of porous media designed by utilizing
both A and B criteria and consisting of 40 cylinders consistently
yielded about the same decrease in the average Nu value (i.e. about
a two fold decrease for the criterion A and about 20% for the cri-
terion B) as that observed for the corresponding 2D configuration.
4. Summary and conclusions

The concept of the design of “smart” thermally insulating



Fig. 7. 3D setup obtained by extension of the corresponding 2D configurations in the z directionwith a superimposed temperature distribution at the mid cross-section of the cavity
obtained at Ra¼2.11�106 by: (a) 20 cylinders, the location of which was obtained by utilizing optimization criteria A and B; and (b) 40 cylinders, the location of which was obtained
by utilizing optimization criteria A and B.

Table 1
Verification of the grid independence of the averaged Nu values calculated at the hot
wall of the cubic cavity for Ra¼2.11�106. Values in the Table are averaged Nu values.

Number of
cylinders, N

Criterion A for grid Criterion B for grid

2003 3003 4003 2003 3003 4003

0 8.353 8.353 8.353 8.353 8.353 8.353
10 6.449 6.506 6.552 7.043 6.985 6.992
20 4.943 5.087 5.126 6.588 6.755 6.724
30 4.281 4.327 4.356 6.333 6.426 6.328
40 3.535 3.569 3.589 6.214 6.340 6.328

Table 2
Validation of the concept of “smart” thermally insulating materials for 2D and 3D
flows. The Nu values presented in the Table were averaged over hot wall of the
differentially heated cavity with all thermally perfectly conducting horizontal (2D)
and lateral (3D) walls.

Number of cylinders, N 0 10 20 30 40

Criterion A 2D 8.200 6.728 5.215 4.568 3.906
Criterion B 8.200 7.270 7.089 6.756 6.750
Criterion A 3D 8.353 6.552 5.126 4.356 3.589
Criterion B 8.353 6.992 6.724 6.328 6.328
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materials based on heterogeneous thermally passive porous media
was established and extensively validated for both 2D and 3D
confined natural convection flows. The porous medium was
modelled by unconnected packed beds of circular cylinders. The
location of each cylinder was determined by an iterative procedure
based on a linear stability analysis of the flow fields. The effect of
optimization criteria A and B, related to perturbation of the velocity
and temperature fields, respectively, on the insulation properties of
2D and 3D differentially heated cavities was extensively investi-
gated. It was found that for the given value of Ra the implants of
porous media designed by utilizing criterion A and occupying only
5% of the total volume can decrease the overall heat flux by a factor
of 2 through the boundaries of both 2D and 3D differentially heated
cavities. In contrast, the implants of porous media designed by
using criterion B decreased the heat flux by only 20% for both 2D
and 3D configurations. Implants of porous media designed by both
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criteria delayed the transition to unsteadiness of the 2D natural
convection flow, which was reflected by an increase in the critical
Racr value by an order of magnitude when using the ultimate pat-
terns (consisting of 40 cylinders) of implants of both types.

The present work thus summarizes our first effort aimed at
developing a formal systematic methodology for establishing a
concept for the design of “smart” thermally insulating materials.
Although the concept of smart thermal insulation was demon-
strated here only for differentially heated cavities, the established
methodology is general and is not restricted to this particular ge-
ometry. In practice, smart insulation materials, built of heteroge-
neous porous media, can be intelligently adapted to any specified
engineering configuration, including both natural and forced con-
vection regimes. For the forced convection regime the pressure
drop imposed by the modelled porous media should be accounted
when estimating the overall insulating efficiency of the system. In
the present study, the heterogeneous porous medium was
modelled by unconnected packed beds of equi-sized circular cyl-
inders (both 2D and 3D), which is a particular case of realistic
porous media typically built of pores of varying sizes. Generaliza-
tion of the results obtained in the present study for heterogeneous
porous media modelled by cylinders of varying sizes requires sta-
tistical evaluation of awhole set of ”similar” systems andwill be the
focus of our future studies.
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