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A method for the design of ‘‘smart” passive thermo-insulating materials based on the statistical evalua-
tion of the confined natural convection flow in the presence of heterogeneous porous media is presented.
An application of the method for the enhancement of the insulating efficiency of hollow construction
blocks is discussed. Confined natural convection flow developing inside a differentially heated cavity
(comprising a convenient model for the air filled cavity in the mid-core of a hollow construction block)
is chosen as a computational testbed. The heterogeneous porous media in the cavity are modelled by
unconnected packed beds of equi- and non-equi-sized cylinders. Each cylinder is intelligently placed in
the bulk of the natural convection flow to efficiently suppress the momentum in the most energetic
regions of the flow. The spatial location of each cylinder is obtained by applying linear stability analysis
to the 2D natural convection flow in the presence of the modelled porous media. The flow is treated by
using the mesoscale approach, implicitly resolving the flow fields in the vicinity of the immersed cylin-
ders by the immersed boundary method. The results obtained for 2D configurations are validated for real-
istic 3D flows. Basic statistical evaluation of the generated porous media patterns is performed in order to
generalize the developed method of design of ‘‘smart” thermo-insulating materials. It is shown that the
efficiency of the thermal insulation of the porous medium is closely related to the diameter of the cylin-
ders modelling it. This study comprises an important milestone in the design and manufacture of ‘‘smart”
thermo-insulating materials from available off-the-shelf porous materials.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The rapid growth in energy consumption required for heating
and cooling residential buildings and offices (presently accounting
for more than one-third of the total energy budget in the European
Community [1]) stimulates the promotion of energy saving tech-
nologies when building and maintaining premises [2]. Efficient
optimization of the thermal insulation properties of hollow blocks,
widely used as building elements of ventilated facades [3] and
masonry structures [4], is an important step in this direction,
making it possible to enhance indoor climate control. The high
popularity of hollow blocks is due to their light weight and high
thermal and acoustic resistances, all achieved thanks to a large
air filled cavity in the mid-core of the block. While partition of
the air filled cavity can vary significantly without compromising
the strength of the block (typically between 2 and 8 equal parts
and up to 100 parts for the coarse and dense partitioned configura-
tions, respectively [5]), it has a substantial effect on the convective
component of heat flux passing through the hollow construction
block. This is because the internal walls of a partitioned cavity sup-
press the intensity of convective air circulation by two physical
mechanisms: first, they enforce the non-slip (zero) velocities on
the internal surfaces and second, they split the flow up and, as a
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result, decrease the geometrical dimensions of the largest flow
scales. Unfortunately, simply partitioning the air filled cavity by
introducing a large number of internal walls is far from an optimal
solution to improving the insulation of hollow blocks. In fact,
reducing the convective heat flux in such a way is not only coun-
terbalanced (at least partially) by the accompanying conductive
and radiative heat fluxes, but also incurs the disadvantages of sig-
nificant increases in weight and construction costs.

While there exists a consensus about minimizing the conduc-
tive and radiative heat fluxes by increasing the porosity of the
block material [6,7] and by decreasing the radiation emissivity of
recesses and the external surfaces of hollow blocks [8,9], an effi-
cient means of minimizing convective heat flux is still sought.
Therefore, in the framework of the present study the focus is only
on natural convection flow and does not take into account the con-
duction and radiation heat transfer. The basic idea of breaking
down the large scale convection cells was first established in the
numerical studies of Tong and Gerner [10] and Kangni et al. [11].
Since then, the above concept has been extensively elaborated
upon in a large number of studies which discussed various config-
urations and orientations of voids [5,12–19], investigated the effect
of the thermal insulation of the boundaries of the voids [20,21] and
also studied the impact of embedding obstacles into the flow bulk
[22–29], to name a few.

Despite significant progress in increasing the insulating proper-
ties of hollow blocks achieved over the recent decade, the state of
the art research in this area relies mostly on heuristic rather than
on systematic methodology. The first attempt to reformulate the
problem in terms of ‘‘smart” passive thermal insulation behavior
is due to Costa [5]. It was demonstrated that protuberances
inserted into the bulk of convective flow exhibit increasing self-
adjusting inhibition of convection and radiation heat fluxes in
the case of higher temperature differences between the hottest
and the coldest walls of the hollow block. The next step towards
deriving a formal methodology for the intelligent control of the
confined natural convection flow by suppression of the fluctua-
tions of the flow oscillations in the most energetic regions (as
determined by linear stability analysis [30]) was recently pub-
lished in the work of Gulbeg and Feldman [31]. The key idea of
the study was to link the flow in the presence of patterns formed
by unconnected packed beds to flow in porous media. In their anal-
ysis the authors employed the immersed boundary method to sim-
ulate the natural convection flow inside square and cubic
differentially heated cavities in the presence of unconnected
packed beds of equi-sized perfectly conducting circular cylinders.
A collection of such unconnected cylinders embedded into the bulk
of natural convection flow forms a pattern of thermo-insulating
material. The pattern is not just a group of randomly embedded
unconnected packed beds, rather, it is built by an iterative process
to consistently suppress the flow oscillations in the most energetic
flow regions as rigorously revealed by the mesoscale linear stabil-
ity analysis of slightly supercritical flows and therefore forms a
basis for design of ‘‘smart” thermal insulators. The thermo-
insulating materials designed by the developed concept intelli-
gently adjust to the specific flow configuration. In fact, a twofold
decrease in the overall convective heat flux through the square
and cubic differentially heated cavities was achieved for optimized
implants of the modelled porous thermal insulator occupying only
5% of the total volume of the cavity [31].

The promising results of study [31] were obtained for only a
single configuration of a porous medium and therefore require fur-
ther generalization and validation. In real systems, the transport
properties of a heterogeneous porous medium can be dominated
by different flow scales, which requires statistical evaluation of a
whole set of similar systems. The present work reports on our con-
tinuing effort aimed at further generalization of the concept of
‘‘smart” thermal insulators in the context of decreasing convective
heat flux through air filled cavities of hollow construction blocks.
To generalize the concept of ‘‘smart” thermal insulators we pro-
duced a number of sets of unconnected packed cylinders of non-
uniform and uniform diameters. Each set consists of 10 patterns
in which each pattern comprises a model of heterogeneous porous
medium. The shapes, spatial locations and porosity values of the
modelled porous medium implants that provide a twofold
decrease in convective heat flux are statistically evaluated based
on the results obtained for natural convection flow through each
pattern.

The concept of utilizing a pore level (mesoscale) approach in
modelling porous media is not new and has been extensively dis-
cussed in the past few decades. Worth mentioning are the work
of Martin et al. [32], who studied laminar steady 2D flow through
square and triangular periodic arrays in an attempt to develop a
universal model for accurately predicting the pressure drop for a
wide range of Reynolds numbers; the study of Keyser et al. [33],
who simulated flow through a number of beds packed with ran-
domly shaped particles, keeping the same average particle size;
the work of Sangani and Yao [34] and of Narvaez et al. [35], who
focused on fluid flow through randomly packed beds of monomo-
dal cylinders with a wide range of Reynolds numbers; and the
study of Rochette and Claim [36], who simulated flow through a
porous bed with abruptly varying porosity. The principal novelty
of the present work is that it analyzes a number of sets of similar
systems by basing on a formal linear stability analysis performed
on the mesoscale level. The study aims at developing methodology
that will potentially lead to the design of realistic ‘‘smart” thermo-
insulators built from off-the-shelf porous materials. The objectives
are: first, to perform an extensive validation and a grid indepen-
dence proof of the established 2D methodology by performing
direct numerical simulations (DNS) for realistic 3D configurations
obtained by extrusion in the spanwise direction of the correspond-
ing 2D patterns; and second, to address the impact of the porosity,
the heterogeneity, the shape and the orientation of the modelled
porous media implants on enhancement of the thermal insulation
of the hollow construction blocks. It is also shown that the opti-
mized hollow blocks operate with approximately the same insula-
tion performance in the presence of both positive and negative
temperature gradients across the block and can, therefore, be ben-
eficial for both cooled and heated indoor environments.
2. Theoretical background and basic assumptions

We start with a general description of the concept of the design
of a smart thermo-insulating material in the context of thermal
insulation of hollow construction blocks. Fig. 1a shows a schematic
of a typical hollow construction block which can contain two (or
more) air cavities. As a result of temperature differences between
the indoor and the outdoor walls of the block, natural convection
flow develops in each cavity, similar to the flow observed inside
differentially heated cavities (i.e. a configuration in which two
opposite vertical walls are held at constant high and low tempera-
tures, while all other walls are either perfectly conducting or insu-
lating). To suppress the convective heat transfer, implants of
porous material are installed in each cavity, as shown in Fig. 1a.
An example of the shape and spatial location of an embedded
implant can be seen in Fig. 1b, showing a cross section of the con-
struction block at the middle of the cavity. It should be stressed
here that unconnected packed beds of cylinders embedded into
the cavities of a construction block as shown in Fig. 1a and b are
only used for demonstration purposes and comprise a mesoscale
model of realistic porous media, such as are further characterized
in this study.



Fig. 1. A schematic of a hollow block with insulator implants of ‘‘smart” porous media: (a) general exploded view; (b) cross section view defining 2D model of differentially
heated cavity.
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2.1. Governing equations

The study adopts a mesoscale approach for the analysis of nat-
ural convection flow in the presence of porous media modelled by
unconnected packed beds of cylindrical shape. The no-slip bound-
ary conditions at the surfaces of the unconnected packed beds
placed in the bulk of the convective flow are enforced by applying
the immersed boundary (IB) method [37]. In addition, the no-slip
boundary conditions are applied at all boundaries confining the
differentially heated cavity. The hot and cold walls are held at con-
stant temperatures, Th and Tc , respectively; all other boundaries
are assumed to be thermally perfectly conducting. We note that
the walls of realistic construction blocks do not have precisely con-
stant temperature and are not perfectly conducting, but, neverthe-
less, these assumptions are reasonable for the purpose of an
optimization. Since we focus on the investigation of convective
heat transfer, radiation effects are not considered. Buoyancy effects
are introduced by applying the Boussinesq approximation. As a
result, the unsteady natural convection flow is governed by the fol-
lowing system of continuity, Navier-Stokes (NS), and energy equa-
tions (Eqs. (1)–(3)), along with additional kinematic constraints
that are summarized by Eqs. (4) and (5); these equations are intro-
duced to enforce the no-slip and the determined temperature (or
heat flux) boundary conditions on the surfaces of the modelled
porous media.

r � u ¼ 0 ð1Þ
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ffiffiffiffiffiffi
Pr
Ra

r
r2uþ h~ey þ f ð2Þ

@h
@t

þ ðu � rÞh ¼ 1ffiffiffiffiffiffiffiffiffiffi
PrRa

p r2hþ q ð3Þ

UbðXkÞ ¼ IðuðxÞÞ ð4Þ

HbðXkÞ ¼ IðhðxÞÞ; ð5Þ
where u ¼ ðu;v ;wÞ, p, t, and h are the non-dimensional velocity,
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unit vector in the vertical (y) direction. Following the works of
Christon et al. [38] and Xin and Le Quere [39], the problem is scaled
by L, U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbLDT
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, t ¼ L=U, and P ¼ qU2 for length, velocity, time,
and pressure, respectively. Here, L is the length of the square differ-
entially heated cavity, q is the mass density of the working fluid, g is
the gravitational acceleration, b is the isobaric coefficient of thermal
expansion, and DT ¼ Th � Tc is the temperature difference between
the hottest and coldest boundaries. The non-dimensional tempera-
ture h is defined as h ¼ ðT � TcÞ=DT. The Rayleigh, Ra, and Prandtl,
Pr, numbers are Ra ¼ gb

maDTL
3 and Pr ¼ m=a, respectively, where m is

the kinematic viscosity and a is the thermal diffusivity. All the spa-
tial derivatives in Eqs. (1)–(3) are discretzed by a standard second
order finite volume method; the second order backward finite dif-
ference scheme is utilized for the temporal discretization. All the
linear terms are treated implicitly while all the non-linear terms
are taken from the previous time step and moved to the right hand
side (RHS) of Eqs. (2) and (3). The volumetric force f and the heat
source q, appearing as sources in Eqs. (2) and (3), reflect the impact
of the immersed surfaces of the porous media on the surrounding
flow. These sources are additional unknowns of the overall system
of Eqs. (1)–(3), a closure of which is achieved by introducing addi-
tional kinematic constraints determined by Eqs. (4) and (5). To con-
vey information between Lagrangian points of immersed surfaces
and an Eulerian staggered grid, on which Eqs. (1)–(5) are discretized
and solved, we define two adjoint operators, namely, regularization
operator R and interpolation operator I as:

RðFkðXkÞ;QkðXkÞÞ ¼
Z

S
ðFkðXkÞ;QkðXkÞÞ � dðxi � XkÞdVk

S ; ð6aÞ

IðuðxiÞ; hðxiÞÞ ¼
Z

X
ðuðxiÞ; hðxiÞÞ � dðXk � xiÞdVXi: ð6bÞ

Here S corresponds to all the cells belonging to the immersed body
surface, X corresponds to a group of flow domain cells located in

the close vicinity of the immersed body surface, dVk
S corresponds to
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the virtual volume surrounding each Lagrangian point k, and dVXi is
the volume of the corresponding cell of the Eulerian flow domain,
whose velocity and temperature values are explicitly involved in
enforcing the boundary conditions at point k of the immersed body.
Both operators use convolutions with the Dirac delta function d to
facilitate an exchange of information between the Lagrangian points
of the body surface and the Eulerian grid. The discrete delta function
introduced by Roma et al. [40] was used in the present study.
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1
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where Dr is the cell width in the r direction.

The linear stability eigenproblem is formulated by assuming
infinitesimally small perturbations of the form
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The generalized eigenproblem in Eqs. (8a–e) with all homoge-

neous boundary conditions is then solved by applying the shift-
and-invert Arnoldi iteration along with the secant method for the
calculation of the critical values:
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where J is the Jacobian matrix calculated from the RHS of Eqs.
(8a–e), and B is the diagonal matrix whose diagonal elements

corresponding to the values of u
�
; h
�
are equal to unity, and whose

diagonal elements corresponding to p
�
; F
�
;Q
�

are equal to zero (see
Refs. [41,30] for more details).

2.2. Implementation details

The proposed method for the design of ‘‘smart” thermal insula-
tors employs a linear stability analysis of natural convection flows
in the presence of heterogeneous porous media, as detailed in a
recent study by Gulberg and Feldman [31]. Following this work,
the currently employed optimization procedure is based on mini-

mizing the value of parameter A, defined as A ¼ j~uxj2 þ j~uyj2, where
j~uxj and j~uyj are the absolute values of the perturbations1 of the cor-
responding velocity components. The optimization procedure is an
1 The intention is to the absolute values of the most critical eigenvectors as
determined by the linear stability analysis.
iterative process, which will be briefly described here for the sake
of completeness. The iterations start with the linear stability analysis
based on the solution of Eqs. (8), performed for the flow within the
cavity with no obstacles. As a result, the value of the critical Rayleigh
number, Racr , for the first Hopf bifurcation is obtained and two cylin-
drical obstacles are placed at the locations where the criterion A
attains its maximal value.2 In the next step, the linear stability anal-
ysis is repeated for the modified flow, which is characterized by a
new value of Racr , at which a transition to unsteadiness takes place.
The next pair of obstacles can again be positioned at places where
the new values of A reach their absolute maximum. In the present
study, the above procedure is repeated until a twofold decrease in
the average Nu number is achieved.3 Note that the boundary of each
cylindrical obstacle is assumed to be of zero thickness; hence there is
no need neither to employ any specific heat fluxes in Eqs. (3) and
(8b) nor boundary conditions for the temperature determined by
Eqs. (5) and (8e). As a result, the boundaries of the cylinders have
no thermal resistance in the direction normal to the body surface.

The basic assumption of the optimization methodology imple-
mented in the present study stems from the fact that the most
energetic regions of the 2D convective flows predicted by the linear
stability analysis coincide, with an acceptable degree of accuracy,
with the corresponding regions observed in the 3D configuration
built by extrusion of the corresponding 2D confinement along its
normal direction. This idea is supported by the striking similarity
between the spatial and temporal characteristics observed for 2D
and 3D steady and bifurcated flows in differentially heated square
and cubic cavities, respectively, with perfectly thermally conduct-
ing horizontal boundaries (see e.g. Ref. [42]). The above assump-
tion was validated by the recent study of Gulberg and Feldman
[31], who demonstrated about the same enhancement of the insu-
lating efficiency of a 2D differentially heated cavity and its 3D
counterpart, both optimized by embedded implants of porous
media. Following the same principle, the efficiency of all the por-
ous media patterns obtained by the 2D linear stability analysis
was validated by the corresponding 3D simulations. The numerical
solution of the full 3D NS equations (Eqs. (1)–(5)) was conducted
by the recently developed IB solver [43]. Extensive discussion on
the implementation and verification of the developed solver for
thermal flows in the presence of thermally active and passive
immersed bodies can be found in [43], and is omitted here for
the sake of conciseness.

3. Results and discussion

Motivated by the recent work of Gulberg and Feldman [31], in
which the concept of ‘‘smart” thermal insulation occupying only
5% of the overall volume of the differentially heated cavity was
established, we present a further generalization of the concept by
focussing on the following open questions:

� Is material porosity the dominant macro-optimization parame-
ter of the heterogeneous porous medium distributed over the
flow areas, as predicted by the linear stability analysis?

� For a given amount of porous material, what is the preferable
way of suppressing the most unstable flowmodes in accordance
with the prescribed optimization criteria: is it by precise
positioning of the finite size obstacles in the places determined
in accordance with the given optimization criterion or by cover-
ing the vicinity of the determined locations with clusters of por-
ous material modelled by evenly distributed unconnected
obstacles?
2 The obstacles always come in pairs due to the skew-symmetry of the flow.
3 The procedure can also be applied with another termination criterion.



Fig. 2. Successive stages of building the pattern of a ‘‘smart” insulator characterized by the minimal porosity value, / ¼ 0:51. The final pattern of the porous material is
confined by the white solid line. The colors correspond to the distribution of the control parameter A. Figure (f) was obtained at Ra ¼ 4:39� 107. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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� How important is the impact of the heterogeneity of the porous
material?

To address the above questions we discuss the confined natural
convection flow in the presence of heterogeneous porous media,
modelled by clusters built of both equi- and non-equi-sized cylin-
ders. Each pattern obtained in the present study was built based on
a minimizing parameter A and provided a twofold decrease in the
Nusselt number, Nu, averaged over the vertical (hot and cold)
boundaries of the differentially heated cavity. The patterns were
grouped in sets, with 10 patterns in each set. The process of build-
ing the patterns and the analysis of the insulating properties of
each set of patterns are discussed in the next two sections. Follow-
ing the recent work of Gulberg and Feldman [31], all the 2D calcu-
lations that included calculation of the steady state flow and its
subsequent linear stability analysis were performed on a
500� 500 uniform grid, thus providing grid independence of the
obtained results. All the non-dimensional results were obtained
for the natural convection flow in square and cubic cavities with
non-dimensional side length L ¼ 1, the value of Prandtl number,
Pr ¼ 0:71 (corresponding to air), and the varying values of Rayleigh
number, Ra. The physical values corresponding to the dimensions
and temperature differences typical of realistic construction blocks
are given in Appendix B.
3.1. Patterns built of non-equi-sized cylinders

To check the impact of porosity as a macro-optimization param-
eter determining the insulating properties of the modelled hetero-
geneous porous media, we start with the most general
configuration and build a set of 10 different patterns, each consist-
ing of non-equi-sized cylinders. The diameters of the cylinders in
each pattern were drawn in accordance with a Gaussian distribu-
tion characterized by an average value of Dav ¼ 0:1 and a standard
deviation of r ¼ �0:02. The patterns were built by an iterative pro-
cess: first, the cylinder center was placed at the point with the
maximal value of criterion A; second, the minimal distance
between the cylinder’s boundary and the boundaries of the previ-
ously placed cylinders (for the second and subsequent placements)
or the cavity walls was fixed to be at least the size of a single grid
step. The second step is an intrinsic requirement of the discrete
Delta functions [40] utilized in the present study for the imple-
mentation of interpolation I and regularization R operators. If the
second condition could not be met, a new diameter of the subse-
quent cylinder was drawn. An additional limitation to be consid-
ered is related to the scenario where the distance between the
point characterized by the maximal value of criterion A and the
closest boundary is smaller than the minimal allowed value of
the cylinder radius ðDav � 3rÞ=2. In this case the location of the



Fig. 3. Successive stages of building the pattern of a ‘‘smart” insulator characterized by the maximal porosity value, / ¼ 0:64. The final pattern of the porous material is
confined by the white solid line. The colors correspond to the distribution of the control parameter A. Figure (f) was obtained at Ra ¼ 5:13� 107. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Temperature distribution with superimposed streamlines for: (a) configuration without porous implants obtained for Ra ¼ 2:15� 106; (b) configuration with porous
implants characterized by / ¼ 0:51 obtained for Ra ¼ 4:39� 107; (c) configuration with porous implants characterized by / ¼ 0:64 obtained for Ra ¼ 5:13� 107. The
transparency of the cylinders stresses the fact that their boundaries have zero thermal resistance.

4 The contours comprise closed cubic Bezier curves (see Appendix A for more
details).
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next largest value of A is sought and the morphological structure of
the new ‘‘candidate” of the porous medium implant is tested to
verify that it complies with all the conditions.

In Figs. 2 and 3, two typical sequences of the construction of dif-
ferent porous media patterns are shown, corresponding to the por-
ous media materials characterized by the minimal (/ ¼ 0:51) and
the maximal (/ ¼ 0:64) values of porosity (from the set of 10 dif-
ferent patterns), respectively. Colors represent the corresponding
distributions of the control parameter A. Note that only a single
pair of cylinders was added at each iteration (due to the skew-
symmetry of the flow) and, therefore, Figs. 2 and 3 show only a
number of representative configurations. The final geometry of
both implants,4 yielding a twofold decrease in the Nusselt number,
Nu, averaged over the cavity vertical boundaries, is confined by the



Table 1
Results obtained for the set of 10 different patterns in order of decreasing porosity, /. The patterns are modelled by unconnected packed beds of cylinders of varying diameters,
drawn in accordance with a Gaussian distribution characterized by an average value of Dav ¼ 0:1 and standard deviation of r ¼ �0:02.

Nu (final) @ Ra ¼ 2:15� 106 Average diameter, D Xc Yc Porosity, / Confinement of the porous implant

Left Right Left Right

3.6968 0.0786 0.2028 0.7972 0.6271 0.3729 0.6388

3.8155 0.0898 0.1962 0.8038 0.6033 0.3967 0.6358

4.0110 0.0766 0.1891 0.8109 0.6289 0.3711 0.6322

4.0694 0.0684 0.1732 0.8268 0.6212 0.3788 0.6265

3.9990 0.0770 0.2127 0.7873 0.6202 0.3798 0.6250

3.8609 0.0716 0.2075 0.7925 0.6219 0.3781 0.6222

3.8819 0.0726 0.1744 0.8256 0.6448 0.3552 0.5981

4.0799 0.0714 0.1796 0.8204 0.5992 0.4008 0.5239

3.9842 0.0702 0.1413 0.8587 0.5830 0.4170 0.5148
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Fig. 5. Efficiency characteristics of the porous medium implants characterized by the minimal (/ ¼ 0:51) and the maximal (/ ¼ 0:64) values of porosity, /, in terms of: (a) Nu
number, averaged over vertical (hot or cold) boundaries obtained for Racr ¼ 2:15� 106; (b) critical Racr number at which the transition from steady to unsteady flow takes
place via Hopf bifurcation; (c) critical angular frequency, xcr at which the transition from steady to unsteady flow takes place via Hopf bifurcation.

Fig. 6. Averaged confinement and spatial location of the optimized implant of
porous medium inside differentially heated square cavity.

Table 1 (continued)

Nu (final) @ Ra ¼ 2:15� 106 Average diameter, D Xc Yc Porosity, / Confinement of the porous implant

Left Right Left Right

3.9102 0.0715 0.1718 0.8282 0.6116 0.3884 0.5078
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white curve (see Figs. 2f and 3f). Note that in the present study the
porosity of the porous medium implant is defined as:

/ ¼ Vp �
X
Ncyl

VN

0
@

1
A,

Vp; ð10Þ

where Vp is the volume of the final configuration of the porous
media implant.

Despite the evident differences between the structures of both
patterns, a number of trends, which will be exploited for further
generalization of the strategies for the design of ‘‘smart” thermally
insulating materials, can be clearly recognized. First, both patterns
have the shape of a bunch of grapes close to the hot vertical bound-
ary (or the shape of an inverted bunch of grapes close to the cold
vertical boundary), and are flattened in the vicinity of the vertical
walls. Second, the geometric center of both configurations is much
closer to the vertical compared to the horizontal walls of the cavity.
Third, the convective flows that initially rise or descend along the
vertical hot or cold walls, respectively, are further redirected to
the cavity center. As a result, the close vicinity of the vertical walls
of the cavities with embedded implants of porous medium is char-
acterized by a more uniform distribution of the temperature (see
Fig. 4). This, in turn, results in lower temperature gradients and,
as a consequence, in lower values of the local Nu number. It is
remarkable that the same trends were also observed for all other



Fig. 7. Two configurations characterized by approximately the same porosity, / � 0:59, and different thermal insulating capacities: (a) Nu ¼ 6:3393; (b) Nu ¼ 3:9832. All the
results are obtained for Ra ¼ 2:15� 106 for differentially heated square cavity. The colors correspond to the distribution of the control parameter A.

Table 2
Basic statistics for Nu values obtained as a function of the cylinder diameter for each set of the 2D simulations. All of the results were obtained for approximately the same
porosity / � 0:59 and Ra ¼ 2:15� 106.

Dcyl Ncyl Numax Numin Nu r

0.04 94 3.8086 3.4078 3.5491 0.012
0.06 42 4.4449 3.7187 4.0300 0.105
0.074 28 6.3393 3.9832 4.6759 0.755
0.1 16 7.0326 4.1557 4.9890 0.851
0.16 6 8.0419 3.6894 5.3500 2.004
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configurations from the same set characterized by the intermedi-
ate porosity values, as summarized in Table 1. Fig. 5 quantifies
the dependance of the average Nu and the steady-unsteady critical
Rayleigh, Racr and oscillating frequency, xcr values on the number
of embedded cylinders observed for the porous media patterns
characterized by the maximal and minimal porosity values. Note
that the similar monotonic decrease in Nu and intermittent
increase in Racr values as a function of the number of embedded
cylinders was observed in [31] for the porous media patterns mod-
elled by unconnected packed beds of equi-sized cylinders. It is
interesting that although Nu monotonically decreases, non-
monotonic behavior is observed for Racr and xcr , which could be
related to the non-linearity of the system and reflects different
physical branches existing for the same parameters. Note also that
both critical values Racr ¼ 2:15� 106 and xcr ¼ 1:606 values
obtained for the configuration without embedded cylinders
(N ¼ 0) are in a good agreement with the corresponding values
reported in literature (see e.g. [44]).5 In the next step, the coordi-
nates of the geometric centers of each of the 10 patterns were calcu-
lated by taking a weighted average of the positions and the areas of
all the voids constituting the corresponding pattern. A further aver-
aging of all the contours confining the obtained patterns and of the
coordinates of the corresponding geometric centers yielded the aver-
aged shape and position of the two final porous medium implants, as
shown in Fig. 6. In the following we present the insulating capacity
of the constructed implant of porous medium characterized by the
average porosity value, as well as its validation for the realistic 3D
flows.
5 The present xcr value should be multiplied by
ffiffiffiffiffi
Pr

p
to fit the time scaling of [44].
3.2. Insulating properties and 3D validation of patterns modelled by
unconnected packed beds of equi-sized cylinders

We start by constructing the next set of patterns filled with
equi-sized cylinders of diameter D ¼ 0:074, which is equal to the
weighted average of the diameters of all the cylinders involved
in the previous set of porous medium implants. All the patterns
from this set are confined by the contour shown in Fig. 6 and are
characterized by porosities approximately equal to / � 0:5925,
which is the average porosity of all the patterns from the previous
set.6 For all the patterns the maximal deviation between the target
and the actual porosity values did not exceed 5%. The set comprises
a special case of a more general configuration, analyzed in the previ-
ous section, and aims to address the question of whether the poros-
ity of the modelled porous implant is the dominant parameter
determining its insulating capacity. The insulating efficiency of the
obtained patterns was next analyzed by calculating the average Nu
value for the vertical boundaries of the differentially heated cavity
at Ra ¼ 2:15� 106. This value corresponds to the value of the critical
Ra number for the square differentially heated cavity without obsta-
cles. The obtained results did not reveal a clear trend, indicating that
porosity is the only parameter determining the insulating efficiency
of the modelled porous implant. In contrast, the maximal and mini-
mal values of the Nu number (Nu ¼ 6:3393 and Nu ¼ 3:9832, respec-
tively), comprising 77.2% and 48.5% of the Nu value obtained for the
configuration with no porous implants, were both obtained for the
same porosity values (see Fig. 7). The high value of the standard
6 Note that in the most general case, a precise value of porosity cannot be exactly
met by filling up the averaged contour with a discrete number of cylinders.



Fig. 8. Distribution of optimization parameter A (left graphs) and the corresponding temperature field (right graphs) with superimposed streamlines obtained for the
implants characterized by approximately the same porosity, / � 0:59, for 2D flow. The implants embedded inside a square differentially heated cavity contain in total: (a) 94
cylinders; (b) 42 cylinders; (c) 28 cylinders; (d) 16 cylinders; (e) 6 cylinders.
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deviation, r ¼ 0:755, obtained for the set of 10 different patterns
also indicates a considerable scattering in the Nu values.

To further investigate the impact of the cylinder diameter on
the thermally insulating capacity of the modelled porous medium
implant we constructed and simulated 4 more sets (10 patterns per
each set) of porous media, each built of equi-sized unconnected
cylinders. The diameter values of the cylinders, one for each set,
were D ¼ 0:04;0:06;0:1;0:16, respectively. All the acquired results
were used to obtain the basic statistics for Nu values, as summa-
rized in Table 2.

The porous medium implants built of cylinders of smaller diam-
eters exhibit higher insulating capacity, as a result of the decrease
in the average values of Nu with the cylinder diameter. However,
more importantly for increasing the insulating capacity is the rapid
decrease in the standard deviation value, r, that indicates that the
porous medium implants filled with randomly positioned cylinders
of smaller diameters are more successful in reproducing the same
thermally insulating capacity when compared to the implants con-
sisting of larger cylinders. A physical explanation of the observed
phenomenon can be found by looking at the contours of the opti-
mization parameter A and the corresponding temperature distri-
butions superimposed by streamlines, obtained for representative
porous media patterns (see Fig. 8). The patterns shown in Fig. 8
have the Nu number which is closest to the averaged Nu value from
the same set.



Fig. 8 (continued)
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There are no significant differences between the distributions of
parameter A for various patterns (see Fig. 8). This is in contrast to
the distributions of the flow temperature and streamlines. It can be
seen that the implants built of smaller cylinders are uniformly per-
meable to the convective flow. As the flow infiltrates through the
implants it slows down and redistributes evenly. As a result, the
temperature distribution inside the implants is almost uniform,
which provides their high insulation capacity. On the other hand,
the implants built of the larger cylinders are characterized by a
non-uniform permeability. In the vicinity of cylindrical obstacles
the implants are almost impermeable and only redirect the flow.
However, the flow succeeds in penetrating the implants in the
outermost regions. Despite decreasing when changing direction,
the flow velocity still high and non-uniform inside a considerable
part of the implants. As a result, high values of the temperature
gradients are found in these regions, which significantly deterio-
rates the insulating efficiency of the implants.

To validate the observed trends we performed numerical simu-
lations of realistic 3D flows by extending all the 2D configurations
discussed above in the direction normal to the plane of the 2D cav-
ity. As a result, the original 2D configurations are transformed into
their 3D analogs (see Fig. 9), comprising cubic differentially heated
cavities with perfect thermally conducting lateral walls and no-slip
boundaries. The 2D circular obstacles are, in turn, transformed into
3D circular cylinders, extending in a spanwise direction over the
entire width of the cavity.

Based on the simulation results, the Nu values of all the config-
urations were then obtained for both 4003 and 5003 grid resolu-
tions. Since our method is of second order accuracy, the zero grid
size limit for the Nu value was estimated by applying the Richard-
son extrapolation for two consequent grids. All the results are sum-
marized in Table 3.

It is remarkable that the 3D results demonstrate the same
trend that was observed for the 2D simulations: the implants
built of smaller cylinders provide better thermal insulation and
yield lower Nu values. The Nu values continuously rise with an
increase in the cylinder diameters. The difference between the
maximal and minimal Nu values (for approximately the same
porosities) for 3D flow is about 22%. This is somewhat lower than
the corresponding value obtained for the 2D flow, which is about
50%. The difference stems from the much lower Nu value pre-
dicted by the 2D simulations for implants built of the cylinders
of the smallest diameter, which may be a result of the 2D ideal-
ization of the convective flow.

Recalling that the paper addresses the application of the devel-
oped method to the thermal insulation of construction blocks, we
investigate the sensitivity of the patterns obtained to the opposite
temperature difference. In other words, we address the question of
whether the thermally insulated construction block will be as effi-
cient in both hot and cold seasons (for both air conditioned and
heated indoors) with the enhanced thermal insulation obtained
by the proposed method. Table 4 shows the results summarizing
the differences in Nu values obtained for one of the representative
configurations of the porous medium implants from each set of 2D
configurations and the corresponding 3D analog. No significant dif-
ferences can be seen for all the cases checked. The deviations do
not exceed 10% and 4% for 2D and 3D configurations, respectively.
It is remarkable that for both 2D and 3D flows the maximal differ-
ences in Nu values are observed for implants built of smaller cylin-
ders, which are characterized by the maximal insulation efficiency.



Fig. 9. Distribution of temperature field in the mid-cross-section of a 3D cavity obtained for the implants characterized by approximately the same porosity, / � 0:59, for 3D
flow. The implants contain in total: (a) 94 cylinders; (b) 42 cylinders; (c) 28 cylinders; (d) 16 cylinders; (e) 6 cylinders.

Table 3
Nu values obtained for 4003;5003 grids and the Nu value corresponding to the zero grid size limit estimated by the Richardson extrapolation.

Dcyl Ncyl Nu (grid 4003) Nu (grid 5003) Nu (Richardson extrap.)

0.04 94 4.7727 4.9899 5.3761
0.06 42 5.2666 5.5046 5.9277
0.074 28 5.9388 6.1333 6.4792
0.10 16 5.6794 5.8894 6.2627
0.16 6 6.0119 6.2189 6.5868
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Table 4
Nu deviation values, for the implants pre described in Table 3, between the presented
physical model and the case of vertical wall temperature replacement (implants
throughout this study are based on the clockwise flow circulation, temperature
replacement causes the flow to pass through the existing implant in a counter
clockwise circulation inside the cavity) for 2D and 3D.

Dcyl Ncyl Deviation in Nu value (2D
flow) [%]

Deviation in Nu value (3D
flow) [%]

0.04 94 9.37 3.34
0.06 42 4.72 3.79
0.074 28 4.78 0.34
0.1 16 3.88 0.40
0.16 6 3.31 0.16

7 A Bezier curve is intrinsically tangential to both lines passing through the edge
points.

8 http://www.antigrain.com/.

1340 S. Idan, Y. Feldman / Applied Thermal Engineering 124 (2017) 1328–1342
4. Summary and conclusions

The concept of ‘‘smart” thermally insulating materials based on
thermally passive porous media was generalized and extensively
validated in the context of decreasing convective heat flux through
the air filled cavities of hollow construction blocks. The porous
medium was modelled by unconnected packed beds of circular
cylinders. The basic statistical analysis treated the impact of a set
of porous medium structures, consisting of both equi-sized and
non-equi-sized cylinders, on the insulating efficiency of the porous
media implants. The generalized geometry of the optimized porous
medium implant and its spatial position inside a square differen-
tially heated cavity (modelling the cavity located in the mid-core
of construction block) were determined. It was demonstrated that
optimally shaped porous media implants installed in accordance
with the developed optimization methodology would occupy no
more than 30% of the overall volume of the hollow brick cavity.

Regarding the major research questions related to the material
properties of the modelled porous media which have been
addressed in the present study it may be concluded that:

� The porosity is not the dominant parameter determining the
insulating efficiency of the porous implant. Although the expli-
cit determination of the permeability tensor of the porous med-
ium implants remained out of the scope of the present study, it
was shown that the thermal insulating efficiency of the
implants is strongly correlated with their ability to slow down
and to uniformly redistribute the infiltrating flow. A more expli-
cit analysis of the permeability of the modelled porous media
will be the focus of our future work.

� The precise positioning of the cylinders in accordance with the
optimization parameter A inside the porous medium of the
given porosity is not mandatory. The implants modelled by
the randomly positioned small size cylinders exhibit consistent
insulating efficiency. On the other hand, it was observed that
the variance in the insulating efficiency of the implants
increases with the diameter of the cylinders which form the
porous medium implant modelled by unconnected packed beds.

� The porous medium implants modelled by unconnected packed
beds of cylinders of smaller diameters are characterized by
homogeneous internal patterns and succeed in consistently
reproducing the same insulating efficiency. For this reason,
among all the available porous materials only those character-
ized by a homogeneous internal pattern should be used when
producing the optimized porous medium implants.

The results obtained by 2D analysis were extensively validated
for realistic 3D flows. The 3D results exhibited the same trends as
their 2D analogs, indicating an improvement in the insulating effi-
ciency of the implants built of the cylinders of the smaller diame-
ter. An acceptable 64% decrease in the Nu value was predicted by
the 3D analysis of the flow inside the cubic differentially heated
cavity with imbedded porous implants, compared to the original
non-insulated configuration. It was also verified that the developed
‘‘smart” porous medium insulation is not sensitive to the opposite
temperature difference; thus the insulating efficiency of construc-
tion blocks will remain the same in both hot and cold weather
conditions.

Appendix A. Building confinement contours

All the confinement contours built in the framework of the pre-
sent study comprise closed Bezier curves of the third order. The
Bezier curve is a method widely used in computational graphics
to create smooth curves by a series of control points. The number
of control points determining the order of Bezier curve is arbitrary
and is typically determined by the constraints posed by a specific
engineering configuration. Typical examples of Bezier curves of
the second and third order are shown in Fig. A.1a and b, respec-
tively. The series of control points determining the curves are P0

through P2 for the second and P0 through P3 for the third order
curves, respectively. Note that only the edge points from the given
series belong to the Bezier curve itself,7 while all intermediate
points only effect its slope and curvature. In practice, a Bezier curve
can be parameterized by introducing parameter t and applying the
binomial theorem in the form of:

PðtÞ ¼
Xn
i¼0

n

i

� �
ð1� tÞðn�iÞtiPi; ðA:1Þ

where

n

i

� �
¼ n!

i!ðn� iÞ! ; ðA:2Þ

where n determines the order of the Bezier curve and Pi corre-
sponds to the ðX;YÞ coordinates of the ith control point. All the
Bezier curves built in the framework of the present study were
based on the linear variation of parameter t (in general t does not
have to vary linearly) in the interval of t 2 ½0;1	. The final shape of
the Bezier curve confining the implant of the porous medium was
obtained by an iterative procedure based on the Anti-Grain Geom-
etry open source library.8

Appendix B. Estimation of dimensions of realistic hollow
construction blocks

Recalling that the current study was performed based on a non-
dimensional analysis, it would be of practical interest to relate to
the dimensions of realistic construction blocks, to which the devel-
oped method of ‘‘smart” thermal insulation could be applied. With-
out loss of generality we will assume that the cavity located in the
mid-core of the construction block is of cubic geometry. We will
next estimate the range of the cavity edge length, L, for the given
range of temperature difference, 20 K 6 DT 
 40 K, between the
indoor and the outdoor environment. Note that the final dimen-
sions of the construction block, including the wall and the bottom
thicknesses, should take into account features inherent to the man-
ufacturing process and comply with the requirements imposed on
the strength of the block.

The expression for the length L can be obtained from the defini-

tion of the Ra number as L ¼
ffiffiffiffiffiffiffiffi
Ra�ma
gbDT

3
q

. Taking the physical properties

of dry air at T ¼ 300 K we get the values of

http://www.antigrain.com/


Fig. A.1. Typical Bezier curves of the second and third order. Intermediate points Ri; Si and Qi are obtained for the value of t ¼ 0:5 [45].

S. Idan, Y. Feldman / Applied Thermal Engineering 124 (2017) 1328–1342 1341
m ¼ 1:568� 10�5 m2

sec

h i
;a ¼ 22:07� 10�6 m2

sec

h i
; b ¼ 1

T ¼ 1
300

1
K

� �
. We next

recall that the non-dimensional analysis was performed for the value

of Ra ¼ gb
maDTL

3 ¼ 2:15� 106 and that the value of gravitational accel-
eration g is equal to g ¼ 9:81 m

sec2. Substitution of all the above values
into the expression for L yields the characteristic dimensions of
L � 0:1 ½m	 and for DT ¼ 20 K and L � 0:08 ½m	 for DT ¼ 40 K, which
are typical of realistic construction blocks.
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