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Laminar natural convection flow inside multi-layered spherical shells with internal hot and external cold
boundaries was investigated. Direct numerical simulations (DNS), which were performed by utilizing the
immersed boundary method, addressed the fully 3D natural convection flow inside spherical shells with
concentric, eccentric, equi-spaced and non-equi-spaced zero-thickness internal baffles. The insulation
efficiency of the spherical shell was studied for up to four equi-spaced concentric internal layers. A
unified functional dependency correlating modified Nu� and Ra� numbers was derived for spherical shells
with up to four equi-spaced concentric internal layers. The effects of both vertical and horizontal
eccentricity of the internal layers and of the width variation of concentric layers on the overall insulating
performance of the spherical shell were investigated and quantified in terms of the Nu–Ra functionality.
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1. Introduction

Buoyancy-driven flow developing inside spherical annuli
has been the subject of considerable research, both theoretical
and experimental for the past fifty years. Typically, the
buoyancy-driven flow between two isothermal concentric spheres
(where each sphere is held at a different temperature) has been
investigated as a function of the diameter ratio, / ¼ Di=Do, and
the Rayleigh, Ra, and Prandtl, Pr, numbers. The pioneering experi-
mental studies of Bishop et al. [1,2], which focused on visualization
of the flow, indicated three distinct types of flow pattern –
‘‘crescent eddy’’, ‘‘kidney-shaped’’ and ‘‘falling vortices’’ – that
depend on the diameter ratio, /, of the shells. Their experimental
results were confirmed by the study of Mack and Hardee [3],
who derived a low-Rayleigh-numbers analytical solution for the
natural convection of air between two concentric spheres. More
recently, the natural convection flow of working fluids other than
air (namely, water and silicone oils) was experimentally addressed
by Scanlan et al. [4] and visualized by Yin et al.[5]. The later group
described naturally induced flow patterns and categorized the type
of the flow for each fluid in terms of the inverse of the relative gap
width and the Rayleigh number. Subsequent numerical studies on
steady and transient natural convection flow inside spherical
shells extended the state of the art to an even wider range of Pr

(0:71 6 Pr 6 100) [6,7] and Ra (102
6 Ra 6 5� 105) [7] numbers

and to the analysis of vertically eccentric configurations [8].
The theoretical analysis of unsteady natural convection inside a
differentially heated spherical annulus is a challenging problem,
since different flow regimes can dominate locally in its
different regions, taking the form of Rayleigh-Bènard convection
at the top of the shell, of a differentially heated cavity at the
near-equatorial region, and of a thermally stable flow regime at
the bottom of the shell. Moreover, instabilities and transition
scenarios are sensitive to the value of the Pr number and to the
ratio of the internal to external diameter / [9,10]. For shells with
an internal hot boundary and an external cold boundary, the flow
patterns vary with the ratio /: Powe et al. [11] described a ‘‘mod-
ified kidney shaped eddy’’ for wide shells (/ 6 0:5), an ‘‘interior e
xpansion–contraction’’ for 0:5 6 / � 0:65, a ‘‘three dimensional
spiral’’ flow for 0:65 6 / � 0:85, and a ‘‘falling vortices’’ pattern
for narrow shells (0:85 6 /). Futterer et al. [12] reported that the
flow inside shells of large and moderate widths (0:41 6 / � 0:71)
with a cold internal boundary and a hot external boundary
exhibited an unsteady ‘‘dripping blob’’ phenomenon for Pr ¼ 1.

Natural convection inside a spherical annulus comprises an
essential heat transfer mechanism in various engineering design
problems, such as in solar energy collectors, storage tanks, thermal
energy storage (TES) systems and nuclear reactors. Another poten-
tial application of spherical annuli is related to the design of the
Titan Montgolfiere hot air balloon, which was recently chosen by
NASA as the air-robot vehicle of choice for the exploration of
Titan’s atmosphere. Given Titan’s low gravity (one-seventh that
of Earth) and its cryogenic atmospheric temperatures (72–94 K),
heat transfer by radiation can safely be neglected, and natural
convection can be regarded as the only heat transfer mechanism
for the stationary suspended balloon. Such a balloon, designed to
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provide a minimized heat flux rate through its walls, could serve as
a sustainable air-robot platform for carrying a payload sufficient
for a long-term space mission.

The concept of the double-walled Titan Montgolfiere, for which
the spherical shell plays the role of a thermal insulator separating
the hot interior of the balloon from the cold surroundings, has
recently been established and investigated by Samanta et al. [13]
and Feldman et al. [14]. One of the main findings of both studies
was that theoretical estimation of the heat flux rate through the
boundaries of the insulating gap of both scaled and full-scale bal-
loons has the greatest uncertainties. This finding motivated further
research [15], which was focussed on a more detailed analysis of
transitional and fully turbulent natural convection flows inside
narrow spherical differentially heated shells (0:8 6 / � 0:9) and
yielded an improved Nusselt (Nu)-Ra correlation derived speci-
fically for that range of / values.

The current study is aimed at further developing high-fidelity
computational fluid dynamics (CFD) concepts for minimizing the
heat flux rate through an insulating gap of spherical shape. In
particular, the natural convection flow inside multi-layered
differentially heated spherical shells with internal baffles of zero
thickness is studied by DNS. The flow developing inside spherical
shells characterized by both equi-spaced/non-equi-spaced and
concentric/eccentric distributions of the internal baffles is simu-
lated. The immersed boundary method (IBM) is utilized for treating
the internal and external shell walls. Additionally, a novel modified
Nu� � Ra� correlation is derived for a spherical shell with up to
four internal equi-spaced concentric layers in the range of
103
6 Ra 6 107.

2. Physical model and governing equations

The natural convection flow inside single- or multi-layered
spherical shells formulated in Cartesian coordinates ðx; y; zÞ with
the origin located at the center of the shell and gravity acting oppo-
site to the positive direction of z axis (see Fig. 1) is governed by the
following non-dimensional Navier–Stokes (NS) and energy
equations:

r � u ¼ 0 ð1Þ

@u
@t
þ ðu � rÞu ¼ �rpþ
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Fig. 1. Physical model and system of coordinates for the spherical shell: (a) with no inte
@h
@t
þ ðu � rÞh ¼ 1ffiffiffiffiffiffiffiffiffiffi

PrRa
p r2h; ð3Þ

where u = (u,v,w), p, t, and h are the non-dimensional velocity,
pressure, time and temperature, respectively, and~ez is a unit vector
in the vertical (z) direction. The Boussinesq approximation
q ¼ q0ð1� bðT � TcÞÞ was applied to address the flow buoyancy
effects. As a result, an additional temperature term appears as a
source in the momentum equation in the z direction (see Eq. (2)),
thereby allowing for the temperature–velocity coupling. The prob-
lem is scaled by L, U =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbLDT

p
, t = L=U, and P = qU2 for length,

velocity, time, and pressure, respectively. Here, L ¼ Ro � Ri is the
total shell width, defined as a difference between the outer, Ro

and the inner Ri radius of the shell, q is the mass density, g is the
gravitational acceleration, b is the isobaric coefficient of thermal
expansion, and DT=Th � Tc is the temperature difference between
the hot and cold boundaries. The non-dimensional temperature h
is defined as h = ðT � TcÞ=DT . The Ra and Pr numbers are
Ra = gb

ma DTL3 and Pr = m/a, where m is the kinematic viscosity and a
is the thermal diffusivity. All the simulations were performed for
the value of Pr ¼ 0:71 corresponding to air.

The IBM [16] was implemented for imposing Dirichlet boundary
conditions for the temperature and velocity fields at the spherical
shell boundaries and the internal baffles. The IBM is not a stan-
dalone solver; rather, it requires a ‘‘driver’’ with which to be com-
bined and its implementation should be perceived as a philosophy
of enforcing boundary conditions. In principle, such a ‘‘driver’’ can
be any time-marching solver, whose efficiency is typically boosted
by choosing a computational domain of rectangular/prismatic
shape and by utilizing a structured grid for spatial discretization
of the NS and energy equations. In the present formulation the flow
within the differentially heated spherical shell is an integral part of
a more general natural convection flow within the whole cube,
including also the outer (R > Ro) and the inner (R < Ri) regions
(see Fig. 1). The flow was simulated by applying no-slip boundary
conditions at all the cube faces, which were held at a constant tem-
perature Tc (the same as the temperature of external boundary of
the spherical shell). In the following, only the results relevant to
the spherical shell region are discussed. Below, we detail the IBM
formulation implemented in the present study.

Fig. 2 shows the setup of a typical spatial discretization imple-
mented on a staggered grid. The grid is characterized by offset
velocity, temperature and pressure fields. An immersed object of
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rnal baffles; (b) with a single internal baffle and two concentric equi-spaced layers.



Fig. 2. A schematic of staggered grid discretization of a two-dimensional compu-
tational domain D with a segment of immersed boundary of a body B. A virtual
shell, whose thickness is equal to the grid cell width, is shaded. The horizontal and
vertical arrows (!; ") represent the discrete ui and v i velocity locations, respec-
tively. Pressure pj and temperature Tj are applied at the center of each cell ð�Þ.
Lagrangian points nk(nk;gk) along @B are shown as black circles � where volumetric
boundary forces Fk ¼ ðFx; FyÞ (!; ") and volumetric boundary heat fluxes Qk are
applied.

910 Y. Gulberg, Y. Feldman / International Journal of Heat and Mass Transfer 91 (2015) 908–921
arbitrary shape, B, within a computational domain, D (whose
geometry does not, in general, have to conform to the underlying
spatial grid), is represented by the surface, @B, determined by a
set of Lagrangian points, Xk. The same distance between neighbor-
ing points approximately equal to the grid size should be preserved
to provide high accuracy [17].

We next associate a discrete volume DVk with each Lagrangian
point Xk, such that an ensemble of these volumes forms a thin
shell. The thickness of this virtual shell is equal to the width of
the grid cell. At the Lagrangian points, appropriate volumetric
forces, Fk, and heat fluxes, Qk, are applied to enforce the non-slip
velocity and the Dirichlet temperature boundary conditions along
@B. Since the location of the Lagrangian boundary points does not
necessarily coincide with the underlying spatial discretization, reg-
ularization and interpolation operators must be defined to convey
information about the immersed body in both directions. The
regularization operator R smears volumetric forces, Fk, and heat
fluxes, Qk, on the nearby computational domain, while the interpo-
lation operator I acts in the opposite direction and imposes
non-slip/thermal boundary conditions on the points located on
the body surface:

RðFkðXkÞ;Q kðXkÞÞ ¼
Z

S
ðFkðXkÞ;QkðXkÞÞ � dðxi � XkÞdVSk ð4Þ
IðuðxiÞ; hðxiÞÞ ¼
Z

X
ðuðxiÞ; hðxiÞÞ � dðXk � xiÞdVXi; ð5Þ

where S corresponds to all cells belonging to the immersed body
surface, X corresponds to a group of the flow domain cells located
in the close vicinity to the immersed body surface, dVSk corresponds
to the infinitesimal volume surrounding each Lagrangian point k,
and dVXi is the volume of the corresponding cell of the flow domain,
whose velocity and temperature values are explicitly involved in
enforcing boundary conditions at point k of the immersed body.
Note that in the present formulation dVSk � dVXi. Convolutions with
the Dirac delta function d are used to facilitate the exchange of
information to and from @B. Among the variety of discrete delta
functions available, the function described by Roma et al. [18],
specifically designed for use on staggered grids, where even/odd
de-coupling does not occur, was chosen:

dðrÞ¼

1
6Dr 5�3 jrjDr�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 1� jrjDr
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3 jrj

Dr

� �2
þ1

r" #
for jrj60:5Dr;

0 otherwise:

8>>>>>>><
>>>>>>>:

ð6Þ

The discrete delta function, dðrÞ, is supported over only three
cells, which comprises an advantage for computational efficiency.
The discrete forms of the regularization (4) and interpolation (5)
operators for 3D geometry are governed by Eqs. (7) and (8)
respectively:

ðf i; qiÞ ¼ Dx3
X

k

ðFk;Q kÞdð�k � xiÞdðgk � yiÞdðfk � ziÞ ð7Þ

ðUk;HkÞ ¼ Dx3
X

i

ðuk; hkÞdðxi � �kÞdðyi � gkÞdðzi � fkÞ; ð8Þ

where f i; qi are the discrete volumetric force and heat source
defined on the staggered grid (xi; yi; zi) and Uk;Hk are the discrete
boundary velocity and temperature defined at k-th Lagrangian point
(�;g; f).

Among the vast variety of existing pressure–velocity segregated
solvers, the code recently developed and parallelized by Vitoshkin
and Gelfgat [19] was chosen. The solver implements an algorithm
based on the tensor product factorization (TPF) method combined
with the Thomas solver (TPT), comprising an essentially direct
method for the inversion of Helmholtz operators in discretized
NS and energy equations. It was shown by Vitoshkin and Gelfgat
[19] that the developed approach is about 10 times faster than
the commonly used BICG algorithm when tested for the simulation
of natural convection in cube on a 1003 grid and the range of
105
6 Ra 6 107. In an attempt to preserve the high efficiency of

the solver, the current study implemented a direct forcing
approach, which was introduced by Mohd-Yusof and coauthors
[20,21] with an explicit formulation of forces and heat fluxes
applied at Lagrangian points. In this way, the structure of discrete
operators formulated in [19] was not affected, thus preserving the
high efficiency of the original algorithm. The direct forcing method
approximates the boundary force for rigid bodies with an interme-
diate non-solenoidal velocity field u� initially calculated by
ignoring the presence of the immersed body. Next, the Lagrangian
force is implemented directly into the momentum equation by
substituting the regularized no-slip condition near the immersed
boundary:

F�ðXk; tnÞ ¼ UCðXk; tnÞ � U�ðXk; tnÞ
Dt

; ð9Þ

where U� represents the values of the boundary velocity obtained
by interpolation of the nearby non-solenoidal (predicted) velocity
field on the immersed body surface, and UC corresponds to the pre-
set boundary velocity (which is zero for the stationary boundary). In
the next step, the volumetric boundary forces, F�k, implemented at
Lagrangian points, are regularized (smeared) over the adjacent
volumes of the computational domain by Eq. 7 and contribute as
sources to the corresponding NS equations:

u� � un

Dt
þ ðun � rÞun � f � ¼ �rpnþ1 þ

ffiffiffiffiffiffi
Pr
Ra

r
r2u� þ hn ez

!
: ð10Þ

Finally, the algorithm completes the time step with the usual solu-
tion of the pressure Poisson equation and the consequent projection
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step [22]. Similar to the velocity correction procedure, the preset
immersed boundary temperatures HC are enforced by solving the
following heat transfer equation:

Q �ðXk; tnÞ ¼ HCðXk; tnÞ �H�ðXk; tnÞ
Dt

; ð11Þ

where the temperature of the Lagrangian points H� is an interpola-
tion of the intermediate temperature field h� initially computed by
ignoring the presence of the immersed body and Q � is a
non-dimensional volumetric heat source/sink, whose value, regu-
larized (smeared) by Eq. 7 enters as a source into the corresponding
energy equations:

h� � hn

Dt
þ ðun � rÞhn � q� ¼ 1ffiffiffiffiffiffiffiffiffiffi

PrRa
p r2hnþ1: ð12Þ

It should be emphasized that the source/sink q� value is relevant
only if the preset Dirichlet/Neumann boundary conditions have to
be enforced (i.e., in the presence of a thermally active immersed
surface). If the immersed body is exposed only to convective flow
and does not actively emit/absorb the heat by itself, then only
non-slip boundary conditions are enforced on the immersed sur-
face. In this case, a zero value is assigned to the q� term appearing
in Eq. (12). Formally, this imposes zero thermal resistance in the
direction normal to the body surface, in accordance with the
assumptions typically treating the internal baffle as an idealized
zero thickness surface. Note also that, due to the stationary
boundaries, the interpolation/regularization operators can be
pre-computed for each prescribed immersed surface: there is no
need to employ a delta function at each time step, since it will yield
the same result, thereby considerably decreasing the computational
effort.

The direct forcing approach has two major drawbacks. First, it
explicitly enforces the no-slip condition on u� but not on uðnþ1Þ. A
projection step is therefore later applied to project the intermedi-
ate velocity, u�, onto the solenoidal solution space. Second,
although the problem discussed is elliptic, the Lagrangian volumet-
ric forces F� and heat sources Q � are calculated locally at every k-th
point of the immersed body, without taking into account their
mutual interaction at a given time step. Over the recent years a
number of approaches have been developed to remedy the limita-
tions of the direct forcing approach. Taira and Colonius [17] pro-
posed an implicit treatment of both the pressure and boundary
force as a single set of Lagrange multipliers in the modified Poisson
equation. Ren et al. [23,24] implicitly evaluate all the boundary
forces and heat sources by treating them as unknowns of a single
system of equations. Another approach is to introduce an iterative
procedure for Euler–Lagrange coupling which yields a substantially
better imposition of boundary conditions at the interface [25,26].
Unfortunately, none of the above approaches can be efficiently uti-
lized in numerical simulations of the presently discussed flow. The
first approach requires a substantial modification of the existing
numerical time stepper, the second approach is prohibitively
expensive for the realistic 3D configurations and the third one
locally deteriorates the momentum and the thermal balances,
which in the case of large Re or Ra numbers can significantly affect
velocity and temperature fields close to the immersed boundaries.
For this reasons all the above modifications of the original direct
forcing approach [20,21] were not used in the present study and
correct imposition of boundary conditions was achieved by utiliz-
ing small time step, which was equal Dt ¼ 10�4 for all the simula-
tions performed. It was also verified that a further decrease of the
time step to Dt ¼ 10�5 does not result in any significant changes in
the obtained solutions. Eqs. (9) and (11) imply utilizing a first order
accuracy finite difference scheme for the time disretization. As a
result the original time stepper [19], in which the time derivative
in the unsteady momentum and energy equations are approxi-
mated by a second order backward differentiation, was modified.
At the same time we utilized the original discretization of all the
spatial terms in the NS Eqs. (1)–(3) implemented by the second
order finite volume method [27]. Next we define the Nusselt
number Nu as a ratio of convective to conductive fluxes. Utilizing
the same scaling as in Eqs. (1)–(3), the non-dimensional heat flux
from the infinitesimal immersed surface is defined as:

@H�

@n̂
¼ Dx

ffiffiffiffiffiffiffiffiffiffi
PrRa
p

Q � ð13Þ

where Q � is defined in Eq. (11). The heat flux values averaged over
the entire surface are then used for calculation of the Nu numbers at
the inner Nui and outer Nuo boundaries of the spherical shell:

Nui ¼
1

pDiDo

@H�

@n̂

 !
Ai;Nuo ¼

1
pDiDo

@H�

@n̂

 !
Ao ð14Þ
3. Verification study

3.1. Natural convection in a cubic enclosure with a sphere.

The developed solver was first verified by simulating the natu-
ral convection flow developing in the presence of isothermal hot
sphere placed within a cubic container with all isothermal cold
walls. The flow is governed by the same non-dimensional NS Eqs.
(1)–(3) as the original problem with the only difference that all
the length scales are normalized by the cube side length, d. The
inner hot sphere is located on the vertical centerline of the cube
and its distance to the cube center is determined by the
non-dimensional parameter �0:25 6 d � 0:25, defined as
d ¼ Zc � Zsph, where Zc and Zsph are the non-dimensional Z coordi-
nates corresponding to the centers of the cubic container and of
the sphere, respectively [28]. All the results were obtained on a
2003 uniform grid. Fig. 3 shows the flow characteristics in terms
of the temperature distribution and projection of the path lines
on a mid-plane cross section obtained for the Ra ¼ 104;105;106

and d ¼ �0:25;0;0:25 values. There is an excellent agreement
between the characteristics of the presently computed flow and
the previously published results [28] for the entire range of Ra
and d values. For all the Ra values the flow at d ¼ �0:25 is charac-
terized by a clearly distinguished thermal plume rising up from the
top of the sphere. The plume becomes less developed as d increases
and the restricting effect of the top boundary on the rising up con-
vective flow becomes more pronounced. All the configurations are
characterized by the strong temperature gradients just below the
sphere and close to the cube top boundary, indicting existence of
thin boundary layers in these regions. When d ¼ 0:25 the thermal
plume, localized at the top half of the cube, is radially squeezed for
all the Ra values, giving rise to development of thermally stratified
region with almost zero velocities below the sphere. Spiral form of
the flow path lines observed for all the configurations presented
in Fig. 3 clearly indicate the 3D character of the flow which is a
consequence of the end-wall effects.

Table 1 compares between the presently obtained an the previ-
ously published [28] values of average Nu numbers. An acceptable
agreement between the results is observed for the entire range of
Ra numbers. The differences between the results grow up with
increasing the Ra values which can apparently be a consequence
of different approaches utilized for calculation of the Nu numbers.

3.2. Natural convection in the spherical annuli – axi-symmetric flow

The results obtained for the flow inside spherical annuli
were also successfully verified by comparison with numerical data
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Fig. 3. Flow characteristics on a mid-plane cross section as a function of Ra number: temperature distribution and path lines projection obtained for the values of
d ¼ �0:25; 0; 0:25 on a 2003 grid.
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available in the literature. Fig. 4 presents a comparison between
the axi-symmetric temperature fields provided by [29] for three
different Ra numbers and the corresponding results obtained in
this study by fully three-dimensional simulations. There is a good
qualitative and quantitative agreement between the corresponding
temperature fields for the whole range of Ra numbers. Typical
of steady laminar flows in spherical shells, the results obtained
by the fully three-dimensional solver preserve the flow’s
axi-symmetry.
3.3. Grid independence study

To perform a grid independence study the natural convection
flow was simulated inside a double-walled spherical shell (without
internal baffles) on 2003 and 3003 uniform grids for
Ra ¼ 103;104;105. The results of all the velocity components and
temperature were collected from the control points located on
the spherical shell center-lines. For both grids the flow characteris-
tics were acquired at eight control points uniformly distributed
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Fig. 3 (continued)

Table 1
Comparison between the present and the scanned [28] average Nu values obtained for the flow developing in the presence of isothermal hot sphere placed within a cubic
container with all isothermal cold walls.

d Ra ¼ 104 Ra ¼ 105 Ra ¼ 106

Ref. [28] Present Ref. [28] Present Ref. [28] Present

�0:25 9.867 10.199 13.665 13.774 20.890 21.993
�0:2 8.843 9.117 12.931 13.058 20.631 21.862
�0:1 8.087 8.451 12.729 13.105 20.772 22.164
0 7.859 8.314 12.658 13.415 20.701 22.344
0.1 7.947 8.507 12.351 13.446 20.367 22.525
0.2 8.615 9.266 12.254 13.635 19.664 22.208
0.25 9.621 10.387 12.944 14.426 19.721 22.393

Fig. 4. Comparison between the axi-symmetric temperature field provided by Dehghan and Masih [29] and the present results obtained by fully three-dimensional
simulations for: (a) Ra ¼ 103; (b) Ra ¼ 104; (c) Ra ¼ 105. The contour colors correspond to 10 equi-spaced values of temperature in the range of 0 < h < 1.(For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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along each centerline (four from each side of the center of spherical
shell), as presented in Table 2. Most of the results obtained on the
two grids are in excellent agreement. A deviation between the
corresponding fields appears in the third decimal digit, as expected
for the second order accuracy method. For all the cases the
axi-symmetry of the steady flow is clearly recognized by verifying



Table 2
Flow characteristics along the spherical shell center-lines, all the velocity components (ux ;uy; uz) are multiplied by a factor of 103.

Ra ¼ 103;Y ¼ Z ¼ 0;uy ¼ 0 Ra ¼ 104;Y ¼ Z ¼ 0;uy ¼ 0 Ra ¼ 105;Y ¼ ¼ 0;uy ¼ 0

2003 grid 3003 grid 2003 grid 3003 grid 2003 grid 3003 grid

X ux uz h ux uz h ux uz h ux uz h ux u h ux uz h

�1.8 7.222 �187.2 0.1005 7.667 �187.6 0.1002 28.66 �244.3 0.1049 29.49 �241.3 0.1029 16.96 � 39.2 0.1740 17.90 �234.3 0.1729
�1.6 17.17 �119.7 0.2242 17.82 �119.4 0.2225 70.59 �161.7 0.1771 71.36 �160.7 0.1733 11.77 � .502 0.1922 11.73 �5.251 0.1873
�1.4 15.22 110.2 0.3833 15.75 110.5 0.3802 73.28 69.30 0.2065 74.19 65.90 0.2022 14.81 7 .80 0.1580 16.32 70.74 0.1513
�1.2 3.893 306.7 0.6272 4.087 309.5 0.6228 34.84 431.1 0.3731 35.74 426.2 0.3652 28.21 2 3.0 0.1892 29.39 211.1 0.1789
1.2 �3.895 306.7 0.6272 4.087 309.5 0.6228 �34.84 431.0 0.3730 �35.74 426.2 0.3652 �28.20 2 3.0 0.1891 �29.39 211.2 0.1789
1.4 �15.22 110.2 0.3832 �15.76 110.5 0.3802 �73.28 69.30 0.2065 �74.19 65.90 0.2022 �14.81 7 .73 0.1580 �16.32 70.72 0.1513
1.6 �17.17 �119.7 0.2242 �17.83 �119.4 0.2225 �70.59 �161.7 0.1771 �71.36 �160.7 0.1733 �11.78 � .552 0.1921 �11.73 �5.226 0.1873
1.8 �7.221 �187.2 0.1005 �7.667 �187.6 0.1002 �28.66 �244.3 0.1049 �29.49 �241.3 0.1029 �16.96 � 39.4 0.1740 �17.90 �234.3 0.1729

Ra ¼ 103;X ¼ Z ¼ 0;ux ¼ 0 Ra ¼ 104;X ¼ Z ¼ 0;ux ¼ 0 Ra ¼ 105;X ¼ ¼ 0;ux ¼ 0

2003 grid 3003 grid 2003 grid 3003 grid 2003 grid 3003 grid

Y uy uz h uy uz h uy uz h uy uz h uy u h uy uz h

�1.8 7.222 �187.2 0.1005 7.668 �187.6 0.1002 28.66 �244.3 0.1049 29.49 �241.3 0.1029 16.97 � 39.4 0.1740 17.90 �234.3 0.1729
�1.6 17.17 �119.7 0.2242 17.82 �119.4 0.2225 70.58 �161.7 0.1771 71.36 �160.7 0.1733 11.78 � .533 0.1922 11.73 �5.234 0.1873
�1.4 15.22 110.2 0.3833 15.75 110.5 0.3802 73.27 69.35 0.2065 74.18 65.90 0.2022 14.80 7 .80 0.1580 16.32 70.75 0.1513
�1.2 3.894 306.7 0.6272 4.088 309.5 0.6228 34.82 431.1 0.3731 35.74 426.2 0.3652 28.18 2 3.1 0.1892 29.39 211.2 0.1789
1.2 �3.894 306.7 0.6272 �4.088 309.5 0.6228 �34.82 431.0 0.3730 �35.74 426.2 0.3652 �28.21 2 3.0 0.1891 �29.40 211.1 0.1789
1.4 �15.22 110.2 0.3832 �15.76 110.4 0.3802 �73.28 69.33 0.2065 �74.19 65.86 0.2022 �14.81 7 .86 0.1580 �16.32 70.73 0.1513
1.6 �17.17 �119.7 0.2242 �17.83 �119.4 0.2225 �70.59 �161.7 0.1771 �71.36 �160.7 0.1733 �11.78 � .461 0.1922 �11.74 �5.238 0.1873
1.8 �7.221 �187.2 0.1005 �7.666 �187.6 0.1002 �28.66 �244.3 0.1049 �29.49 �241.3 0.1029 �16.96 � 39.4 0.1740 �17.90 �234.3 0.1729

Ra ¼ 103;X ¼ Y ¼ 0;ux;uy ¼ 0 Ra ¼ 104;X ¼ Y ¼ 0;ux;uy ¼ 0 Ra ¼ 10 X ¼ Y ¼ 0;ux ;uy ¼ 0

2003 grid 3003 grid 2003 grid 3003 grid 2003 g 3003 grid

Z uz h uz h uz h uz h uz h uz h

�1.8 16.86 0.0524 17.97 0.0516 9.253 0.0085 10.19 0.0079 �1.418 0.0019 0.151 0.0014
�1.6 55.71 0.1271 56.86 0.1248 39.06 0.0216 39.82 0.0205 7.026 0.0045 9.324 0.0035
�1.4 86.25 0.2564 87.36 0.2526 79.05 0.0554 79.30 0.0535 28.54 0.0100 30.59 0.0082
�1.2 63.46 0.5216 64.99 0.5154 87.50 0.2298 88.17 0.2237 59.96 0.0552 60.56 0.0506
1.2 69.87 0.8508 71.39 0.8527 94.46 0.9346 93.41 0.9334 173.8 0.9439 172.0 0.9444
1.4 133.8 0.7085 136.2 0.7134 195.1 0.8938 193.4 0.8921 363.1 0.9116 363.2 0.9125
1.6 120.3 0.5183 123.9 0.5256 217.7 0.8590 217.2 0.8570 402.9 0.8880 404.9 0.8891
1.8 47.62 0.2591 50.75 0.2659 129.2 0.6856 132.0 0.6904 264.8 0.8688 266.7 0.8699
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Table 4
Average (in time and in space) Nu numbers for unsteady 3D flow. Results reported for
axi-symmetric flow are given in parentheses.

/ Ra Present

(2003

grid)

Present

(3003

grid)

Ref. [15] Ref. [30] Ref. [29]

0.667 1.0 � 104 1.811 1.826 1.793 (1.073) (1.07138)

1.0 � 105 3.321 3.375 3.243 (1.917) (1.89756)

0.833 1.0 � 104 1.620 1.713 1.6523 (1.001) (1.0028)

1.0 � 105 3.274 3.276 3.0678 (1.008) (1.0100)

Y. Gulberg, Y. Feldman / International Journal of Heat and Mass Transfer 91 (2015) 908–921 915
the same values of the flow fields in the reflection symmetry points
on the X and Y centerlines. Note also that zero ðoð10�6ÞÞ values of
velocity components in transverse direction were obtained for all
the cases, additionally verifying an axi-symmetry of the obtained
steady flow. Basing on the performed grid independence analysis
all the results of the present study were further calculated on the
2003 uniform grid.

3.4. Verification of the average Nu values

Precise estimation of the average Nu number comprises an
essential criterion for verification of any numerical solver and is
particulary critical for the IBM. The IBM relies on a uniform Carte-
sian grid, which does not allow further local, stretching for a more
precise resolution of the thinnest boundary layers. In this case, a
more precise estimation of the Nu values is achieved by utilizing
the law of conservation of heat flux (see Eq. (13)) rather than sim-
ply calculating the near-surface temperature gradient. A compar-
ison between the available and our estimated Nu values for
various spherical shell configurations and different Ra numbers
corresponding to steady-state flow is summarized in Table 3. It is
remarkable that for steady state flow acceptable agreement in Nu
values is observed for the fully three-dimensional and
axi-symmetric simulations. The picture is, however, quite different
for unsteady non-axi-symmetric flows, which (for the same
operating conditions) are characterized by an enhanced heat flux
compared to the corresponding axi-symmetric idealizations (see
Table 4). At the same time, there is good agreement for all the
Nu when compared with the recent results of Feldman and
Colonius [15]– all obtained by a three-dimensional analysis. In all
cases, the same Nu values (up to the third decimal digit) were
obtained for the external and internal shell boundaries by their
time and space averaging, after an asymptotic quasi-state solution
was reached. This finding verifies the heat flux conservation over
the entire computational domain. Note also an excellent
agreement between the Nu values obtained on 2003 and on 3003

grids which can be seen as additional justification of the grid
independence of the obtained results.
4. Results and discussion

The IBM enables efficient manipulation of the orientation of the
internal layers of the spherical shell so as to achieve optimized ther-
mal insulation. Among the large number of possibilities, the present
study focusses on an investigation of equi-spaced/non-equi-spaced
concentric and horizontally/vertically eccentric orientations of the
internal layers. All the numerical simulations were performed for
a spherical shell characterized by / = Di=Do ¼ 0:5 on a 2003 uniform
grid.

4.1. Concentric equi-spaced internal layers

As the first step, the natural convection flow inside a spherical
shell with up to four concentric equi-spaced internal layers was
Table 3
Average (in space) Nu numbers for steady laminar axi-symmetric flow.

/ Ra Present (2003 grid) Present (3003 gri

0.5 1.0 � 103 1.126 1.120

1.0 � 104 1.993 1.987

1.0 � 105 3.461 3.452

0.667 1.0 � 103 1.069 1.081

0.833 1.0 � 103 1.061 1.053
investigated. Following the recent works of Samanta et al. [13],
Feldman et al. [14], and Feldman and Colonius [15], zero wall
thickness was assumed for all the internal baffles, providing zero
thermal resistance in the radial direction. In addition, non-slip
boundary conditions for all the velocity components were imposed
on all internal baffles and external boundaries of the shell. Typical
steady state temperature distributions along with the flow path
lines obtained in a mid cross-section of the spherical shells with
up to four equi-spaced internal layers for moderate, Ra ¼ 104,
and high, Ra ¼ 5� 105 , Rayleigh numbers are shown in Figs. 5
and 6, respectively.

As expected, the steady flow obtained for all the configurations
is axi-symmetric as can be verified by a concentric shape of the flow
path lines characterizing toroidal convection cells occupying each
layer. It was also found that the internal baffles embedded in the
spherical shell have a pronounced effect on the redistribution of
convective flow inside the shell as follows. First, the internal baffles
stabilize the convective flow, thereby preserving steady-state
regimes at much higher Ra values than those determining an insta-
bility onset in single-layered spherical shells. In fact, modified kid-
ney shaped eddy pattern typical of high Ra values and wide shells
and observed in Fig. 6a transforms into a crescent eddy pattern
for the configurations containing internal baffles (see Figs. 14b–d).
Second, the internal baffles suppress the convective component of
the heat flux. As a result, a hot thermal plume rising up from the
top of internal sphere either disappears at Ra ¼ 104 or significantly
weakens at Ra ¼ 5� 105. The more internal baffles embedded the
weaker the convective heat transfer and the closer the temperature
distribution to that typical of a pure conduction regime. This obser-
vation is not surprising, since actual heat flux depends on the effec-
tive length scale which is a function of a number of internal baffles.
We can then define an effective (modified) Ra� number based on the
distance between two adjacent baffles, which for the equi-spaced
multi-layered spherical shell can be expressed as:

Ra� ¼ Ra=ðN � 1Þ3; ð15Þ

where N is the total number of the shell boundaries (internal and
external). The quantitative differences in the observed flow regimes
can be quantified by examining both the Nu� Ra and the Nu� Ra�

functionalities of each configuration. The same temperature differ-
ence between the hot and cold boundaries, Dh was chosen to pro-
vide a common basis for comparison. Fig. 7-a presents the
Nu� Ra functionality for spherical shells with two to five walls,
d) Ref. [15] Ref. [30] Ref. [29] Ref. [8]

1.104 1.0990 1.1310 1.1021

1.9665 1.9730 1.9495 1.9110

3.4012 3.4890 3.4648 3.3555

1.04825 1.001 1.00115

1.011 1.0 1.0018
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Fig. 5. Steady-state temperature distribution, h, and projection of the flow path lines for Ra ¼ 104 in the mid cross section of a spherical shell with: (a) one internal layer; (b)
two equi-spaced internal layers; (c) three equi-spaced internal layers; (d) four equi-spaced internal layers.
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when the Ra number is based on the total width L. In this case, the
spherical shell is treated as a ‘black box’ whose insulation efficiency
is only estimated as a function of the number of equi-spaced
concentric internal baffles. Four separate curves were obtained for
the Nu� Ra power law functionality, each corresponding to a differ-
ent number of walls.
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Note the good agreement between the current and the previ-
ously published results [4] obtained for a spherical shell without
internal baffles for the entire range of Ra numbers. As expected,
the insulation property of the spherical shell improves with
the number of embedded baffles, leading to a considerable
decrease in Nu for the same values of the Ra numbers. The maximal
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difference (up to four times) was observed at Ra ¼ 5� 105 between
the N ¼ 2 and N ¼ 5 configurations. To account for the effective
length scale inherent to the multi-layered spherical shell the
Nu� Ra� functionality, where Ra� is the modified Rayleigh number
defined in Eq. (15) is shown in Fig. 7-b. It can be seen that the
curves corresponding to the different spherical shell configurations
are now much closer clearly indicating that the effective length
scale plays an important role in determining the overall heat flux
through the shell boundaries. At the same time introducing the
modified Ra� number is not enough to obtain the Nu� Ra� func-
tionality in a form of the single curve universally fitting all the con-
figurations discussed. This is apparently due to the fact that the
actual temperature difference between the adjacent baffles is
much smaller then it was assumed. Looking for the ways to further
generalize our analysis we examined the Nu� Ra� functionality for
all the configurations discussed and recognized both a monotonic
increase of the power law exponent and a monotonic decrease of
the power law constant with an increasing number of layers. For-
mally denoting the power exponent by a and the power law con-
stant by b, a functional relation of both quantities to the total
number of shell boundaries, N was approximated by the least
squares method:

a ¼ 0:443N�1:064;2 6 N 6 5: ð16Þ

b ¼ 0:202N0:270;2 6 N 6 5 ð17Þ

Next it would be a matter of straight algebra to derive a unified
correlation based on the power law for the Nu� � Ra� functionality
for up to five walls (see Fig. 8):

Nu� ¼ Ra�0:32; ð18Þ

where Nu� is the modified Nu number defined as:

Nu� ¼ Nu

0:51N�1:21

� �1:65N�0:32

;2 6 N � 5: ð19Þ

The equi-spaced concentric orientation of the internal layers is
not the ultimate configuration to be considered for further
improvement of the insulation efficiency of the spherical shell. In
the following, three other configurations are discussed and their
insulation properties are compared with the corresponding
equi-spaced concentric.
4.2. Horizontally/vertically eccentric layers

A number of double-layered spherical shells with varying verti-
cal and horizontal eccentricity values were investigated. The
eccentricity, �, is defined as:

� ¼ jXeccentric � Xconcentricj=L; ð20Þ

where Xeccentric and Xconcentric are the center coordinates of the
eccentric internal baffle and concentric internal and external
boundaries of the spherical shell, respectively. Fig. 9 presents the
steady-state distribution of the temperature field, h, and the projec-
tion of the flow path lines on the mid-plane cross section of a
double-layered spherical shell for two different eccentricity values
� ¼ 0:167;0:335, and Ra ¼ 5� 105. The impact of the horizonal off-
set of the internal baffle is clearly reflected in the character of the
thermal plume, which is biased to the side in the direction of the
offset. Note that the eccentricity has a pronounced effect on the dis-
tribution of both the h an the flow patterns in both layers. It is clear
that the axial symmetry of the flow was broken and the flow is fully
3D. Non-negligible azimuthal velocities can be recognized by the
presence of the flow path lines of a converging spiral shape in the
center of some convection cells (see Fig. 9). Due to the lower tem-
perature difference between the internal baffle and the external
wall the thermal redistribution inside the second layer is affected
to a lesser extent by the eccentricity of the internal wall – a trend
that is apparently preserved with a further increase in the number
of internal layers.

The influence of the offset of the internal wall along the vertical
axis on the steady flow fields is demonstrated in Fig. 10. The flow
obtained was simulated for the same parameters (Ra ¼ 5� 105

and / ¼ 0:5) and eccentricity values as in the previous case. It is
remarkable that the high temperature region inherent in the con-
figuration with the downward biased internal sphere is much nar-
rower than that observed for spherical shell with the upward
biased internal sphere. Thus, the distance between the top of the
hot boundary and the internal baffle has a critical effect on the
development of the thermal plume inside the layer adjacent to
the hot boundary. The closer the internal wall to the top of the
hot boundary, the less is the local effective length scale of the flow
resulting in the lower velocity values of the thermal plume
developed in that region. Similarly to the previously performed
axi-symmetric simulations [8], a local increase of the distance
between the internal baffle and the external boundary in the
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Table 5
Nu number values for a double-layered horizontally eccentric internal sphere.

Horizontal Nu number Comparison with equi-spaced
eccentricity � 3w configuration (Nu = 2.87)
0.167 2.92 +2%
0.335 2.89 +1%

Vertical Nu number Comparison with equi-spaced
eccentricity � 3w configuration (Nu = 2.87)
�0.335 3.16 +9%
0.335 3.15 +9%

Db=Di Nu number Comparison with equi-spaced
3w configuration (Nu = 2.87)

1.17 2.43 �15%
1.83 2.45 +16%
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bottom region gives rise to the multi-cell convection flow (see
Fig. 10), not observed in either concentric configuration.

4.3. Non-equi-spaced concentric layers

We next focused on the investigation of the effect of a
non-uniform width of the internal layers on the characteristics of
the steady state flow developing inside the double-layered
spherical shell. The non-uniform non-dimensional distance was
defined in terms of the diameter ratio 1 6 Db=Di � 2, where, Db

corresponds to the diameter of internal baffle and Di is the dia-
meter of the hot boundary sphere. Note that the value
Db=Di ¼ 1:5 corresponds to the double-layered equi-spaced
configuration. The numerical simulations were performed for
two configurations corresponding to Db=Di ¼ 1:17;1:83 and
Ra ¼ 5� 105. The steady state distribution of the temperature field
h and the azimuthal velocity field / in the mid cross section of the
spherical shell obtained for both cases are shown in Fig. 11.

Clearly, the proximity of the internal baffle to any of the spher-
ical shell boundaries suppresses the convective flow motion in the
corresponding internal layer. In contrast, convective heat transfer
with a fully developed thermal plume dominates in both cases in
the wide internal layer. Also remarkable is an existence of the dif-
ferent shape patterns in the sub-layers of different widths for both
cases: a crescent eddy in the narrow sub-layer and a modified kid-
ney shape eddy in the wide sub-layer. The differences between all
the configurations discussed were quantified in terms of Nu
numbers, as summarized in Table 5. It is noteworthy that the most
significant variation (�15% to +16%) of the Nu value was observed
inside the non-equi-spaced spherical shell configuration. In this
case, the minimal Nu value was provided by the smallest distance
between the hot wall and the internal baffle, clearly indicating a
route for further improvement of the spherical shell insulation
efficiency. In contrast, the eccentricity of the internal baffle (both
horizontal and vertical) has a much less pronounced effect on the
heat flux rate through the boundaries of the spherical shell.

5. Conclusions

Laminar natural convection flow inside spherical shells with
concentric, eccentric, equi-spaced and non-equi-spaced zero
thickness internal baffles was investigated by the IBM. Numerical
simulations were performed by extending the general pressure–
velocity segregated solver [19] (based on the tensor product factor-
ization (TPF) method combined with the Thomas solver (TPT)) with
the immersed boundary functionality. The results obtained were
extensively verified by performing detailed grid independence
study and comparison with previously published data.
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The insulation efficiency of the spherical shell was studied for
up to five walls, corresponding to four equi-spaced concentric
internal layers. It was found that the number of internal baffles
has a considerable effect on the average Nu number, whose value
computed for a shell with four equi-spaced concentric internal
layers decreased by up to fourfold compared to that obtained for
a single-layer spherical shell. It was shown that the length scale
of the flow is determined by the difference between two adjacent
walls. This observation allowed to derive a unified functional
dependency correlating the modified Nu� and Ra� numbers for a
spherical shell with up to four equi-spaced concentric internal
layers. The effect of the eccentricity of the internal baffle (both
horizontal and vertical) on the developing various flow patterns
and on the insulating efficiency of a spherical shell was also inves-
tigated. The results – both qualitative and quantitative – showed
that, for a particular Ra, both vertical and horizontal eccentricities
have a quite limited impact on the total heat flux rate through the
shell boundaries. In addition, the effect of the width of the internal
layer and its proximity to the hot and cold boundaries on the total
heat flux rate was studied. It was found that the configuration with
the narrowest concentric layer close to the hot boundary provided
the best insulating efficiency, characterized by a Nu value, that was
about 15% lower than that obtained for the same operating condi-
tions for the equi-spaced spherical shell. In contrast, the Nu for the
spherical shell with the narrowest layer close to the cold boundary
was about 16% higher than that of the equi-spaced spherical shell.
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