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Abstract

The emphasis of this study is focused on passive control of natural convection flow in
confined enclosures. In the first part of the study, the impact of the effective size of convection
cells in spherical geometry is investigated. Laminar natural convection flow inside multi-layered
spherical shells with internal hot and external cold boundaries was investigated. Direct numerical
simulations (DNS), which were performed by utilizing the immersed boundary method, addressed
the fully 3D natural convection flow inside spherical shells with concentric, eccentric, equi-spaced
and non-equi-spaced, zero-thickness internal baffles. The insulation efficiency of the spherical
shell was studied for up to four equi-spaced concentric internal layers. A unified functional
dependency, correlating modified Nu* and Ra* numbers, was derived for spherical shells with up
to four equi-spaced concentric internal layers. The effects of both vertical and horizontal
eccentricities of the internal layers and of the width variation of concentric layers on the overall
insulating performance of the spherical shell were investigated and quantified in terms of the Nu—

Ra functionality.

In the second part of the study, the concept of “smart” thermo-insulation is established. A
concept of "smart" thermally insulating materials, intelligently adapted for the specified
engineering configuration, is established and extensively validated. The thermal insulation is
achieved by local suppression of the momentum of the confined natural convection flow in the
most critical regions, as determined by the linear stability analysis of the flow in the presence of
implants of heterogeneous porous media. The implants are modelled by unconnected packed beds
of equi-sized cylinders. The concept is based on the mesoscale approach, for which the non-slip
boundary conditions in the vicinity of the packed beds are explicitly imposed by utilizing the
immersed boundary (IB) method. Two different patterns of the "smart" porous media materials are
established and their thermal insulation properties are quantified. It is shown that the optimized
implants of heterogeneous porous media, occupying approximately only 5% of the overall volume,
can drastically delay the steady-unsteady transition of the 2D natural convection flow in a square
differentially heated cavity with thermally perfectly conducting horizontal walls. In addition, it is
demonstrated that the implants allow to achieve a more than twofold decrease of heat flux rate

through the cubic differentially heated cavity with all thermally perfectly conducting lateral walls.
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diameter of all the obstacle
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Index of computational domain points
Index of Lagrangian points
pressure component
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temperature hot
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Greek symbols

thermal diffusivity [m?/sec]
adiabatic coefficient of thermal expansion [1/°K]
distance to the cube center

eccentricity

X coordinate of the Lagrangian point

Y coordinate of the Lagrangian point

Z coordinate of the Lagrangian point

non-dimensional temperature

temperature at the Lagrangian points

leading eigenvalue

dominant eigenvalue, can be related to the leading eigenvalue 1

kinematic viscosity [m?/sec]
mass density [kg/m3]
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Chapter 1
Introduction and literature survey

1.1. Motivation of the study

Passive control of natural convection flow in confined enclosures has gained significant
attention in past decades due to its importance for many engineering designs. The phenomenon
present in thermal energy storage (TES) systems, nuclear reactor and heat exchangers, climate
control of buildings, just to name a few. A vast majority of studies reported in the literature have
employed a heuristic approach, investigating the effect of obstacles embedded into the enclosure
on the momentum and the thermal properties of the confined flow. The present work aims at
developing a novel methodology to further enhance and systemize the passive control of confined
natural convection flows.

In the first part of the study, the impact of the effective size of convection cells in spherical
geometry controlled by embedding internal thin baffles between hot and cold boundaries of a
differentially heated spherical shell is investigated. The fully 3D natural convection flow is
investigated by the series of numerical simulations . The numerical simulations are enhanced by
the immersed boundary functionality to impose no-slip constraints on all the solid boundaries. An
extensive parametric study including concentric, eccentric, equi-spaced and non-equi-spaced
internal baffles is performed to improve thermal insulation efficiency of the spherical annuli.

In the second part of the study, the concept of “smart” thermo-insulation is established. The
key idea is to control the confined natural convection flow by locally suppressing its momentum
in the most critical regions of the convective flow. Those regions are revealed by the formal linear
stability analysis. Efficiency of the proposed concept of smart thermo-insulation is demonstrated
by applying it to the natural convection flow in square (for 2D) and cubic (for 3D) differentially
heated cavities. It is demonstrated that the proposed approach can drastically delay the steady-
unsteady transition of the 2D natural convection flow and achieve a more than twofold decrease of

heat flux through the 3D differentially heated cavity.

1.1.1. Natural convection inside spherical shells

Buoyancy-driven flow developing inside spherical annuli has been the subject of considerable

research, both theoretical and experimental for the past fifty years. Typically, the buoyancy-driven



flow between two isothermal concentric spheres (where the inner sphere is held at a high
temperature and the outer sphere at a low temperature) has been investigated as a function of the
diameter ratio, ¢ = D;/D, and the Rayleigh Ra and Prandtl Pr, numbers. The interest of the
scientific and engineering community to spherical annuli configuration is due to the fact that the
flow comprises an essential heat transfer mechanism in various engineering design problems, such
as in solar energy collectors, storage tanks, thermal energy storage (TES) systems and nuclear
reactors. Another potential application of spherical annuli is related to the design of the Titan
Montgolfiere hot air balloon, which was recently chosen by NASA as the air-robot vehicle of choice
for the exploration of Titan’s atmosphere. Given Titan’s low gravity (one-seventh that of Earth)
and its cryogenic atmospheric temperatures (72-94 K), heat transfer by radiation can safely be
neglected, and natural convection can be regarded as the only heat transfer mechanism for the
stationary suspended balloon. Such a balloon, designed to provide a minimized heat flux rate
through its walls, could serve as a sustainable air-robot platform for carrying a payload sufficient
for a long-term space mission. The concept of the double-walled Titan Montgolfiere, for which the
spherical shell plays the role of a thermal insulator separating the hot interior of the balloon from
the cold surroundings, has recently been established and investigated by Samanta et al. [1] and
Feldman et al. [2]. One of the main findings of both studies was that theoretical estimation of the
heat flux rate through the boundaries of the insulating gap of both scaled and full-scale balloons has
the greatest uncertainties. This finding motivated further research [3], which focused on a more
detailed analysis of transitional and fully turbulent, natural convection flows inside narrow spherical
differentially heated shells (0.8 < ¢ < 0.9), and yielded an improved Nu-Ra correlation derived
specifically for that range of ¢ values.

Pioneering experimental studies considering natural convection in the spherical annuli are due
to the works of Bishop et al. [4] and [5], who focused on visualization of the flow and classified
three distinct types of flow pattern — “crescent eddy”, “‘kidney-shaped” and “falling vortices” (see

Fig.1.1 ) that depend on the diameter ratio ¢ of the shells.



(@) (b)
Figure 1.1. Three types of flow pattern as classified by Bishop et al. [4, 5] : (a) crescent eddy; (b)

kidney-shaped eddy; (c) falling vortices.

The experimental results of Bishop et al. [4, 5] were confirmed by the study of Mack and Hardee
[6], who derived a low-Rayleigh-numbers analytical solution for the natural convection of air
between two concentric spheres. More recently, the natural convection flow of working fluids other
than air (namely, water and silicone oils) was experimentally addressed by Scanlan et al. [7] and
visualized by Yin et al. [8]. The latter group described naturally induced flow patterns and
categorized the type of the flow for each fluid in terms of the inverse of the relative gap width and
the Rayleigh number. Subsequent numerical studies on steady and transient, natural convection
flow inside spherical shells extended the state of the art to an even wider range of Pr (0.71 < Pr <
100) [9, 10] and Ra (10% < Ra < 5 X 10°) [10] numbers, and to the analysis of vertically eccentric
configurations [11].

The theoretical analysis of unsteady natural convection inside a differentially heated spherical
annulus is a challenging problem, since different flow regimes can dominate locally in its different
regions, taking the form of the Rayleigh-Beénard convection at the top of the shell, of a differentially
heated cavity at the near-equatorial region, and of a thermally stable flow regime, at the bottom of
the shell. Moreover, instabilities and transition scenarios are sensitive to the value of the Pr number

and to the ratio of the internal to external diameter, ¢ [12, 13] . For shells with an internal hot

3



boundary and an external cold boundary, the flow patterns vary with the ratio ¢: Powe et al. [14]
described a “modified kidney shaped eddy” for wide shells (¢ < 0.5), an “interior expansion—
contraction” for 0.5 < ¢ < 0.65, a “three dimensional spiral” flow for 0.65 < ¢ < 0.85 (shown
in Fig. 1.2), and a “falling vortices” pattern for narrow shells (0.85 < ¢). Futterer et al. [15]
reported that the flow inside shells of large and moderate widths (0.41 < ¢ < 0.71), with a cold
internal boundary and a hot external boundary, exhibited an unsteady “dripping blob”” phenomenon

for Pr = oo.

(b) (©)

Figure 1.2. Three dimensional spiral flow pattern time sequence with air. Following disruption

of the rolling vortices (a), (b), (c), consecutively [14].

The first part of the present study focuses on investigation of the impact of the effective size of
convection cells on the heat flux in spherical geometry. The size of convection cells is controlled
by embedding internal thin baffles between hot and cold boundaries of differentially heated
spherical shells. The effectiveness of equi-spaced/non-equi-spaced and concentric/eccentric
configurations of the internal baffles is studied. Different configurations of the internal baffles are
simulated by numerical simulations and enhanced by the immersed boundary functionality to
impose no-slip constraints on all the solid boundaries. Additionally, we propose a novel modified
Nu* — Ra” correlation for a spherical shell with up to four internal equi-spaced concentric layers

in the range of 102 < Ra < 107.



1.1.2. Smart passive thermo-insulating materials

Enhancement of passive control of confined natural convection flows has attracted
considerable attention over the past decades. Passive flow control does not involve additional
energy consumption and does not require design of auxiliary systems, which explains its high
attractiveness for many engineering applications. In practice, passive flow control is typically
implemented by either exploiting the flow blockage effects of solid internal discrete obstructions,
or by partition of the interior of confinement (see Fig. 1.3), thereby decreasing the effective length
scale of the natural convection flow [16-20]. Recently, a number of studies investigating the effect
of an array of adiabatic bodies immersed into the bulk of convective flow on its thermal properties

have been published [7, 8, 21- 27] (see e.g. Fig. 1.4).
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Figure 1.3. (a) scheme of 2D cavity with horizontal partition; (b) streamlines plot for I=L [16].
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Motivated by the aforementioned, the present study focuses on investigation of the potential
of applying heterogeneous porous media for enhancement of flow control in terms of the thermal
insulating efficiency. Analysis of flow and heat transfer in porous media has traditionally been
based on applying volume-averaging techniques to fluid flow equations. In such cases, the
complex geometry of solid boundaries is modelled by assuming a continuous phase that overlaps
solid and fluid regions and is treated by macroscopic averaged equations (see e.g [28-33]). Flow
fields near the solid boundaries are not resolved explicitly, and interface effects are modelled by a
priori provided correlations. The drawback of volume-averaging techniques is their lack of
generality, resulting from the considerable morphological variations of porous materials.
Therefore, an accurate prediction of important flow characteristics of a particular porous material
can be performed only if the corresponding experimental data is available. However, experimental
data is typically acquired for specific porous materials and flow conditions, thus severely
restricting the application of volume-averaging techniques.

The mesoscale approach, explicitly resolving flow near solid surfaces, offers an alternative to
the volume-averaging technique. The approach has gained popularity in the last decade with a
rapid development of computational power. The studies performed to date typically treat the
porous materials as composite voids and beds of solid particles, and address flow through ordered,
staggered or randomly packed beds of different particle shapes that correspond to various porous
media configurations. Although the mesoscale modeling of porous media is typically restricted to
non-contacting packed beds of solid particles, the characteristic distance between them is close
enough to significantly affect the heat and mass transfer processes. This allows for the further
generalization of the obtained results to elucidate the fundamental macroscale mechanisms and
geometrical characteristics of the corresponding heterogeneous porous media. Widely used
application of the mesoscale approach is related to the passive control of confined natural
convection flows in terms enhancement of their thermo-insulating efficiency. The research in this
area is mainly motivated by the need to control heat flux rate through the confined enclosures
partially filled with solid products of various forms, orientations and distributions, and is relevant
to indoor environmental control [34, 35], refrigeration equipment and thermal management of
greenhouses [22], and cooling of electronic devices [36, 37] etc.

The second part of the present work is aimed to develop a systematic mesoscale approach based

the methodology for control of incompressible natural convection flows in confined enclosures



utilizing heterogeneous porous media. This task has so far been performed only heuristically,
attributing the reduced heat flux rate to the blockage effects of solid non-connected obstacles and
to redirection of the flow away from the vertical cold and hot walls toward the cavity center.

The principal novelty of the present work is to control the flow by intelligent suppression of
the fluctuations of the major flow characteristics (for example, perturbations, velocity components,
temperature, pressure, or their combinations) in the most critical regions, as determined by linear
stability analysis of the slightly supercritical flow. The control is achieved by explicit placing of
heterogeneous porous media, whose spatial location, homogeneity and porosity have been
optimized for the specific flow configuration. Porous media implants, created by this methodology,
establish the concept of smart thermo-insulating materials, intelligently suppressing the
oscillations of the thermal flow in accordance with the given optimization criteria. Efficiency of
the proposed concept of smart thermo-insulation is demonstrated by applying it to the natural
convection flow in square (for 2D) and cubic (for 3D) differentially heated cavities. It is shown
that optimized, non-homogenous, porous media implants, occupying approximately only 5 percent
of the overall volume, can drastically delay the steady-unsteady transition of the 2D natural
convection flow, and achieve a more than twofold decrease of heat flux rate through the cubic

differentially heated cavity.
1.2. Objectives of the study

The present work has two primary objectives. Each primary objective is preceded by the
corresponding secondary objective. The first primary objective is to investigate the potential of
enhancement of insulating properties of spherical annuli by inserting internal, thermally passive,
idealized baffles of zero thickness. All the baffles considered in the present study are of a spherical
geometry. The influence of various configurations of the baffles (equi-spaced/non-equi-spaced and
concentric/eccentric) on the natural convection flow inside the differentially heated spherical
annuli and on the thermal insulating properties of the annuli are parametrically investigated. The
aim is to derive a novel Nu — Ra correlation, which will allow fast and reliable estimation of
insulating efficiency of multilayered spherical shells. The study is also aimed at investigating the
effect of the eccentricity of the internal baffles (both horizontal and vertical) on the developing
various flow patterns. The fundamental questions regarding the impact of both vertical and

horizontal eccentricities on the total heat flux rate through the shell boundaries, and the effect of



the width of the internal layer and its proximity to the hot and cold boundaries on the total heat
flux, are also addressed.

The above primary objective is preceded by adapting and customization of an in-house
developed code, allowing for the time integration of the Navier Stokes and the energy equations
with embedded IB functionality to impose no-slip boundary conditions on all solid boundaries.
The solver extends the general pressure—velocity segregated solver [38] (based on the tensor
product factorization (TPF) method combined with the Thomas solver (TPT)) with the immersed
boundary functionality. Prior to applying the developed solver, we perform its extensive
verification by means of detailed grid independence study and comparison with previously
published data, relevant to the primary objective of the research.

The second primary objective of the present study is to develop a formal methodology for
establishing a concept for design of "smart" thermally insulating materials. In practice, such
materials can be built of implants of heterogeneous porous media whose geometry and spatial
orientation is intelligently adapted to any specific engineering configuration. The implants of
porous media are modelled as packed beds consisting of unconnected equi-sized cylinders. At the
first stage, the aim is to determine the location of each cylinder by an iterative procedure based on
the linear stability analysis of the 2D flow fields. The objective then is to perform an extensive
study to validate an adaptation of the obtained 2D patterns of the porous media to their 3D analogs
embedded into the bulk of realistic 3D confined natural convection flow.

The above primary objective is again preceded by adapting and customization of an in-house
developed linear stability solver, capable of analyzing 2D domain flow in the presence of a large
number of immersed bodies of arbitrary shapes. An extensive verification study of the solver is
performed for the flow configurations relevant to the present research, including grid independence
analysis of the steady state and linear stability results in terms of average, Nu values and critical

values of Rayleigh, Ra., and oscillating frequency, w,,.



Chapter 2
Theoretical background?

2.1. Chapter overview

In this chapter, the physical model and numerical methodology utilized in the present study
are presented. The first part of the study focuses on the natural convection flow between hot and
cold boundaries of a differentially heated spherical shell in the presence of single or multiple
spherical baffles of various orientations. In Section 2.2, the theoretical background regarding
simulation of the 3D incompressible natural convection flow in single- and multi-layered spherical
shells is given. The emphasis is on the presentation of the physical model, and on a detailed
explanation of the immersed boundary method utilized in the present study to resolve the natural
convection flow near the solid boundaries. In the second part of the study, the concept of “smart”
thermo-insulating materials is established. In Section 2.3, the numerical methodology used for
establishing and verification of the concept is detailed. The idea underlying the “smart” thermal
insulation is based on the local suppression of the momentum of the natural convection flow. In
practice, the implementation of the local suppression is based on well-defined criteria. The criteria
are formally provided by the 2D linear stability analysis, enhanced by the embedded IB
functionality. The milestones of the utilized linear stability analysis are given in Sections 2.3.4 and

2.3.5.
2.2. 3D incompressible natural convection flow

2.2.1. Physical model

The natural convection flow inside single or multi-layered spherical shells is described by
the momentum, energy and continuity equations. The Boussinesq approximation is utilized to
model the buoyancy effect. The governing equations are formulated in Cartesian coordinates
(x,y,2), with the origin located at the center of the shell and the gravity acting opposite to the
positive direction of z axis (see Fig. 2.1). The continuity equation Eq. (2.1), Navier—Stokes Eq.
(2.2), and energy equation Eq. (2.3), written in dimensionless form are:

V-u=0, 2.1)

! This chapter is based on Y. Gulberg, Y. Feldman [39], Y. Feldman, Y. Gulberg [54]
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du . _ P_T 2 —
E+(u Vu = Vp+\/;V u + ey, (2.2)

1
VPrRa

Dt @V = V26, 2.3)

where u(u, v,w), p, t, and 8 are non-dimensional velocity, pressure, time and temperature,

respectively, and e, is a unit vector in the z direction.

(a) (b)
Figure 2.1. Physical model and system of coordinates for the spherical shell: (a) with no internal

baffles; (b) with a single internal baffle and two concentric equi-spaced layers.

These non-dimensionless equations were obtained using the characteristic length L, U =
\W , t =L/U and P = pU? for length, velocity, time and pressure, respectively. Here L =
R, — R; is the total shell width, R, is the radius of the outer sphere, and R; is the radius of the inner
sphere, p is the mass density, [ is the adiabatic coefficient of thermal expansion, g is the
gravitational acceleration, and AT = Ty — T is a temperature difference between the cold and hot

boundaries. The non-dimensional temperature 6 is defined as 8 = (T — T;)/AT. The Ra and Pr
numbers are Ra = %ATL3 and Pr = v/a, where « is the thermal diffusivity and v is a kinematic

viscosity. The Boussinesq approximation p = po(1 — (T —T¢)) is utilized to model the
buoyancy effect. Consequently, an additional term appears as a source in the z-direction Navier-

Stokes Eq.2.2, thereby allowing for the temperature—velocity coupling.

10



2.2.2. Discretization in time

The time derivative in the unsteady momentum and the energy equation in approximated

by the first order forward Euler’s scheme:

afn+1 fn+1_fn
ot At

(2.4)

Utilizing the Euler’s scheme, the momentum Eq. (2.2) and the energy (Eq. (2.3)) equations can

be rewritten as follows:.

n+i_.,n
= M“ + @"-V)u = —Vp + \/gvzun“ + 6" 1e, (2.5)
00" 4 (un VYO = ——y2gntt 2.6)
At VPrRa )

After carrying out space and time discretizations, Egs. (2.1), (2.5) and (2.6) are presented in a

block matrix form:

Hy 00 0 =V51 .o [RHSIT™

0 H, 0 0 =V)|]|,n+ RHSIL™

0o 0 H, & —Vi|l|lw"}= |RHSI |, (2.7)
lvi v vz o ol" 7P 0

where H, = H, = H,, = Gr °>A —I/At and Hy = Pr=1Gr=%°A — /At are the Helmholtz
operators for the scalar momentum and the energy equations, respectively, [ is the identity
operator, A is the Laplacian operator, and V¥, V¥ | VZ are the first derivatives with respect to the
x, y and z coordinates, respectively. The discrete differential operators in the LHS of Eq. (2.7) can
contain different boundary conditions, and therefore for the general case, H,, # H, # H,, and V3 #

y y
VE VY% VY, VE# V5,

2.2.3. Immersed boundary method (IBM): direct forcing approach

The IBM [40] was implemented for imposing the Dirichlet boundary conditions for the
temperature and velocity fields at the spherical shell boundaries and the internal baffles. The IBM

is not a standalone solver, rather, it requires a ‘‘driver’” with which to be combined and its

11



implementation should be perceived as a philosophy of enforcing boundary conditions. In
principle, such a ‘“driver’’ can be any time-marching solver, whose efficiency is typically boosted
by choosing a computational domain of rectangular/prismatic shape, and by utilizing a structured
grid for spatial discretization of the NS and energy equations. It should be noted that in the present
implementation, the immersed bodies must neither intersect nor touch each other, imposing that
the minimal distance between the two adjacent immersed boundaries is at least a size of a single
grid cell. In the present formulation, the flow within the differentially heated spherical shell is an
integral part of a more general natural convection flow within the whole cube, including also the
outer (R > R,), and the inner (R < R;) regions (see Fig. 2.1). The flow was simulated by applying
no-slip boundary conditions at all the cube faces, which were held at a constant temperature T
(the same temperature of the external boundary of the spherical shell). In the present work, only
the results relevant to the spherical shell region are discussed. Below, we detail the IBM

formulation implemented in the present study.

Fig. 2.2 shows the setup of a typical spatial discretization implemented on a staggered grid.

W P e -

Figure 2.2. A schematic staggered grid discretization of a two-dimensional computational domain
D, with a segment of immersed boundary of a body B. A virtual shell, whose thickness is equal
to the grid cell width, is shaded. The horizontal and vertical arrows (—, T) represent the discrete
velocity locations, u; and v; respectively. Pressure p; and temperature T; are applied at the center
of each cell designated by (X). Lagrangian points (€, Nk, €x) along B are shown as black dots
(+), where volumetric boundary forces F (Fx, E, FZ) and volumetric boundary heat fluxes Qj, are
applied.

12



The grid is characterized by offset velocity, temperature and pressure fields. An arbitrary immersed
object B, within a computational domain D, (whose geometry does not, in general, have to conform
to the underlying spatial grid) is represented by the surface 0B, determined by a set of Lagrangian
points X}, . The same distance between neighboring points approximately equal to the grid size

should be preserved to provide high accuracy [41].

We next associate a discrete volume dV,with each Lagrangian point X}, such that an
ensemble of these volumes forms a thin shell with a thickness equal to the width of the grid cell.
At the Lagrangian points, appropriate surface forces Fy, and heat fluxes Qy, are applied to enforce
the non-slip velocity and the Dirichlet temperature boundary conditions along, dB. Since the
location of the Lagrangian boundary points does not necessarily coincide with the underlying
spatial discretization, regularization and interpolation operators must be defined to convey
information about the immersed body in both directions. The regularization operator, R, smears
volumetric forces, Fj, and heat fluxes Q;, on the nearby computational domain, while the [
interpolation operator acts in the opposite direction and imposes non-slip/thermal boundary

conditions on the points located on the body surface :
R(F(Xi), QX)) = [ (Fi(X1), QX)) - 6 (x; — Xi)dVig (2.8)

I(U(xi)' 9(xi)) = fQ (u(xi)' H(xi)) <6(x; — Xp)dVg; (2.9)

where S corresponds to all cells belonging to the immersed body surface, € corresponds to a group
of flow cells located in the close vicinity to the immersed body surface, dVs; corresponds to the
infinitesimal volume surrounding each Lagrangian point k, and dVg; is the volume of the
corresponding flow cell, whose velocity and temperature values are explicitly involved in
enforcing boundary conditions at point k of the immersed body. Convolution with the Dirac delta
function are used to facilitate the exchange of information to and from dB. Among the variety of
discrete delta functions available, the function described by Roma et al. [42], specifically designed
for use on staggered grids where even/odd de-coupling does not occur, was chosen. This delta

function was successfully utilized in a number of previous studies [38,41-43].
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2.10
ﬁ[l + / |T| ] for|r| < 05Ar (210

A
0 otherwise

(61 [5 3 J3(1 ) +1|for05Ar<|r|<15Ar
d(r) =

f——_J\_

where Ar is the cell width in the r direction. The discrete delta function d(r) is supported over
only three cells which comprised of an advantage for computational efficiency. The discrete form

of regularization and interpolation operators for the 3D domain are governed by

(fio @) = Dx3 Xy (F, Qi) - d(ep — x) - d (i — yi) - d(sp — 2;) (2.11)
WUy, ©)) =Ax* 3 (u;,0;) - d(x; — €) - dy; — i) - d(z; — i) (2.12)

where f;, q; are the discrete volumetric force and heat source defined on the staggered grid

(xi,vi,2;), and Uy, O are the discrete boundary velocity and temperature defined at the k-th

Lagrangian point (€, Nk, Sk )-

Among the vast variety of existing pressure—velocity segregated solvers, the code recently
developed and parallelized by Vitoshkin and Gelfgat [38] was chosen. The system of governing
equations is solved using a SIMPLE method implementing a segregated approach. The linear
system solver implements an algorithm based on the tensor product factorization (TPF) method,

combined with the Thomas solver (TPT).

The direct forcing method approximates the boundary force F*, and volumetric heat flux Q*, for
rigid bodies with an intermediate predicted velocity field u*, initially calculated by ignoring the
presence of the immersed body. The forces at Lagrangian points are calculated explicitly:

UT (Xj t™M-U* (X, t™)

F'(X,, t") = - ,

(2.13)

where U™ represents the values of the boundary velocity obtained by interpolation of the nearby
predicted velocity field on the immersed body surface, and U corresponds to the preset boundary
velocity (which is zero for the stationary boundary). The calculated F* is smeared over the volumes
of the computational domain using the regularization operator. The obtained discrete volumetric

forces f* enter as sources into the momentum equations:

Yt V)ut — ff = —Vp + \/gvzu* +ontle,) (2.14)
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The algorithm is finalized by the standard projection-correction step, which includes the solution

of the Poisson equation yielding the fields of corrected pressure and divergence free velocity
vector. The boundary temperature values © ' of the surface of the immersed body are enforced

by:

0 X tM-0" X t™
At >

Q" (Xy, t") = (2.15)

where the temperature of the Lagrangian points ®" is an interpolation of the intermediate
temperature field 8%, initially computed by ignoring the presence of the immersed body, and Q™ is
a non-dimensional volumetric heat source, subsequently smeared over adjacent volumes by a
regularization operator Eq. (2.11). As a result, the regularized volumetric Eulerian heat source

q"enters as a source into the corresponding energy equations:
9n+1_9n
At

+ ur-V)on — q* = ﬁvzenﬂ (2.16)

It should be emphasized that the source/sink g* value is relevant only if the preset Dirichlet or
Neumann boundary conditions have to be enforced (i.e., in the presence of a thermally active
immersed surface). If the immersed body is exposed only to convective flow and does not actively
emit/absorb the heat by itself, then only non-slip boundary conditions are enforced on the
immersed surface. In this case, a zero value is assigned to the g term appearing in Eq. (2.16).
Formally, this imposes zero thermal resistance in the direction normal to the body surface, in
accordance with the assumptions typically treating the internal baffle as an idealized zero thickness
surface. Note also that due to the stationary boundaries, the interpolation/regularization operators
can be pre-computed for each prescribed immersed surface: there is no need to employ a delta
function at each time step, since it will yield the same result, thereby considerably decreasing the

computational effort.

Next we define the Nu Nusselt number as a ratio of convective to conductive fluxes.
Utilizing the same scaling as in Egs. (2.1)—(2.3), the non-dimensional heat flux from the

infinitesimal immersed surface is defined as:

99” _ AxyPrRaQ" 2.17)

on
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where Q" is defined in Eq. (2.15). The heat flux values averaged over the entire surface are then

used for calculation of the Nu numbers at the inner Nu;, and outer Nu,, boundaries of the spherical

shell:

1 00"

Nui = 7DD, ( a7 )Al (218)
1 GICH

Nitp = —— ( A )Ao (2.19)

2.3. “Smart” thermal insulation — concept and theoretical background

In this section, the numerical methodology, used for establishing, implementation and
verification of the concept of "smart" thermo-insulation, is presented. The concept of "smart"
thermo-insulation comprises heterogeneous porous material whose spatial pattern is intelligently
fine-tuned to the given engineering configuration. The porous medium is modelled by unconnected
packed beds consisting of equiszed cylindrical cylinders. The concept of smart thermal insulation
is formally established by utilizing the linear stability analysis of 2D natural convection flows
augmented by the immersed boundary functionality. The results obtained by the 2D linear stability
analysis were subsequently validated by performing 3D time integration of NS and energy

equations, utilizing the algorithm presented in the previous section.

The implemented numerical methodology, based on the implicit formulation of the IB
method and a fully pressure-velocity coupled approach, incorporates three solvers: a time
marching solver for the time integration of the NS equations (Section 2.3.2); a steady-state solver
based on the full Newton iteration (Section 2.3.3); and a linear stability solver (Section 2.3.4) for
calculating the necessary part of the whole spectrum of the flow by utilizing the Arnoldi iteration
method. All three solvers are based on the previously developed fully pressure-velocity coupled
direct (FPCD) solver [44, 49] briefly described in Section 2.3.1 for the sake of completeness.
2.3.1. Fully pressure-velocity coupled direct (FPCD)

We consider the 2D NS equations for isothermal incompressible flow:
V-u=0, (2.20)

ou . - _ 12
at+(u Vu = Vp+ReV u, (2.21)
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where u(u, v), p and Re are the non-dimensionalized velocity vector, the pressure field, and the
Reynolds number, respectively. By applying a second order backward finite deference scheme

for time discretization, Egs. (2.20) , (2.21) can be rewritten as:

V-urtl =0, (2.22)

]n+1

W = [ Vu—2ul + a1 2.23
- p—[(u )u—Eu] +—u" (2.23)

1 3
—Vu——u
Re 2At

2At

Note that all the non-linear terms are taken from the previous time step and moved to the right
hand side (RHS) of Egs. (2.22), (2.23). The system of vector Egs. (2.22), (2.23) can be compactly

rewritten in a block-matrix form as:

H, 0 —Vg yn+l RHSZ;_L”
0 H, —VZ‘ [v”“ = [RHSM1m (2.24)
VI V) 0 p 0

where V¥ and V” are the first derivatives with respect to the x and y coordinates, respectively,
H = éA — 31/2At are the corresponding Helmholtz operators acting on u and v velocity

components, [ is the identity operator and V is the Laplacian operator. The lower indices
correspond to the scalar fields on which an operator acts. The left hand side (LHS) of Egs. (2.24),
known as the Stokes operator, is further discretized with a standard staggered mesh second-order
conservative finite-volume formulation [45]. Non-linear terms, moved to the RHS of Egs. (2.24),
are approximated by the conservative central differencing scheme to exclude the appearance of
artificial viscosity (see Ref. [49] for the discretization details). Following Ref. [44, 49] the fully
pressure-velocity coupled solution of Egs. (2.24) can be obtained by LU factorization of the Stokes
operator, with a set of suitable boundary conditions for all the velocity components and a single
Dirichlet reference point for the pressure field. The discrete Stokes operator remains unchanged
during the solution, reducing the time integration of the NS equations to two backward
substitutions at each time step. The high efficiency of the above approach (see Ref. [49] for the
characteristic computational times) is achieved by utilizing a modern multifrontal direct solver for
sparse matrices (MUMPS), exploiting the sparseness of the discrete Stokes operator at both LU
factorization and back substitution stages. The FPCD approach formulated in Egs. (2.24) can be
straightforwardly adjusted to the simulation of natural convection flows, with buoyancy effects

being introduced by the Boussinesq approximation and governed by:
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V-u=0, (2.25)

ot (u-Vyu=—Vp — Gr°V?u + 0z, (2.26)
2+ (u- V)0 = ProiGrosv2e. (2.27)

where u(u, v), 8 and p correspond to the non-dimensionalized velocity, the temperature and the
pressure fields respectively, Gr is the Grashof number, Pr is the Prandtl number, and e, is the
unit vector in the opposite direction to gravity. Discretizing the time by a second-order backward

finite difference scheme leads to:
V-utl =0, (2.28)

. (2.29)

[Gr‘O'SVZu — —u + Bey] —-Vp = [(u Vu— —u] +5

[Pr-lc;r—o-svze - %e]m = [(u V)0 — 9]

(2.30)

2At

Then, using the same notations as for Egs. (2.24), the compact block-matrix form of the vector

Egs. (2.29), (2.30) reads:

[H, 0 0 =V ryn+1] [RHS; M
= y -1,
0 H, e =V|lv™*! :|RH517 nl (2.31)
0 0 Hy o [[6™"] |RHSP "
Vi Vy 0 0 p | 0 |

where H, = H, = Gr~%°A — 31/2At are the Helmholtz operators for the scalar momentum
equations and for the energy equation Hy = Pr=1Gr=%5A — 31/2At, I is the identity operator, A
is the Laplacian operator and V¥, V7' are the first derivatives with respect to x and y coordinates,
respectively. The discrete differential operators in the LHS of Eq. (2.24) and (2.31) can contain

different boundary conditions, and therefore for the general case H,, # H,, and V;# V; Vo # Vg .

2.3.2. Implicit immersed boundary FPCD time stepper

The discrete pressure p appearing in Egs. (2.24, 2.31) does not actively participate in time
propagation, and therefore can be viewed as the Lagrange multiplier that constrains the solenoidal
velocity. It is therefore reasonable to augment the existing Stokes operators Egs. (2.24, 2.31) with

the IB functionality by adding an additional set of Lagrange multipliers to enforce the appropriate
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boundary conditions at the Lagrangian points. Formally, the extended block-matrix form of the

Stokes operator for 2D isothermal incompressible flow (see Eqgs. (2.24)) is formulated as:

[H'U. 0 _vg E RFx 0 —l uTL+1 RHS;I_L”
I 0 H, -vj. 0 RFx”V”“] RHS™m
v
Vi v oo ol |=lo0. | (232)
[Iu 0 00 OJl E, | U, J
o I, 0 o ollfy Vb

Here, the vertical and horizontal dashed lines separate between the "original" Stokes operator,
located at the top left corner of the matrix, and the additional entries related to the embedded
immersed boundary functionality. These additional entries can be formally divided into two types.
The fist type corresponds to the "weights" of the unknown non-dimensional volumetric forces F,
and F,, obtained by applying the regularization operator R smearing the forces over the vicinity of
the Lagrangian points. The second type corresponds to the "weights" of the Eulerian velocity
components. To precisely impose no-slip boundary conditions, the sum of the above "weights,"
each multiplied by its Eulerian velocity component, should be equal to the velocities Uy, and V}, of
the corresponding Lagrangian points. In other words, entries of the second type are nothing more
than the additional equations necessary to achieve closure of the whole system of Egs. (2.32), after
the unknowns F, and F, have been added. It should be noted that as a result of the utilization of
the same Dirac delta functions (Eq. 2.10) in both the interpolation I and R operators, and the
uniform staggered grid in the near vicinity of the immersed body surface, the interpolation and
regularization operators are transposed to each other, R = I . Note also that for all rigid stationary
immersed bodies, the values of U, and V,, are all equal to zero and the extended Stokes operator
in Egs. (2.32) does not vary in time. As a result, LU factorization of the extended Stokes operator
should be performed only once at the beginning of the computational procedure. For
moving/deforming bodies, the location of the Lagrangian points is updated at each time step,
requiring modification of the extended Stokes operator (see Egs. (2.32)) with its subsequent LU
factorization. The factorization can be efficiently performed on a massively parallel machine,

taking advantage of the high scalability parallelization built-in to the MUMPS solver [47].

Using the same notations as for Egs. (2.32), an extended immersed boundary formulation

for the natural convection flow can be written as:
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H, 0 0 —FXiR. 0 0]
! IR iy [RHSETIT

HU ey _Vp ; 0 RFy 0 vn+1 RHS;l_l n
0.0 Mo 0 0 0 Rejlerr| |RHsyn
propy 0 0 {0 0 o0 |E-{T 0 (2.33)

i x
L, 0 o o 0 0 0} E Up
0 I | Y 4
oow 000 0 o flg. o
b0 o0 o o]

Similarly to the Egs. (2.32), the "original" Stokes operator located at the top left corner of
the block-matrix form is separated by the vertical and horizontal dashed lines from the immersed
boundary entries. The R, entries correspond to the "weights" of the unknown, non-dimensional,
volumetric heat sources smeared over the vicinity of the corresponding Lagrangian points by the
regularization operator R, whereas the Iy entries are the "weights" of the Eulerian temperatures,

imposing Dirichlet boundary conditions at the neighboring Lagrangian points.

In most thermal problems, precise estimation of the average Nu number is of significant
practical importance and is particulary critical for the present implementation of the IB method,
which relies on a uniform Cartesian grid. As a result, a further refining of the Eulerian grid adjacent
to the immersed boundary for a more precise resolution of the thinnest boundary layers is not
practical. An alternative way to obtain an accurate estimation of the Nu number is to express the
unknown Lagrangian non-dimensional volumetric heat sources in terms of the temperature

gradients in the direction normal to the immersed boundary as:

Q=-—"—2
T prVGrAxon’

(2.34)

where A x = Ay is the dimension of the uniform Eulerian grid in the vicinity of the immersed

surface. Following 0, the Nu value averaged over the surface of the immersed body reads:
Nu=2(ym 99
Nu =2 (2,2 Ax)k, (2.35)

where the local % values at every point 1 < k < M of the immersed body are provided by the

solution of Egs. (2.33), reformatted in terms of the temperature gradients in the direction normal

to the body surface.
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2.3.3. Steady-state immersed boundary FPCD solver

The immersed boundary method incorporated into the pressure-velocity coupled direct
solver is implemented similarly to the direct forcing approach by introducing R regularization, and
I interpolation operators. However, contrary to the direct forcing approach, it does not need the
prediction and correction steps at each time step. The values of boundary force F* and volumetric
heat flux Q* in Lagrangian points are implicitly obtained as a part of the overall solution. The
steady state isothermal incompressible flow with an embedded immersed boundary functionality

is governed by the following equations:

V-ou=0, (2.36)
(u-V)u+ Vp +—V?u — Rp = 0, (2.37)
Iw)—U, =0 (2.38)

where Rp and I(u) are additional entries which resulted by applying regularization R and
interpolation I operators. A second order backward finite difference scheme, and a standard
staggered grid, second order, conservative finite-volume method, are utilized for the temporal and
spatial discretizations respectively. Additional entries Rp and I(u) introduced by the immersed
boundary formulation are implemented by utilizing discrete Dirac delta functions (see Eq. 2.10).

Equation (2.36-2.38) can be presented in block-matrix form:

Px 0 Jp R 0780 Fr = 2581
10 J, J,i 0 Rg || §(v) I B, = ZjRjp,
Vu Jo 010 0 o |[8@|=-| Frg . : (2.39)
llu 0 0 0 o lf?(Fx)J S by, — Up,
0 L, 0:0 olls(F) 2y, — Up |

where /., |, Ju, Jv, Jp are parts of Jacobian J of a system of momentum and continuity equations
that does not include immersed boundary functionality, corresponding to discrete right hand sides

F,

e Py B,y calculated at the iteration n. The matrix is expanded by entries of Ry, R F, and I, I,

as a result of embedded, immersed boundary formulation. The immersed boundary entries also

contribute to the right hand side of Egs. (2.39). The volumetric forces F; and interpolated velocities

u;, both calculated at the iteration n, are added to the corresponding right hand sides of the
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momentum and interpolation equations. The index i corresponds to Eulerian points and index j

corresponds to Lagrangian points.

Natural convection flow with an embedded, immersed boundary functionality is governed by

V-u=0,

(u-V)u+ Vp — Gr=%vV?2u—0e, — Ry = 0,

(u-V) — Pr*Gr=%5v?60 — R, = 0,

I(w)—U, =0,

(2.40)
(2.41)
(2.42)
(2.43)

(2.44)

The Buossinesq approximation is utilized for simulating the buoyancy effects. Similarly to the

formulation of isothermal flow, operators Rp, Ry, I(u), and I(6) are introduced by applying

regularization R and interpolation I operators to address the impact of the immersed boundary on

the velocity and temperature fields. Utilizing the same time and space discretization as for Eqs.

(2.36-2.38), Egs. (2.41-2.44) can be rewritten in a compact block-matrix form as:

Jo 0 0 J, Ry 0 07[6@)]
0 J, e J, 0 Ry O §(v)
0 0 Jjpb 0 0 0 R ‘;gg
!_1&____].1_7 _____ Q _Q._O ________ Q __0 _5_(F_)
L, 0 0 0 0 0 0 x
0 0 Ip 0 i0 0o o 1ls©Q)]

JFx
FTLy E_ EJR]Fy
ani_ ZjRjq

_an i— Z]R )

The iterative Newton-Raphson method is used to solve Egs. (2.45).

2.3.4.Linear stability immersed boundary FPCD solver

(2.45)

Linear stability analysis of natural convection flow with an embedded, immersed, boundary

functionality is detailed in the following. The present linear stability approach is based on the

algorithm previously developed by Gelfgat [49]. The presently implemented method imposes no

restrictions on either the number of bodies or their shape. However, it requires that the body

boundaries do not touch or intersect, and that the minimal distance between the neighbouring
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bodies is at least the size of a single grid cell. The linear stability eigneproblem of natural
convection flow in the presence of an immersed body is formulated by assuming infinitesimally
small perturbations in the form of {ﬁ(x, ), 0(x,y),5(x,y), F(x,v),0(x, y)}e” around the
steady state flow U, O, p, F, Q as follows:

Al = —(U - V)it — (@i - VYU — VP + Gr~5V?u — fe, — Ry, (2.46)
A6 =—-U- V)6 — (@ V)O + Pr-1Gr 05V26 + Ry, (2.47)
V-i=0, (2.48)
1(@) =0, (2.49)
1(6) =0, (2.50)

Egs. (2.46-2.50) rewritten in a block-matrix form is:

—
I

NN
=

,___
I
~

 —————————

Qi T e RN

|

2.51)

QM T D DN

e —— |

where J is the Jacobian matrix calculated from the RHS of Egs. (2.46-2.50) and B is the diagonal
matrix whose diagonal elements corresponding to the values of i, 8 are equal to unity, whereas
the diagonal elements corresponding to P, F, Q are equal to zero. Since the discretization is
performed on a structured staggered grid in the Cartesian coordinates system, the Jacobians J of
Egs. (2.45) and (2.51) are equal. In linear stability analysis, we are interested in finding the critical
value of control parameter Gr, Re numbers, at which the real part of 1 (leading eigenvalue) is
equal to zero, Real(A) = 0. The solution is based on a standard Arnoldi iteration implemented
within an open source ARPACK package, seeking the dominant eigenvalue (largest by modulus).
However, the eigenproblem (2.51) cannot be directly transformed into a standard eigenproblem,

since det(B) = 0, therefore it is solved in a shift-invert mode.
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(J—oB)'B (2.52)
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The dominant eigenvalue u can be related to the leading eigenvalue A when the approach is applied
to the shift-invert problem, where ¢ is a complex shift. To converge, the approach requires from
the complex shift o to be close to the A value, whose imaginary part Im(4) corresponds to the
critical angular oscillating frequency, w,,-. The value of w,, is either known in case of benchmark
problems, or can be estimated by a series of successive numerical simulations of the slightly
bifurcated flow.

The present linear stability approach extends the algorithm presented by Gelfgat [49], with
an IB functionality. Theoretically, no specific restrictions are imposed either on the number of
bodies or on their shape. However, the method requires that the body boundaries do not touch or
intersect and that the minimal distance between neighboring bodies is at least the size of a single
grid cell. The solution procedure is as follows. First, the steady state solution is calculated by the
Newton method for the given value of the control parameter (Gr or Re numbers). Then, the linear
stability analysis is performed by utilizing a shift-invert Arnoldi iteration (see Egs. (2.52)). The
corresponding egenvalue problem is solved by a secant method, providing a precise value for the
critical control parameter. The overall process requires numerous solutions of large systems of
linear equations, which should be performed at each step of the Newton method and while building
the Krylov basis for the Arnoldi iteration. Typically, no more than ten iterations are required for
the calculation of the steady-state solution (by the Newton method), while the shift-invert Arnoldi
iteration needs 0(10%) iterations to converge, thus comprising the key issue determining the

computationale efficiency of the whole process.

Next, to efficiently implement the product of the operator (J —oB)"1B by the vector

[fi 0pF Q]Trequired at each Arnoldi iteration step, we exploit the fact that the operator (J —
oB) !B does not change during the building of the Krylov basis for the Arnoldi iteration (see Egs.
(2.52)). The product implementation is simply a solution X of the linear system (J — oB)X =
B [ﬁ? pF Q]T By utilizing the direct solver MUMPS, the LU decomposition of the operator

(J — oB) is performed once at the beginning of the process, and then each vector of the Krylov
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basis is obtained by just two subsequent back substitutions, whose complexity is comparable to
that of matrix-vector multiplication. Note also that the overall performance is additionally boosted
by being a (J — oB) sparse matrix. At the end of the stage, we receive the leading eigenvalue A

and the leading eigenvectors of all flow fields are calculated.
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Chapter 3
Results and Discussion

3.1. Chapter overview

In this chapter, the results obtained in the framework of the current study are presented and
discussed. The first part of the study (Section 3.2) focuses on the analysis of 3D laminar natural
convection flow in multi-layered spherical shells. The section includes an extensive verification
study of the in-house solver acquired with IB functionality to perform the time integration of NS
equations in the presence of immersed bodies of an arbitrary shape. The verification study includes
comparison with the independent results available in the literature and grid independence analysis.
The section presents results regarding characteristics of laminar natural convection flow inside
multi-layered spherical shells with internal hot and external cold boundaries. An affect of adding
zero-thickness internal baffles on the thermal efficiency and the flow characteristics of the flow
developing in single- and multi-layered spherical shells was studied. Natural convection flow
developing inside spherical shell configurations with non-equi-spaced, zero-thickness, internal
baffles, were also discussed. The reported results also include the new Nu — Ra correlation

derived for equi-spaced, multi-layered, spherical shells.

The second part of the study (Section 3.2) presents results regarding implementation of the
concept of “smart” thermally insulating materials. The results obtained by the linear stability
analysis were favorably verified by comparison with the corresponding time integration results
performed for the slightly bifurcated flow (both by obtained in-house developed solvers). The
concept “smart” thermally insulating materials was extensively studied taking the configuration of
a differentially heated 2D square cavity as a test bed. The pattern of thermally insulating material
obtained by the linear stability analysis of 2D flow was subsequently validated for realistic 3D

natural convection flow developing inside a differentially heated cubical cavity.
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3.2. Multi-layered spherical shell?
3.2.1. Verification
Natural convection in a cubic enclosure with a sphere

The developed solver was first verified by simulating the natural convection flow developing
in the presence of an isothermal hot sphere placed within a cubic container with isothermal cold
walls. The flow is governed by the same non-dimensional NS Egs. (2.1)—(2.3) as the original
problem, the only difference being that all the length scales are normalized by the cube side length,
d. The inner hot sphere is located on the vertical centerline of the cube, and its distance to the cube
center is determined by the non-dimensional parameter —0.25 < § < 0.25, defined as § = Z, —

Zspn, Where Z; and Z,, are the non-dimensional Z coordinates corresponding to the centers of

the cubic container and of the sphere, respectively [51]. All the results were obtained on a 2003
uniform grid. Fig. 3.1 shows the flow characteristics in terms of the temperature distribution and
projection of the path lines on a mid-plane cross section obtained for the Ra = 10%, 10°,10° and
6 = —0.25,0,0.25 values. There is an excellent agreement between the characteristics of the
presently computed flow and the previously published results [51] for the entire range of Ra and
6 values. For all the Ra values, the flow at § = —0.25 is characterized by a clearly distinguished
thermal plume rising up from the top of the sphere. The plume becomes less developed as §
increases, and the restricting effect of the top boundary on the rising up convective flow becomes
more pronounced. All the configurations are characterized by the strong temperature gradients just
below the sphere and close to the cube top boundary, indicating the existence of a thin boundary
layers in these regions. When § = 0.25, the thermal plume, localized at the top half of the cube,
is radially squeezed for all the Ra values, giving rise to the development of a thermally stratified
region with almost zero velocities below the sphere. The spiral form of the flow path lines observed
for all the configurations presented in Fig. 3.1 clearly indicate the 3D character of the flow, which

is a consequence of the end-wall effects.

Table 3.1 compares between the presently obtained and the previously published [51]
values of average NU numbers. An acceptable agreement between the results is observed for the

entire range of Ra numbers. The differences between the results grow up with increasing the Ra

2 This section is based on Y. Gulberg, Y. Feldman [39]
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values, which can apparently be a consequence of different approaches utilized for calculation of

the Nu numbers.

Table 3.1

Comparison between the present and the scanned [51] average Nu values obtained for the flow
developing in the presence of an isothermal hot sphere placed within a cubic container with all
isothermal cold walls.

5 Ra = 10* Ra = 10° Ra = 10°
Ref. [51] Present Ref. [51] Present Ref. [51] Present
-0.25 9.867 10.199 13.665 13.774 20.89 21.993
-0.2 8.843 9.117 12.931 13.058 20.631 21.862
-0.1 8.087 8.451 12.729 13.105 20.772 22.164
0 7.859 8.314 12.658 13.415 20.701 22.344
0.1 7.947 8.507 12.351 13.446 20.367 22.525
0.2 8.615 9.266 12.254 13.635 19.664 22.208
0.25 9.621 10.387 12.944 14.426 19.721 22.393

(b) Path lines projection on the mid-plane cross section, Ra = 10*
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(e) Temperature distribution of the mid-plane cross section, Ra = 10°
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() Path lines projection on the mid-plane cross section, Ra = 10°

Figure 3.1. Flow characteristics on a mid-plane cross section as a function of Ra number:
temperature distribution and path lines projection obtained for the values of § = —0.25,0,0.25

on a 2003 grid.

Natural convection in the spherical annuli — axi-symmetric flow

The results obtained for the flow inside the spherical annuli were also successfully verified
by comparison with numerical data available in the literature. Fig. 3.2 presents a comparison
between the axi-symmetric temperature fields provided by [52] for three different Ra numbers,
and the corresponding results obtained in this study by fully three-dimensional simulations. There
is a good qualitative and quantitative agreement between the corresponding temperature fields for
the whole range of Ra numbers. Typical of steady laminar flows in spherical shells, the results

obtained by the fully three-dimensional solver preserve the flow’s axi-symmetry.




Figure 3.2. Comparison between the axi-symmetric temperature field provided by Dehghan and
Masih [52], and the present results obtained by fully three-dimensional simulations for: (a) Ra =
103; (b) Ra = 10%; (c) Ra = 10°. The contour colors correspond to 10 equi-spaced values of
temperature in the range of 0 <6 < 1.

Grid independence study
To perform a grid independence study, the natural convection flow was simulated inside a
double-walled spherical shell (without internal baffles) on 2003 and 3003 uniform grids for Ra =

103,104,105 The results of all the velocity components and temperature were collected from the
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control points located on the spherical shell center-lines, as shown in Fig. 3.3. For both grids, the
flow characteristics were acquired at eight control points uniformly distributed along each
centerline (four from each side of the center of spherical shell), as presented in Table 3.2. Most of
the results obtained on the two grids are in excellent agreement. A deviation between the
corresponding fields appears in the third decimal digit, as expected for the second order accuracy
method. For all the cases, the axi-symmetry of the steady flow is clearly recognized by verifying
the same values of the flow fields in the reflection symmetry points on the X and Y centerlines.
Note also that zero (0(10‘6)) values of the velocity components in the transverse direction were
obtained for all the cases, additionally verifying an axi-symmetry of the obtained steady flow.
Based on the performed grid independence analysis, the uniform 2003 grid was chosen for further

analysis.

Figure 3.3. A scheme of location of control points.
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Table 3.2
Flow characteristics along the spherical shell center-lines, all the velocity components (i, , Uy,

u,) are multiplied by a factor of 103.

Ra=10%Y=Z=0,u,=0

2003 grid 3003 grid
X Uy U, 0 Uy U, 0
-1.8 7.222 -187.2 0.101 7.667 -187.6 0.100
-1.6 17.17 -119.7 0.224 17.82 -119.4 0.223

-1.4 15.21 110.2 0.383 15.75 110.4 0.380
-1.2 3.893 306.6 0.627 4.087 309.5 0.623

1.2 -3.895 306.6 0.627 -4.088 309.5 0.623
1.4 -15.21 110.2 0.383 -15.75 110.4 0.380
1.6 -17.17 -119.6 0.224 -17.82 -119.4 0.223
1.8 -7.221 -187.2 0.100 -7.667 -187.6 0.100

Ra=103X=Z=0,u, =0

2003 grid 3003 grid
Y Uy u, 0 Uy U, 0
-1.8 7.222 -187.2 0.100 7.668 -187.6 0.100
-1.6 17.17 -119.7 0.224 17.82 -119.4 0.223

-1.4 15.21 110.2 0.383 15.75 110.4 0.380
-1.2 3.894 306.6 0.627 4.088 309.5 0.623

1.2 -3.894 306.6 0.627 -4.088 309.5 0.623
1.4 -15.21 110.2 0.383 -15.75 110.4 0.380
1.6 -17.17 -119.6 0.224 -17.82 -119.4 0.223
1.8 -7.221 -187.2 0.100 -7.666 -187.6 0.100

Ra=103X=Y=0,u, =u, =0
2003 grid 3003 grid
Z u, 0 U, 0
-1.8 16.86 0.052 17.97 0.052
-1.6 55.70 0.127 56.86 0.125
-1.4 86.24 0.256 87.35 0.253
-1.2 63.45 0.522 64.99 0.515
1.2 69.87 0.851 71.39 0.853
1.4 133.7 0.709 136.2 0.713
1.6 120.3 0.518 123.9 0.526
1.8 47.62 0.259 50.74 0.266
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Table 3.2 Continued

Ra=104,Y=Z=O,uy=O

2003 grid 3003 grid
X Uy U, 0 Uy U, 0
-1.8 28.66 -244.3 0.1049 29.49 -241.3 0.1029
-1.6 70.58 -161.7 0.1771 71.35 -160.7 0.1733
-1.4 73.28 69.33 0.2065 74.18 65.90 0.2022
-1.2 34.83 431.1 0.3731 35.74 426.2 0.3652
1.2 -34.84 431.1 0.3730 -35.74 426.2 0.3652
1.4 -73.27 69.34 0.2065 -74.18 65.86 0.2022
1.6 -70.58 -161.6 0.1771 -71.36 -160.67  0.1733
1.8 -28.66 -244.3 0.1049 -29.49 -241.3 0.1029
Ra=10,X=7Z=0,u, =0
2003 grid 3003 grid
Y Uy U, 0 Uy U, 0
-1.8 28.66 -244.3 0.1049 29.49 -241.3 0.1029
-1.6 70.58 -161.7 0.1771 71.35 -160.7 0.1733
-1.4 73.27 69.34 0.2065 74.18 65.90 0.2022
-1.2 34.82 431.1 0.3731 35.74 426.2 0.3652
1.2 -34.84 431.0 0.3730 -35.74 426.2 0.3652
1.4 -73.28 69.33 0.2065 -74.19 65.86 0.2022
1.6 -70.59 -161.6 0.1771 -71.36 -160.6 0.1733
1.8 -28.66 -244.2 0.1049 -29.48 -241.3 0.1029
Ra=10X=Y=0,u, =u, =0
2003 grid 3003 grid
Z U, 0 U, 0
-1.8 9.253 0.0085 10.18 0.0079
-1.6 39.06 0.0216 39.81 0.0205
-1.4 79.05 0.0554 79.30 0.0535
-1.2 87.49 0.2298 88.17 0.2237
1.2 94.46 0.9346 93.41 0.9334
1.4 195.1 0.8938 193.3 0.8921
1.6 217.7 0.8590 217.2 0.8570
1.8 129.2 0.6856 131.9 0.6904
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Table 3.2 Continued

Ra=10%Y=Z=0,u,=0

2003 grid 3003 grid
X Uy U, 0 Uy U, 0
-1.8 16.95 -239.2 0.174 17.89 -234.2 0.173
-1.6 11.77 -5.501 0.192 11.73 -5.251 0.187
-14 14.81 70.80 0.158 16.32 70.73 0.151
-1.2 28.21 223.1 0.189 29.39 211.1 0.179
1.2 -28.20 222.9 0.189 -29.39 211.1 0.179
1.4 -14.81 70.733 0.158 -16.36 70.72 0.151
1.6 16.95 -239.2 0.174 17.89 -234.2 0.173
1.8 11.77 -5.501 0.192 11.73 -5.251 0.187
Ra=105X=27=0,u, =0
2003 grid 3003 grid
Y Uy U, 0 Uy U, 0
-1.8 16.965 -239.3 0.1740 17.899 -234.3 0.1729
-1.6 11.781 -5.533 0.1922 11.728 -5.234 0.1873
-1.4 14.803 70.75 0.1580 16.315 70.75 0.1513
-1.2 28.183 223.1 0.1892 29.394 211.2 0.1789
1.2 -28.215 223.0 0.1891 -29.397 211.2 0.1789
1.4 -14.808 70.86 0.1580 -16.320 70.73 0.1513
1.6 -11.776 -5.461 0.1922 -11.737 -5.238 0.1873
1.8 -16.964 -239.3 0.1740 -17.901 -234.3 0.1729
Ra=10°,X=Y=0,u, =u, =0
2003 grid 3003 grid
A U, 0 u, 0
-1.8 -1.418 0.0019 0.151 0.0014
-1.6 7.026 0.0045 9.324 0.0035
-1.4 28.54 0.0100 30.59 0.0082
-1.2 59.96 0.0552 60.56 0.0506
1.2 173.7 0.9439 172.1 0.9444
1.4 363.1 09116 363.2 0.9125
1.6 402.9 0.8880 404.8 0.8891
1.8 264.8 0.8688 266.7 0.8699
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Verification of the average Nu values

Precise estimation of the average Nu number comprises an essential criterion for verification of
any numerical solver and is particularly critical for the IBM. The IBM relies on a uniform Cartesian
grid, which does not allow further local stretching for a more precise resolution of the thinnest
boundary layers. In this case, a more precise estimation of the Nu values is achieved by utilizing
the law of conservation of heat flux (see Eq. (2.17)), rather than simply calculating the near-surface
temperature gradient. A comparison between the available and our estimated Nu values for various
spherical shell configurations, and different Ra numbers corresponding to steady-state flow, is
summarized in Table 3.3. It is remarkable that for steady state flow, an acceptable agreement in
Nu values is observed for the fully three-dimensional and axi-symmetric simulations. The picture
is, however, quite different for unsteady, non-axi-symmetric flows, which (for the same operating
conditions) are characterized by an enhanced heat flux compared to the corresponding axi-
symmetric idealizations (see Table 3.4). At the same time, there is good agreement for all the Nu
when compared with the recent results of Feldman and Colonius [3], all obtained by a three-
dimensional analysis. In all cases, the same Nu values (up to the third decimal digit) were obtained
for the external and internal shell boundaries by their time and space averaging, after an
asymptotic, quasi-state solution was reached. This finding verifies the heat flux conservation over
the entire computational domain. Note also an excellent agreement between the Nu values
obtained on 2003 and 3003 grids, which can be seen as additional justification of the grid

independence of the obtained results.

Table 3.3

Average (in space) Nu numbers for steady laminar axi-symmetric flow.

[0) Ra Present(2003 grid) Present(3003 grid) Ref. [3] Ref. [53] | Ref. [52] | Ref. [51]
0.5 1.0 x 103 1.126 1.120 1.104 1.099 1.1310 1.1021
0.5 1.0 x 10* 1.993 1.987 1.9665 1.973 1.9495 1.9110
0.5 1.0 X 10° 3.461 3.452 3.4012 3.489 3.4648 3.3555
0.667 1.0 X 103 1.069 1.081 1.04825 1.001 1.00115
0.833 1.0 x 103 1.061 1.053 1.011 1.0 1.0018
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Table 3.4

Average (in time and in space) Nu numbers for unsteady 3D flow. Results reported for axi-
symmetric flow are given in parentheses.

¢ Ra Present(2003 grid) | Present(3003 grid) | Ref. [3] Ref. [53] | Ref. [52]
0.667 1.0 x 10% 1.811 1.826 1.793 1.073 1.07138
0.667 1.0 x 10° 3.321 3.375 3.243 1.917 1.89756
0.833 1.0 x 10% 1.620 1.713 1.6523 1.001 1.0028
0.833 1.0 x 10° 3.274 3.276 3.0678 1.008 1.0100

3.2.2. Discussion

The IBM enables efficient manipulation of the orientation of the internal layers of the
spherical shell so as to achieve optimized thermal insulation. Among the large number of
possibilities, the present study focuses on an investigation of equi-spaced/non-equi-spaced
concentric and horizontally/vertically, eccentric orientations of the internal layers. All the
numerical simulations were performed for a spherical shell characterized by ¢ = D;/D, = 0.5 on

a 2003 uniform grid.

Concentric equi-spaced internal layers

As the first step, the natural convection flow inside a spherical shell with up to four
concentric, equi-spaced internal layers was investigated. Following the recent works of Samanta
et al. [1], Feldman et al. [2], and Feldman and Colonius [3], zero wall thickness was assumed for
all the internal baftles, providing zero thermal resistance in the radial direction. In addition, non-
slip boundary conditions for all the velocity components were imposed on all internal baffles and
external boundaries of the shell. Typical steady state temperature distributions, along with the flow
path lines obtained in a mid cross-section of the spherical shells with up to four equi-spaced,
internal layers for moderate Ra = 10%, and high Ra = 5 X 10° Rayleigh numbers, are shown in

Figs. 3.4 and 3.5 respectively.
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Figure 3.4. Steady-state temperature distribution 8, and projection of the flow path lines for Ra =
10* in the mid cross section of a spherical shell with: (a) one internal layer; (b) two equi-spaced

internal layers; (c) three equi-spaced internal layers; (d) four equi-spaced internal layers.
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Figure 3.5. Steady-state temperature distribution 8, and projection of the flow path lines for Ra =
5 X 10° in the mid cross section of a spherical shell with: (a) one internal layer; (b) two equi-

spaced internal layers; (c) three equi-spaced internal layers; (d) four equi-spaced internal layers.

As expected, the steady flow obtained for all the configurations is axi-symmetric, as can
be verified by a concentric shape of the flow path lines characterizing toroidal convection cells
occupying each layer. It was also found that the internal baffles embedded in the spherical shell
have a pronounced effect on the redistribution of convective flow inside the shell as follows.
Firstly, the internal baffles stabilize the convective flow, thereby preserving steady-state regimes
at much higher Ra values than those determining an instability onset in single-layered spherical
shells. In fact, a modified kidney shaped eddy pattern, typical of high Ra values and wide shells
and observed in Fig. 6a, transforms into a crescent eddy pattern for the configurations containing
internal baffles (see Figs. 3.5 b—d). Secondly, the internal baffles suppress the convective
component of the heat flux. As a result, a hot thermal plume rising up from the top of internal
sphere either disappears at Ra = 10* or significantly weakens at Ra = 5 X 10°. The more internal
baffles embedded, the weaker the convective heat transfer, and the closer the temperature
distribution to that typical of a pure conduction regime. This observation is not surprising, since
actual heat flux depends on the effective length scale which is a function of a number of internal
baffles. We can then define an effective (modified) Ra® number based on the distance between

two adjacent baffles, which for the equi-spaced multi-layered spherical shell can be expressed as:

41



Ra* = Ra/(N —1)3 (3.1)
where N is the total number of the shell boundaries (internal and external). The quantitative
differences in the observed flow regimes can be quantified by examining both the Nu — Ra and
the Nu — Ra” functionalities of each configuration. The same temperature difference between the
hot and cold boundaries A8, was chosen to provide a common basis for comparison. Fig. 3.6-a
presents the Nu — Ra functionality for spherical shells with two to five walls, when the Ra number
is based on the total width L. In this case, the spherical shell is treated as a ‘black box” whose
insulation efficiency is only estimated as a function of the number of equi-spaced concentric
internal baffles. Four separate curves were obtained for the Nu — Ra power law functionality, each
corresponding to a different number of walls. Note the good agreement between the current and
the previously published results [7] obtained for a spherical shell without internal baffles for the
entire range of Ra numbers. As expected, the insulation property of the spherical shell improves
with the number of embedded baffles, leading to a considerable decrease in Nu for the same values
of the Ra numbers. The maximal difference (up to four times) was observed at Ra = 5 X 10°
between the N = 2 and N = 5 configurations. To account for the effective length scale inherent
to the multi-layered spherical shell problem, the modified Rayleigh number Ra* is defined in Eq.
(3.1), and the resulting Nu — Ra”* functionality is shown in Fig.3.6-b. It can be seen that the curves
corresponding to the different spherical shell configurations are now much closer, clearly
indicating that the effective length scale plays an important role in determining the overall heat

flux through the shell boundaries.
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Figure 3.6. Nu — Ra functionality obtained for spherical shells with different numbers of internal
layers. The total number of walls for each spherical shell is given in parentheses. The dashed line
corresponds to the universal correlation of Scanlan et al. [7] obtained for a single-layered spherical

shell.

At the same time, introducing the modified Ra® number is not enough to obtain the Nu — Ra*
functionality in a form of the single curve universally fitting all the configurations discussed. This
is apparently due to the fact that the actual temperature difference between the adjacent baffles is
much smaller than it was assumed. Seeking ways to further generalize our analysis, we examined
the Nu — Ra™ functionality for all the configurations discussed and recognized both a monotonic
increase of the power law exponent, and a monotonic decrease of the power law constant with an
increasing number of layers. Formally denoting the power exponent by a and the power law
constant by b, a functional relation of both quantities to the total number of shell boundaries N was

approximated by the least squares method:
a=0443-N"10 2 <N <5 (3.2)
b =0202-N%?7, 2<N<5 (3.3)

Next it would be a matter of straight algebra to derive a unified correlation based on the power

law for the Nu* — Ra* functionality for up to five walls (see Fig. 3.7):

Nu* = Ra*%32 (3.4)

43



where Nu* is the modified Nu number defined as:

Nu 1.65N~0-32
0.51-N1'21)

N = ( 2<N<5 (3.5)

The equi-spaced concentric orientation of the internal layers is not the ultimate configuration to
be considered for further improvement of the insulation efficiency of the spherical shell. In the
following, three other configurations are discussed and their insulation properties are compared

with the corresponding equi-spaced concentric.

100
Nu* = Ra*0.32
3 10
1
1.0E+03 1.0E+04 1.0E+05 1.0E+06

Ra*

Figure 3.7. Nu* — Ra" functionality. The correlation for modified Nu* is valid for a multilayered
spherical shell containing up to five equi-spaced concentric walls (four internal layers).

Horizontally/vertically eccentric layers

A number of double-layered spherical shells with varying vertical and horizontal

eccentricity values were investigated. The eccentricity €, is defined as:

€ = |Xeccentric_Xconcentric| (36)

L
where Xoccontric and Xconcentric are the center coordinates of the eccentric internal baffle and
concentric internal and external boundaries of the spherical shell, respectively. Fig. 3.8 presents
the steady-state distribution of the temperature field h, and the projection of the flow path lines on
the mid-plane cross section of a double-layered spherical shell for two different eccentricity values
€ =0,167,0,335, and Ra = 5 x 10°. The impact of the horizonal offset of the internal baffle is
clearly reflected in the character of the thermal plume, which is biased to the side in the direction

of the offset. Note that the eccentricity has a pronounced effect on the distribution of both the 6
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and the flow patterns in both layers. It is clear that the axial symmetry of the flow was broken and
the flow is fully 3D. Non-negligible azimuthal velocities can be recognized by the presence of the
flow path lines of a converging spiral shape in the center of some convection cells (see Fig. 3.8).
Due to the lower temperature difference between the internal baffle and the external wall, the
thermal redistribution inside the second layer is affected to a lesser extent by the eccentricity of
the internal wall — a trend that is apparently preserved with a further increase in the number of

internal layers.

The influence of the offset of the internal wall along the vertical axis on the steady flow
fields is demonstrated in Fig. 3.9. The flow obtained was simulated for the same parameters (Ra =
5 x 10° and ¢ = 0.5) and eccentricity values as in the previous case. It is remarkable that the high
temperature region inherent in the configuration with the downward biased internal sphere is much
narrower than that observed for spherical shell with the upward biased internal sphere. Thus, the
distance between the top of the hot boundary and the internal baffle has a critical effect on the
development of the thermal plume inside the layer adjacent to the hot boundary. The closer the
internal wall to the top of the hot boundary, the less is the local effective length scale of the flow,
resulting in the lower velocity values of the thermal plume developed in that region. Similarly to
the previously performed axi-symmetric simulations [50], a local increase of the distance between
the internal baffle and the external boundary in the bottom region gives rise to the multi-cell

convection flow (see Fig. 3.9), not observed in either concentric configurations.
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Figure 3.8. Steady-state flow fields, obtained at the mid-plane cross section of a three-wall
spherical shell for Ra = 5 x 105. Contours of the temperature 8 and projection of the flow path
lines for: (a) € = 0,167; (b) € = 0.335.
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Figure 3.9. Steady-state flow fields obtained at the mid-plane cross section of a three-wall
spherical shell for Ra = 5 X 10°. Contours of the temperature 8 and projection of the flow path
lines for: (a) e = 0,167; (b) e = 0,167.

Non-equi-spaced concentric layers

We next focused on the investigation of the effect of a non-uniform width of the internal
layers on the characteristics of the steady state flow developing inside the double-layered spherical
shell. The non-uniform, non-dimensional distance was defined in terms of the diameter ratio 1 <
D, /D; < 2, where D, corresponds to the diameter of internal baffle and D; is the diameter of the
hot boundary sphere. Note that the value D, /D; = 1.5 corresponds to the double-layered equi-
spaced configuration. The numerical simulations were performed for two configurations
corresponding to D,/D; = 1.17,1.83 and Ra = 5 X 10°. The steady state distribution of the
temperature field 6, and the azimuthal velocity field ¢ in the mid cross section of the spherical

shell obtained for both cases, are shown in Fig. 3.10.
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Figure 3.10. Steady-state flow fields obtained at the mid cross section of a three-wall spherical
shell for Ra = 5 x 10°. Contours of the temperature 8 and projection of the flow path lines for:
(a) D, /D; = 1.17; (b) D,,/D; = 1.83.

Clearly, the proximity of the internal baffle to any of the spherical shell boundaries suppresses the
convective flow motion in the corresponding internal layer. In contrast, convective heat transfer
with a fully developed thermal plume dominates in both cases in the wide internal layer. Also
remarkable is an existence of the different shape patterns in the sub-layers of different widths for

both cases: a crescent eddy in the narrow sub-layer and a modified kidney shape eddy in the wide
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sub-layer. The differences between all the configurations discussed were quantified in terms of Nu
numbers, as summarized in Table 3.5. It is noteworthy that the most significant variation (-15% to
+16%) of the Nu value was observed inside the non-equi-spaced spherical shell configuration. In
this case, the minimal Nu value was provided by the smallest distance between the hot wall and
the internal baffle, clearly indicating a route for further improvement of the spherical shell
insulation efficiency. In contrast, the eccentricity of the internal baffle (both horizontal and
vertical) has a much less pronounced effect on the heat flux rate through the boundaries of the

spherical shell.

Table 3.5

Nu number values for a double-layered horizontally eccentric internal sphere.

Horizontal eccentricity € | Nu number | Comparison with equi-spaced 3w configuration Nu = 2.87
0.167 2.92 +2%

0.335 2.89 +1%

Vertical eccentricity € Nu number Comparison with equi-spaced 3w configuration Nu = 2.87
-0.335 3.16 +9%

0.335 3.15 +9%

D, /D; Nu number | Comparison with equi-spaced 3w configuration Nu = 2.87
1.17 243 -15%

1.83 245 +16%

3.3. Smart thermo-insulation

3.3.1. Verification of the linear stability analysis

The verification study focuses on analysis of the natural convection flow around two cylinders
confined by a square cavity (see Fig. 3.11). The ratio between the cylinder diameter d, and the
cavity side length L, is equal to d/L = 0.2. The cylinders are aligned along the cavity's vertical
centerline and are symmetrically distanced from the cavity's horizontal centerline. The distance §
between the cylinder centers, normalized by the cavity side length L, is equal to § = 0.5. Both
cylinders are held at a constant hot temperature 8, = 1, whereas all the cavity boundaries are held
at a constant cold temperature, 8, = 0. The force of gravity acts in the negative y direction. The

above configuration was chosen for the two main reasons.

49



X L

F
v

Figure 3.11. Vertically aligned cylinders confined by a square cavity: schematic representation of
a geometrical model of the computational domain. The arrow indicates the direction in which the

force of gravity acts.

First, it is relevant to the configurations under consideration in the present study, the only
exceptions being that the porous media is modelled by thermally passive unconnected cylinders.
Second, the considered flow undergoes transition to unsteadiness through the first Hopf

bifurcation [54], which allows to compare the patterns of absolute values of the leading
eigenvectors of temperature and velocity fields obtained by linear stability analysis with those

obtained by calculation of the time averaged oscillation amplitudes®.

Figure. 3.12 presents comparison between the contours of the leading eigenvectors
obtained for uy, u, and 6 fields, and the corresponding contours of oscillating amplitudes averaged
over 20 time periods. An excellent agreement between the corresponding spatial distributions
verifies the correctness of the performed linear stability analysis. Note the significant quantitative
discrepancy observed between the values of oscillation amplitudes and the absolute values of the

corresponding eigenvectors. This fact is not surprising since the magnitude of the leading

* Contours of maximal time averaged amplitudes of bifurcated flow conveniently approximate
contours of absolute values of the corresponding leading eigenvectors [55-57].
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eigenvector obtained by the linear stability analysis indicates the spatial distribution of intensity

of oscillations exhibited in bifurcated flow, and is determined up to multiplication by a constant.
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Figure 3.12. Contours of the averaged oscillating amplitudes and the corresponding absolute
values of leading eigenvectors obtained for: (a) velocity component u,; (b) velocity component

Uy; (¢) temperature, 6 .

3.3.2. Results and discussion

In this section the concept of "smart" thermally-insulating materials is presented, first, for 2D
conned natural convection flow. The square differentially heated cavity with perfectly thermally
conducting horizontal boundaries is used as a test bed. The proposed concept is further validated
for the realistic 3D flow in deferentially heated cubic cavity with thermally perfectly conducting

lateral walls and all no-slip boundaries.

"Smart'" thermo-insulating materials for 2D flows *

Heat flux rate through the differentially heated cavity can be estimated by the calculation
of the average Nusselt number Nu at the cavity boundaries, which for the no-slip boundary
conditions only depends on the temperature gradient normal to the wall direction. Note that for the
steady state flow, the temperature distribution is skew-symmetric relative to the cavity center (i.e.
F), and therefore the net heat flux rate is only determined by the average Nu values calculated at
the vertical boundaries. At steady state, both Nu values should be equal to provide conservation

of the total heat flux. It is commonly known (see e.g. [58, 59]) that for this type of steady natural

4+ This section is based on Y. Gulberg, Y. Feldman [61]
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convection flow, Nu~Ra®?°. As the Rayleigh number increases, the flow undergoes steady-
unsteady transition through the first Hopf bifurcation. Further increase of the Ra number
eventually leads to the turbulent flow regime, characterized by an increased heat flux rate through
the cavity boundaries governed by the Nu~Ra®33 relation [58, 59]. It is clear that the most
intuitive way to considerably decrease heat flux rate through the cavity boundaries would be to
completely fill up the cavity interior by any kind of homogeneous thermal insulator. However, this
naive approach will significantly increase costs and the overall weight of such thermal insulation.
A typical flow pattern inside the differentially heated cavity filled with thermal insulating materials
of different porosity is presented in Figure 3.13. As can be seen from Nu — Ra functionality (see
Fig. 3.14), there is no significant difference between ¢p = 0.8 and ¢ = 0.7 for high Ra values,

which can result in an idea that similar thermal insulation efficiency can be achieved by

introducing a small amount of bodies into a flow.

Figure 3.13. A typical flow field inside a differentially heated cavity filled with thermal insulating
material. Ra = 107, Porosity =V, /Vy, V, -void, V; -total. (a) ¢ = 0.9 (b) ¢ = 0.8 (c) ¢ = 0.7.
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Figure 3.14. Nu — Ra functionality for a differentially heated cavity filled with thermal insulating

material.

Another alternative comprising the key idea of the present study is to considerably decrease heat
flux rate through the cavity boundaries by intelligently suppressing the momentum of the flow in
accordance with a priori defined criteria. The fist criterion A is defined as A = |u}|? + |u;,|2 ,
where |uy| and |u§,| are the absolute values of perturbations of the corresponding velocity
components. The idea originates from the definition of the turbulent kinetic energy ey, equal to the
sum of squares of fluctuations of the velocity components, although the proposed criterion A can
not be formally related to ej, due to the phase differences between |uy| and |u§,| The second
criterion B is directly related to the absolute value of perturbation of the temperature B = |6’|. In
the present study, we demonstrate the impact of local suppressing the momentum of the flow by
locating cylindrical thermally passive obstacles of uniform diameter d = 0.04 in the regions with
maximal absolute values of the criteria A and B, as defined previously. Figure 3.15 demonstrates
the procedure used for the design of a "smart" thermal insulator aimed at decreasing the heat flux
rate for the natural convection flow inside a differentially heated cavity with thermally, perfectly
conducting lateral walls. The procedure is iterative and utilizes the A criterion. At the first iteration,
the linear stability analysis is performed for the flow within the cavity without obstacles, yielding

the value of critical Rayleigh number Ra,, for the first Hopf bifurcation. The corresponding fields
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of values of A and the temperature distribution at steady state with the superimposed streamlines
are shown in Fig.3.15-a. Then a pair of cylindrical obstacles are located at places where A reaches
its absolute maximum?®. At the next step, the linear stability analysis is performed for the modified
flow inside the cavity containing two embedded obstacles (see Fig. 3.15-b). As a result, we obtain
a new value of Ra,,, at which the modified flow characterized by a new distribution A undergoes
transition to unsteadiness. The next pair of obstacles can be located again at places where the new
values of A reach their absolute maximum. The above procedure is repeated until a priori chosen
stop condition is achieved (a twofold decrease in the average Nu number). Figs. (3.15 c-h)
demonstrate evolutionary stages of the modelled implant of porous media, which can be seen as a

prototype for a "smart" thermally insulating material based on the criterion A.
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> Note that for the configuration discussed the distribution of A is skew-symmetric relative to the
cavity center, i.e. A(x,y) = —A(L — x, L — y) and therefore the obstacles always come in pairs.
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Figure 3.15. Contours of the criterion A and the corresponding steady state distribution of
temperature 6, with superimposed streamlines obtained at Ra = 2.11 X 10° for: (a) no obstacles;
(b) 2 obstacles; (c) 4 obstacles; (d) 6 obstacles; (e) 8 obstacles; (f) 10 obstacles;  (g) 20 obstacles;

(h) 40 obstacles. Diameter of all the obstacles is equal to d = 0.04.

At the next stage, an alternative design of implant of the porous media was obtained by
applying an iterative procedure based on the value of the second optimization parameter B.
Evolution stages of the design corresponding to a different number of embedded cylindrical
obstacles are shown in Fig. 3.16%. It should be stressed that in the present study the morphological
structure of the modelled implants of porous media is restricted to unconnected packed beds (due
to the limitations of the IB method). The above limitation, however, can be violated if the distance
between any global maxima of A or B is equal or less than the diameter of the cylindrical obstacle.
In addition, none of the obstacles should touch or intersect any of the cavity boundaries. In both
cases, the location of the next largest value of A or B is sought and the morphological structure of
the current "candidate" of the porous media implant is tested for meeting all the restrictions. The
procedure of seeking a new location for the next pair of cylindrical obstacles should be repeated

until all the above restrictions are satisfied’.

® Note that for the configuration discussed, the distribution of B is skew-symmetric relative to the
cavity center and therefore the obstacles always come in pairs.

7 Typically, only one iteration was required for the configurations considered in the present
study.
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Figure 3.16. Contours of the criterion B and the corresponding steady state distribution of
temperature 8, with superimposed streamlines obtained at Ra = 2.11 X 10° for: (a) no obstacles;
(b) 2 obstacles; (c) 4 obstacles; (d) 6 obstacles; (e) 8 obstacles; (f) 10 obstacles; (g) 20 obstacles;
(h) 40 obstacles. Diameter of all the obstacles is equal to d = 0.04.

Embedding cylindrical obstacles is characterised by a twofold mechanism which can
increase an insulating efficiency of the cavity. First, for the given value of the Ra number, it
suppresses the overall momentum of the convective flow, which in turn leads to increasing
thickness of the thermal boundary layer, and results in lower temperature gradients in normal to
the vertical walls direction. Second, it delays the onset of unsteadiness, which means that the

natural convection flow in the cavity with embedded obstacles remains laminar and steady, even

at rapidly increasing Ra numbers. The effect of both mechanisms was quantified, as shown in Fig.

61



3.17. Indistinguishable differences are observed for both average Nu and critical Ra., values
obtained on 500 X 500 and 600 X 600, which successfully verifies grid independence of the results.
It can be also seen that utilizing the implants of porous media designed in accordance with the first
criterion A, (see Fig. 3.17-a) allows for a rapid decrease of the average Nu number values, attaining
half its original value for 40 embedded cylinders®. Note also that 40 cylinders only occupy 5% of
the total volume of the cavity. The dependency of Ra.,values on the number of obstacles is not as
monotonic, although the critical Ra., number of the final configuration consisting of 40 cylinders

is by an order of magnitude higher compared to its original value.
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Figure 3.17. Variation of the values of the averaged Nu number obtained for the vertical hot wall
of the cavity at Ra,, = 2.11 X 10° and the critical Rayleigh Ra,, number for the steady-unsteady
transition obtained by the linear stability analysis as a function of a number of cylindrical obstacles
for: (a) A optimization criterion; (b) B optimization criterion.

8 All the simulations were performed at Ra,, = 2.11 X 108, at which the flow without obstacles
undergoes steady-unsteady transition.
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The implants of porous media designed by utilizing the second criterion B, (see Fig. 3.17-b)
exhibit much lower efficiency in terms of thermal insulation. In fact, embedding the implants
consisting of 40 cylinders (the same amount as for criterion A) leads to only about 30% decrease
in the average Nu value. Moreover, after embedding 24 cylinders, the average NU number reaches
its asymptotic value, which does not deviate significantly with the number of embedded cylinders.
Similarly to the previous configuration, the dependency of the Ra., value on the number of
obstacles is not monotonic. It is remarkable that again, one order of magnitude difference is
observed between the initial and the final values of the critical Ra., number. It is worth noting that
the similar 30% decrease in average Nu value was also reported by Costa et al. [60] when
investigating the influence of solid inserts of thermal conductivity equal or less than the fluids
placed at the inner corners of differentially heated square enclosures. According to the authors, the
rationale for these inserts choice can be explained by the stagnation regions, which develop in the
vicinity of the corners. In the present study we revisit and explain formally the observed decrease

of heat flux rate by means of linear stability analysis of the natural convection flow.

"'Smart" thermo-insulating materials for 3D flows

In the present section, the concept of "smart" thermally insulating materials is validated for
the realistic 3D flows. The 2D configurations containing implants of porous media embedded into
the square differentially heated cavity are extruded in the direction, normal to the plane of 2D
cavity. As a result, the original 2D configurations are transformed into their 3D analogs,
comprising a cubic differentially cavity with thermally, perfectly conducting, lateral walls, and all
no-slip boundaries. The 2D circular obstacles are in turn transformed into 3D circular cylinders,
extending over the whole cavity width. Example of four of such 3D configurations corresponding
to the optimization criteria A and B, with patterns containing 20 and 40 cylinders, are shown in

Fig. 3.18.

All the simulations were performed for Ra = 2.11 X 10° corresponding to the value of the critical
Rayleigh number Ra,,, characterizing the transition to unsteadiness of the 2D flow inside a
differentially heated cavity with thermally, perfectly conducting horizontal walls. We note in

passing, that for a differentially heated cavity Ra.,,, < Rac,,, due to the damping affect of lateral

walls, which determines a steady state regime of all the 3D flows considered in the present study.
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Convergence to steadiness is assumed to be reached when the maximal point-wise relative

difference for a field at two consecutive time steps is less than 1075, Note also a striking

resemblance between the 3D and the corresponding 2D temperature distributions (see Figs. 3.15-

g, h, Figs. 3.16-g,h) are typical of this kind of convective flow. Table 1 presents the grid

independence study in terms of the Nu values averaged over the hot wall of the cavity as a function

of the amount of embedded obstacles. The results were obtained on 2003, 3003 and 4003 grids.
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Figure 3.18. 3D setup obtained by extrusion of the corresponding 2D configurations in the z
direction with superimposed temperature distribution at mid cross-section of the cavity obtained
at Ra = 2.11 X 10° by : (a) 20 cylinders location of which was obtained by utilizing optimization
criteria A and B; (b) 40 cylinders location of which was obtained by utilizing optimization criteria

A and B.
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Table 3.6: Verification of grid independence of the averaged Nu values calculated at the hot
wall of the cubic cavity for Ra = 2.11 x 10°

Criterion A Criterion B

Number Grid Grid

of cylinders 2003 3003 4003 2003 3003 4003
0 8.353 8.353 8.353 8.353 8.353 8.353
10 6.449 6.506 6.552 7.043 6.985 6.992
20 4.943 5.087 5.126 6.588 6.755 6.724
30 4.281 4.327 4.356 6.333 6.426 6.328
40 3.535 3.569 3.589 6.214 6.34 6.328

It can be seen that the maximum deviation in the averaged Nu values for 3003 and 4003 grids
does not exceed 1%, successfully verifying a grid independence of the results. All the calculations
of 3D flow further presented in this section were obtained on a 4003 computational grid. It was
also verified (not shown here) that the values of Nu numbers averaged over the hot and the cold
walls are equal up to the fourth decimal digit, which proves a conservation of the overall heat flux

through the cavity boundaries.

The final validation of concept of "smart" thermally insulating materials designed by utilizing both
A and B optimization criteria for 2D and 3D flows is summarized in Table 3.7. It is remarkable
that in a 3D differentially heated cavity, the ultimate morphology of the implant of porous media
designed by utilizing criterion A, and consisting of 40 cylinders, yield slightly higher than two fold
decrease in average Nu value than the two fold decrease observed for the corresponding 2D
configuration. In contrast, when the second optimization criterion B is used, both 2D and 3D

implants of porous media yield to only a 30% decrease in the average Nu number.

Table 3.7: Validation of the concept of "smart" thermally insulating materials for 2D and 3D
flows. The Nu values were averaged over a hot wall of a differentially heated cavity with all
thermally perfectly conducting horizontal (2D) and lateral (3D) walls.

Number of cylinders, N | 0 10 20 30 40

Criterion A D 8.2 6.728 5215 4568  3.906
Criterion B 8.2 7270  7.089  6.756  6.750
Criterion A D 8353 6552  5.126 4356  3.589
Criterion B 8353 6992 6.724 6328  6.328
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Chapter 4
Conclusions

The present study was aimed at investigating passive control of natural convection flow in
confined enclosures, and to develop a novel methodology to further enhance passive control of
confined natural convection flows. At the first stage, a heuristic approach applied to the control of
laminar, natural convection flow inside spherical shells with concentric, eccentric, equi-spaced and
non-equi-spaced, zero thickness internal baffles was investigated by the IBM. Numerical
simulations were performed by extending the general pressure—velocity segregated solver [38],
(based on the tensor product factorization (TPF) method combined with the Thomas solver (TPT))
with the immersed boundary functionality. The results obtained were extensively verified by

performing a detailed grid independence study and comparison with previously published data.

The insulation efficiency of the spherical shell was studied for up to five walls,
corresponding to four equi-spaced, concentric internal layers. It was found that the number of
internal baffles had a considerable effect on the average Nu number, whose value was computed
for a shell with four equi-spaced, concentric internal layers decreased by up to fourfold, compared
to that obtained for a single-layer spherical shell. It was shown that the length scale of the flow is
determined by the difference between two adjacent walls. This observation allowed derivation of
a unified functional dependency, correlating the modified Nu* and Ra* numbers for a spherical
shell with up to four equi-spaced, concentric, internal layers. The effect of the eccentricity of the
internal baffle (both horizontal and vertical) on the developing various flow patterns and on the
insulating efficiency of a spherical shell was also investigated. The results — both qualitative and
quantitative — showed that for a particular Ra, both vertical and horizontal eccentricities have a
quite limited impact on the total heat flux rate through the shell boundaries. In addition, the effect
of the width of the internal layer and its proximity to the hot and cold boundaries on the total heat
flux rate was studied. It was found that the configuration with the narrowest concentric layer close
to the hot boundary provided the best insulating efficiency, characterized by a Nu value that was

about 15% lower than that obtained for the same operating conditions for the equi-spaced spherical
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shell. In contrast, the Nu for the spherical shell with the narrowest layer close to the cold boundary

was about 16% higher than that of the equi-spaced spherical shell.

In the second stage of the study, we established the concept of “smart” thermo-insulation.
The concept of design of "smart" thermally insulating materials based on heterogeneous,
thermally, passive porous media, was established and extensively validated for both 2D and 3D
confined natural convection flows. The porous media was modelled by unconnected packed beds
of circular cylinders. The location of each cylinder was determined by an iterative procedure based
on the linear stability analysis of the flow fields. The affect of both optimization criteria A and B
related to perturbation of the velocity and the temperature fields respectively on insulation
properties of 2D and 3D differentially heated cavities has been extensively investigated. It was
found that for the given value of Ra, the implants of porous media designed by utilizing criterion
A and occupying only 5% of the overall cavity volume can decrease the overall heat flux rate by
a factor of 2 through the boundaries of 2D and 3D differentially heated cavities. In contrast, the
implants of porous media designed by using criterion B can only decrease the heat flux rate by
30% for both 2D and 3D configurations. Implants of porous media designed by both criteria delay
the transition to unsteadiness of the 2D natural convection flow, which is reflected by increasing
the critical Ra., value by an order of magnitude when using the ultimate (consisting of 40

cylinders) patterns of implants of both types.

The present work summarizes my first effort aimed at developing a systematic formal
methodology for establishing a concept for design of "smart" thermally, insulating materials. In
practice, such materials can be built of heterogenous porous media whose geometry and spatial
orientation is intelligently adapted to any specific engineering configuration. In the present study,
the heterogeneous porous media was modelled by unconnected packed beds of equi-sized circular
cylinders (both 2D and 3D). However, real porous media materials typically contain pores of
varying sizes. Generalization of the results obtained in the present study for heterogeneous porous
media, modelled by the cylinders of varying sizes, requires statistical evaluation of the whole set

of "similar" systems, and will be the focus of future studies.
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