

LIST OF CONTENTS Materials

MATERIALS - INTRODUCTION	2
STORAGE OF ELASTOMERS AND PLASTOMERS	5
ECOPUR	7
H-ECOPUR	10
S-ECOPUR	14
T-ECOPUR	18
G-ECOPUR	20
ECORUBBER 1	22
ECORUBBER-H	26
ECORUBBER 2	28
ECORUBBER 3	32
ECOSIL	34
ECOTAL	36
ECOMID	39
ECOFLON 1	42
ECOFLON 2	44
ЕСОРАЕК	49
ECOFLAS	54
ECOTEX	56
S-ECOPUR-57 D	59
ECORUBBER 3 - 85A-w-FG	61
ECORUBBER H-85A-b-LT	63

Materials

In the technology of sealing, mainly representatives of two groups of macromolecular (polymer) substances are used, i.e. substances of the group of elastomers and thermoplastics (plastomers).

Macromolecular substances are organic compounds whose molecules exist of several thousands, often even of millions, of atoms which are known as macro, giant, string or chain molecules. They can either be created by modification of highly molecular natural materials (e.g. natural rubber) or by depositing low-molecular elements (so-called monomers) through various chemical reactions (synthetic materials, "plastics").

Elastomers

Elastomers are materials that can be highly expanded by exerting relatively little power. Because of their structure, elastomers have a high retractility, which means that the remaining deformation is very small. Basically there are two main groups of elastomers: chemically crosslinked and thermoplastic ones.

Chemically crosslinked (vulcanized) elastomers or rubber materials are polymers which are formed by crosslinking the macromolecules with various vulcanisation additives. Due to this chemical bonds they **do not melt** and they **begin to decompose at high temperatures.** In addition elastomers **swell more or less intensively**, depending on different media, and **do not dissolve**.

Thermoplastic elastomers have the significant properties of elastomers over a wide temperature range, but they are physically and not chemically crosslinked. Therefore they can be melted at high temperatures and can be processed with the traditional thermoplastic processing techniques. Thermoplastic elastomers **are soluble**; generally they **swell less** than their chemically crosslinked equivalents.

Elastomers are normally classified as "polar" and "nonpolar" and further as "saturated" and "unsaturated" types. To a certain extent, polarity allows statements about swelling and chemical resistance, and saturation about ozone and ageing resistance of the respective material.

Saturation

Saturation of elastomers indicates whether there are free double bonds in the macromolecules of the material.

Saturated elastomers do not have double bonds in their macromolecules and are therefore significantly better resistant to ozone and ageing than unsaturated elastomers.

Polarity


As mentioned above, the polarity of a synthetic material provides information on its swelling behaviour and chemical resistance in different media. A rule of thumb says that polar elastomers are incompatible with polar media and nonpolar elastomers with nonpolar media. In this context it must, however, be said that the chemical resistance of an elastomer cannot or only insufficiently be assessed by an amateur.

Polar media are for instance:	water, detergents, alcohols, acids and bases, ketones, esters, etc.
Nonpolar media are for instance:	mineral oil, petrols, vegetable and animal oils and fats, silicone oils and grease and hydrocarbons.

The following graphics shows the most important chemically and physically crosslinked elastomers used in sealing technology.

The most important elastomers of sealing technology

*) Bold face printed elastomers are in the Economos standard program

Legend:			
NR	Natural rubber	FPM	Fluorocarbon rubber
IR	Isoprene rubber	MVQ	Vinyl-methyl silicone rubber
SBR	Styrene-butadiene rubber	CO, ECO	Epichlorohydrin rubber
BR	Butadiene rubber	AU	Polyester urethane
IIR	Isobutene-isoprene rubber	EU	Polyether urethane
CIIR	Chloro-isobutene-isoprene rubber	TPU (YAU)	Thermoplastic polyurethane elastomer basing on polyester
BIIR	Bromo-isobutene-isoprene rubber	CPU (AU)	Cast polyurethane elastomer basing on polyester
EPDM	Ethylene-propylene-diene rubber		
EPM	Ehylene-propylene rubber		
NBR	Acrylonitrile-butadiene rubber		
	(Nitrile rubber)		
CR	Chloroprene rubber		
H-NBR	Hydrogenated nitrile rubber		
ACM	Polyacrylate rubber		
CSM	Chlorosulphonated polyethylene rubber		

ECONOMOS[®] AUSTRIA

Shelf Life of Elastomers and Plastics

The following guidelines settle the storage conditions and the shelf life of semifinished products and seals made from ECOPUR, H-ECOPUR, G-ECOPUR, S-ECOPUR, T-ECOPUR, ECORUBBER 1, ECORUBBER 2 and 3, ECORUBBER-H and ECOSIL.

The same recommendations are valid for the plastic products made from ECOTAL, ECOMID, ECOFLON 1 and ECOFLON 2 and also for ECORYT and ECOPAEK, because there exist no standards for these materials.

During storage, the characteristics of elastomeric products can on the one hand be damaged by chemical reactions wich are basically caused by the influence of heat, light, oxygen, ozone and various chemicals on the material, and on the other hand by physical processes. These physical processes, which are called physical ageing, are either due to the influence of external tensions leading to cracks and permanent deformation of the machined parts, or to the migration of plasticizers from the semifinished products which makes the material more brittle and leads to deformation of the parts.

Therefore, rubber products will only maintain their characteristics without major changes for several years, if proper storage is ensured. In this context, it must be said that ageing and storage properties of rubber products depend considerably on their chemical structure. Unsaturated elastomers, such as nitrite rubber (ECORUBBER 1) age much quicker under improper storage conditions than saturated elastomers, such as fluororubbers (ECORUBBER 2). The ideal characteristics of these products can only be maintained for longer periods of time, if the products are stored in accordance with the following recommendations of DIN 7716.

Storage conditions for elastomers and plastics

- Rubber and plastic products should be stored in a cool and dry environment. Storage temperature should be around 15°C and not exceed 25°C; relative humidity should be less than 65%.
- Rubber and plastic products should not be exposed to light above all direct sunlight and artificial light with a high UV content (bulbs to be preferred to neon lamps).
- The storage rooms must not contain any ozone-producing devices, such as electrics motors and high-voltage divices.
- Rubber products should not be exposed to draft. This can be ensured by using airtight packaging wich must not, however, contain plasticizers, Polyethylene is most suitable for such purposes.
- Contact between rubber products of different compositions is to be avoided.
- Contact between rubber and plastic products and chemicals and / or dangerous metals (e.g. copper, manganese) is to be avoided.

• Rubber and plastic products should be stored as tension-free as possible, i.e. the parts should not be subject to tensile, pressure or bending deformation. Rubber products, above all seals must not be hung on nails or tightly folded or rolled for reasons of space.

Shelf life of semi-finished products:

If all these recommendations are observed, semi-finished products can be stored for the periods of time indicated below without loosing their typical properties:

> ECORUBBER 1 (NBR) approx.5 years

ECOPUR and T-ECOPUR approx.8 years

ECORUBBER 3 and ECORUBBER-H approx.8 years

ECORUBBER 2, ECOSIL, ECOTAL and ECOMID approx.10 years

H-ECOPUR, G-ECOPUR, S-ECOPUR, ECOFLON 1, ECOFLON 2 approx.12 years

ECORYT and ECOPAEK approx. 12 years

Shelf life of seals:

Normally the shelf life of seals is shorter compared to tubes/billets. The following recommendations are also valid for seals which are produced out of a material which is at the end of its "tube"-shelf life.

ECORUBBER 1 (NBR) approx. 2 years

ECOPUR und T-ECOPUR approx. 4 years

ECORUBBER 3 und ECORUBBER-H approx. 4 years

ECORUBBER 2, ECOSIL, ECOTAL und ECOMID approx. 6 years

H-ECOPUR, G-ECOPUR, S-ECOPUR, ECOFLON 1, ECOFLON 2 approx. 8 years

ECORYT und ECOPAEK approx. 8 years

The aforementioned instructions, recommendations and guidelines are according to our best knowledge. We can, however, not accept any guarantee and / or liability in this respect.

ECOPUR (TPU) - green

ECOPUR is a thermoplastic polyurethane-elastomer (TPU) on the basis of polyester developed by ECONOMOS. It belongs to the group of the polar and saturated elastomers. The use of special raw materials makes this material especially suitable for sealing purposes. ECOPUR has a green colour.

Characteristics:

As compared to chemically crosslinked elastomers (ECORUBBER 1 - NBR, ECORUBBER 2 - FPM, ECORUBBER 3 - EPDM) ECOPUR has superior mechanical qualities (see table).

Typical properties of ECOFUR and ECORUBBER 1.				
Designation	Tensile strength	Elongation at	Tear strength	Abrasion
-	DIN 53504	break	DIN 53515	DIN 53516
		DIN 53504		
ECOPUR	50 N/mm^2	480 %	120 N/mm	18 mm ³
ECORUBBER I	17 N/mm^2	150 %	20 N/mm	90 mm^3

Typical properties of ECOPUR and ECORUBBER I:

ECOPUR has a much higher extrusion-resistance than rubber elastomers. The diagram below shows the tolerated gaps in dependence on pressure for various materials and/or material combinations.

This comparison underlines the special suitability of ECOPUR for sealing purposes. In addition, ECOPUR excels with an extreme low compression set (20% at 70°C/70h). Service temperatures range from -30°C to +110°C. Seite 7 - Stand Februar 2001 - Werkstoffe/E

Due to its saturated structure ECOPUR has good ozone, weather and temperature resistance. Swelling in mineral oils is relatively low in comparison to many chemically crosslinked elastomers. Gas permeability of ECOPUR is very low (inclination to explosive decompression is not relevant).

Just like most polyurethane elastomers, ECOPUR is more radiation-resistant than chemically crosslinked elastomers.

Resistance:

good resistance	medium resistance	little to no resistance
Hydraulic fluids basing on	Non-alcoholic fuels	Aromatic hydrocarbons
mineral oil		chlorinated hydrocarbons
Mineral oils and grease (certain additives may be	Biologically degradable hydraulic oils (HEES, HETG)	Ketones, alcohols, glycols
destructive)		
Water up to 40°C	Fire resistant pressure fluids, HFA and HFB up to max. +30°C	Fire resistant pressure fluids of the HFC and HFD groups
Aliphatic hydrocarbons (propane, butane)	Silicone oils and grease	Hot water, steam, alkalis, amines, acids, bases
Compressed air up to 110 °C		Brake fluid basing on glycol

Application:

ECOPUR is mainly used where high demands are made on mechanical properties and wear-resistance in addition to good resistance to mineral oil.

- e.g.: Seals that have to meet high demands on low friction, little wear, high extrusion strength, simple fitting (snap and/or slip-on installation), small size and long service life.
- Main use: rod seals piston seals wipers rotor seals O-rings

Encl.: Data sheet

MATERIAL DATA SHEET

ECOPUR (green)

Thermoplastic polyurethane-elastomer (TPU)	DIN	<u>ASTM</u>
on the basis of polyester	YAU	YAU

Property	Unit	Value	Standard
Durometer hardness	SHORE A	95 ± 2	DIN 53505
Durometer hardness	SHORE D	48 ± 3	DIN 53505
Density	g/cm ³	$1,20 \pm 0,01$	DIN 53479
Tensile strength	N/mm ²	≥ 40	DIN 53504
Elongation at break	%	≥ 430	DIN 53504
100 % modulus	N/mm ²	≥ 12	DIN 53504
Compression set:			
70°C / 24h, 20 % compression	%	≤ 30	
Compression set: 100°C / 24h, 20 % compression	%	≤ 35	
Compression set:	70	<u> </u>	
70°C/70h, 10 % compression	%	20	DIN ISO 815
Tear strength	N/mm	≥ 100	DIN 53515
Rebound resilience	%	42	DIN 53512
Abrasion	mm ³	18	DIN 53516
Minimum service temperature	°C	-30	
Maximum service temperature	°C	+110	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, July 1996 Dr. TS/He wdpure/werkstoffe

H-ECOPUR (TPU) - red

H-ECOPUR is a thermoplastic polyurethane elastomer (TPU) developed by ECONOMOS. It is hydrolysis resistant and belongs to the group of polar and saturated elastomers. The use of special raw materials makes this material especially suitable for use in water, biologically degradable fluids, fire-resistant liquids (HFA, HFB) and mineral oils with additives. H-ECOPUR is red.

Characteristics:

As compared to ECOPUR, H-ECOPUR has about the same mechanical properties. The compression set is extremely low (20% at 70°C/70h). Application temperatures range from -20° C to $+110^{\circ}$ C.

The main difference is the - in the case of polyurethane elastomers - unusually high hydrolysis stability and the high chemical resistance. Therefore it can be recommended for use in hot water and biologically degradable fluids. The high chemical resistance of H-ECOPUR can be seen in the following diagrams:

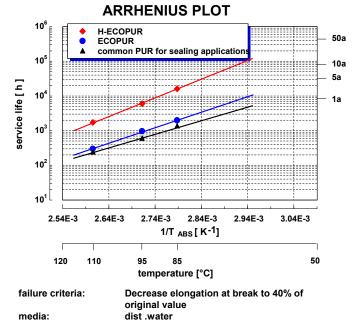
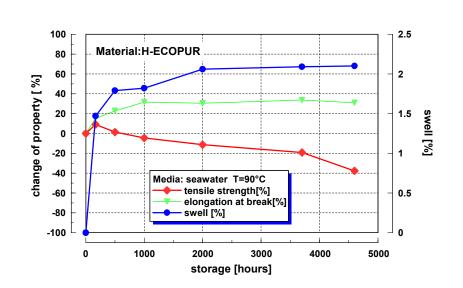



Fig. 1 Arrhenius plot for ageing of various polyurethane elastomers in distilled water

AUSTRIA

Fig. 2 Influence of hot sea water (90°C) on the properties of H-ECOPUR (tensile properties, volume change)

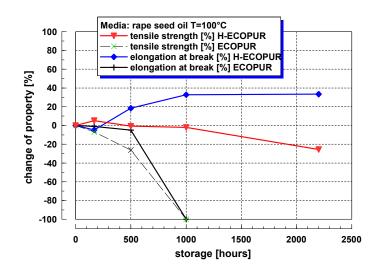


Fig. 3 Influence of a biologically degradable hydraulic fluid (rape seed oil, 100°C) on the tensile properties of H-ECOPUR and ECOPUR

Because of its saturated nature and its chemical structure H-ECOPUR is highly ozone, weather and temperature resistant. Due to its high hydrolysis stability, it is especially recommended for use in tropical regions. As compared to chemically crosslinked elastomers the swelling in mineral oils is very small. Test results show that the gas permeability of H-ECOPUR is even lower than that of ECOPUR and therefore H-ECOPUR is especially recommended for the use in high pressure gases (piston-accumulator). Just like with ECOPUR, H-ECOPUR is highly radiation resistant.

ECONOMOS[®] AUSTRIA

Resistance:

good resistance	medium resistance	little to no resistance
Hydraulic fluids basing on mineral oil	Fire-resistant fluids of type HFC (water-glycol mixture)	Aromatic hydrocarbons
Biologically degradable hydraulic fluids	Some additives for power water (e.g. fungicides) can have destructive effects	Chlorinated hydrocarbons
Fire-restistant pressure fluids HFA and HFB	Alcohols	Ketones, glycols
Mineral oils and grease (certain additives can have destructive effects)	Fuels free of alcohol (except premium blend petrol and unleaded fuels)	Brake fluids basing on glycol
Silicone oils and grease		Hot steam exceeding 100°C, alkalis, amines
Aliphatic hydrocarbons (for example propane, butane)		Concentrated acids and bases
Hot water and sea water up to +90°C		
Diluted acids and bases		

Application:

H-ECOPUR is mainly used for applications where high hydrolysis stability and chemical resistance (also to many polar hydraulic fluids) are demanded in addition to good mineral oil resistance. Mechanical properties and wear resistance correspond approximately to that of ECOPUR.

e.g.: H-ECOPUR fulfils the sealing demands for little friction, little wear, high extrusion-strength, simple fitting (snap and/or slip-on installation), small construction size.

as well as the additional demands for hydrolysis stability (mining, water hydraulics) and chemical resistance (biologically degradable hydraulic oils).

ATTENTION!

For use of pre-load elements for H-ECOPUR profiles in biologically degradable fluids, only FKM (ECORUBBER 2) is recommended.

Main use: rod seals piston seals wipers O-rings for water hydraulic and in degradable oils

Encl.: Data sheet Seite 12 - Stand Februar 2001 - Werkstoffe/E

MATERIAL DATA SHEET

H - ECOPUR (red)

Thermoplastic polyurethane-elastomer (TPU)	DIN	ASTM
on the basis of polyester (hydrolysis resistant)	YAU	YAU

Property	Unit	Value	Standard
Durometer hardness	SHORE A	95 ± 2	DIN 53505
Durometer hardness	SHORE D	48 ±3	DIN 53505
Density	g/cm ³	$1,20 \pm 0,01$	DIN 53479
Tensile strength	N/mm ²	≥ 50	DIN 53504
Elongation at break	%	≥ 330	DIN 53504
100 % modulus	N/mm ²	≥ 13	DIN 53504
Compression set:			
70°C / 24h, 20 % compression	%	≤ 27	
Compression set:			
100°C / 24h, 20 % compression	%	≤ 3 3	
Compression set:			
70°C/70h, 10 % compression	%	20	DIN ISO 815
Tear strength	N/mm	≥ 100	DIN 53515
Rebound resilience	%	29	DIN 53512
Abrasion	mm ³	17	DIN 53516
Minimum service temperature	°C	-20	
Maximum service temperature	°C	+110	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. These values are only tested on selected samples.

Judenburg, July 1996 Dr. TS/He wdhpure/werkstoffe

ECONOMOS[®] AUSTRIA

S-ECOPUR

S-ECOPUR is a thermoplastic polyurethane elastomer (TPU) developed by ECONOMOS. The new brand has been optimised in regard of the tribological characteristics (friction and wear), achieved by an addition of a synergetic combination of solid lubricants.

The effect of this modification is a significantly improved sliding property compared to other sealing materials from the group of polyurethanes and elastomers. The better sliding properties directly resulting in a higher wear resistance at dry running conditions.

Because of its high chemical resistance and its low coefficient of friction, S-ECOPUR is best suited in tribological systems with lack of lubrication, as for example in clear water hydraulics, in water-based, fire resistant hydraulic fluids of the category HFA and HFB and in oil-free pneumatics.

Because of the incorporation of the solid lubricants S-ECOPUR has a grey-black colouring.

Characteristics:

Compared to H-ECOPUR, S-ECOPUR has superior sliding properties. Figure 1 shows the sliding friction coefficient against a polished steel ball.

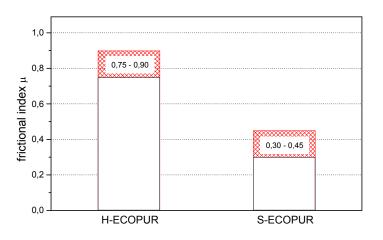


Fig.1: Friction coefficient µ of H-ECOPUR and S-ECOPUR against steel

This figure clearly shows the superior sliding properties of S-ECOPUR, which has a friction coefficient range of 0,30 to 0,45 against steel (without lubrication). The same test with

AUSTRIA

H-ECOPUR indicates a friction coefficient of 0,75 to 0,90 allowing the conclusion, that friction can be reduced by S-ECOPUR up to an extend of 50%.

The good chemical resistance of S-ECOPUR also permits its application in water-based hydraulic fluids (see to fig. 2 and 3).

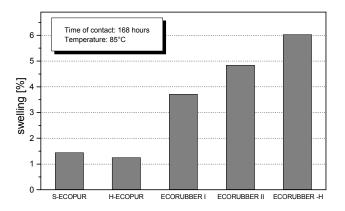


Fig.2: Swelling after 168 hr. at 85°C of S-ECOPUR and H-ECOPUR in a 5% HFA-fluid.

Shown in figure 2, the swelling of S-ECOPUR (1,4%) is only slightly above the value of H-ECOPUR, which can be considered as very low compared with other seal materials.

Fig.3: Tensile strength of H-ECOPUR and S-ECOPUR as a function of the storage period in a HFA-fluid at 85°C.

A long-term storage test in this HFA-fluid (fig.3) is furthermore suggesting that S-ECOPUR meets almost the high level of chemical resistance of H-ECOPUR.

AUSTRIA

After a storage time of 1000 hours at an extraordinary high temperature of 85°C the loss of the tensile strength amounts to only 25%. This loss is considered to be extremely low for polyurethane elastomers.

This high chemical resistance is obtained due to the fact that the same basic materials have been applied as for H-ECOPUR. In addition we consciously refrained to use molybdenum disulphide (MoS_2).

Similiar to ECOPUR and H-ECOPUR, S-ECOPUR has a very high extrusion resistance, a high tear strength and an extremely low compression set.

good resistance	medium resistance	little to no resistance
· · ·	21	Aromatic hydrocarbons
mineral oil	(water-glycol mixture)	
Biologically degradable	1 0	Chlorinated hydrocarbons
hydraulic fluids	fungicides) can have destructive effects	
Fire-restistant pressure fluids	Alcohols	Ketones, glycols
HFA and HFB		
Mineral oils and grease	Fuels free of alcohol (except premium	Brake fluids basing on glycol
(certain additives can have	blend petrol and unleaded fuels)	
destructive effects)		
Silicone oils and grease		Hot steam exceeding 100°C,
		alkalis, amines
Aliphatic hydrocarbons (for		Concentrated acids and bases
example propane, butane)		
Hot water and sea water up to		
+90°C		
Diluted acids and bases		

Resistance:

Application:

S-ECOPUR is mainly used where high demands are made to the tribological characters of the sealing material. The mechanical properties and the chemical resistance correspond to that of H-ECOPUR.

S-ECOPUR is especially suited for

- pneumatic applications
- particular operating conditions as dry running conditions, high sliding speeds, high pressure applikations and standstill under pressure
- special demands to friction limitation, head production, slip-stick-conditions, starting behavior and control movements
- working fluids with badly lubricating properties, as water, water-based fluids, gases and fluids with degreasing properties.

Encl.: Data sheet

MATERIAL DATA SHEET

S - ECOPUR (grey/black)

Self-lubricated thermoplastic polyurethane-		
elastomer (TPU) with lubricating agents for	DIN	<u>ASTM</u>
reduced friction applications	YAU	YAU

Property	Unit	Value	Standard
Durometer hardness	SHORE A	95 ± 2	DIN 53505
Durometer hardness	SHORE D	48 ± 3	DIN 53505
Density	g/cm ³	$1,24 \pm 0,02$	DIN 53479
Tensile strength	N/mm ²	50	DIN 53504
Elongation at break	%	380	DIN 53504
100 % modulus	N/mm ²	17	DIN 53504
Compression set:			
70°C / 24h, 20 % compression	%	25	
Compression set:			
100°C / 24h, 20 % compression	%	30	
Compression set:			
70°C/70h, 10 % compression	%		DIN ISO 815
Tear strength	N/mm	120	DIN 53515
Rebound resilience	%		DIN 53512
Abrasion	mm ³	17	DIN 53516
Minimum service temperature	°C	-20	
Maximum service temperature	°C	+110	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. These values are only tested on selected samples.

Judenburg, October 1998 Dr. TS/He wdhpurgrey/werkstoffe

T-ECOPUR (TPU) - blue

T-ECOPUR is a modified ECOPUR for the use at low temperatures. The difference to ECOPUR is a considerably lower brittleness point (glass temperature -42°C), greater elasticity and a compression set at -40°C of 45 % (better than silicone rubber). The lowest operating temperature is about -50°C.

Application:

The same as with ECOPUR but for the use at low temperatures, mainly in cold regions and for deep freezing.

Encl.: Data sheet

MATERIAL DATA SHEET

T-ECOPUR (blue)

Thermoplastic polyurethane-elastomer (TPU) for low temperature application

Property	Unit	Value	Standard
Durometer hardness	SHORE A	95 ± 2	DIN 53505
Durometer hardness	SHORE D	48 ± 2	DIN 53505
Density	g/cm ³	$1,17 \pm 0,01$	DIN 53479
Tensile strength	N/mm ²	≥ 50	DIN 53504
Elongation at break	%	≥ 450	DIN 53504
100 % modulus	N/mm ²	≥ 12	DIN 53504
Compression set:			
70°C/70h, 10 % compression	%	20	DIN ISO 815
Compression set			
at - 40°C	%	45	DIN ISO 815
Tear strength	N/mm	80	DIN 53515
Rebound resilience	%	50	DIN 53512
Abrasion	mm ³	15	DIN 53516
Glass temperature	°C	- 42	DIN 53445
Minimum service temperature	°C	-50	
Maximum service temperature	°C	+110	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, July 1996 Dr. TS/He wdtpure/werkstoffe

G-ECOPUR (CPU) - red

G-ECOPUR is a cast elastomer developed by ECONOMOS. It is made with a special casting procedure out of the same basic materials as H-ECOPUR, therefore the chemical characteristics can be compared with those of H-ECOPUR.

Application:

The same as with H-ECOPUR and ECOPUR, but for material dimensions above 550mm up to 2500 mm and special dimensions with extreme wall thickness.

Encl. Data sheet

MATERIAL DATA SHEET

G-ECOPUR (RED)

Casting polyurethane-elastomer (CPU) on the	<u>DIN</u>	<u>ASTM</u>
basis of polyester (hydrolysis resistant)	AU	AU

Property	Unit	Value	Standard
Durometer hardness	SHORE A	95 ± 2	DIN 53505
Durometer hardness	SHORE D	47 ± 3	DIN 53505
Density	g/cm ³	$1,20 \pm 0,01$	DIN 53479
Tensile strength	N/mm ²	≥ 45	DIN 53504
Elongation at break	%	≥ 280	DIN 53504
100 % modulus	N/mm ²	≥ 11	DIN 53504
Compression set:			
70°C/24h, 20 % compression	%	≤30	
Compression set:			
100°C/24h, 20 % compression	%	≤40	
Compression set:			
70°C/70h, 10 % compression	%	20	DIN ISO 815
Tear strength	N/mm	≥40	DIN 53515
Rebound resilience	%	43	DIN 53512
Abrasion	mm ³	25	DIN 53516
Minimum service temperature	°C	-30	
Maximum service temperature	°C	+110	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, July 1996 Dr. TS/He wdgpure/werkstoffe

ECORUBBER 1 (NBR) – black Improved Quality

The "new" grade of ECORUBBER 1 is a semifinished material made of sulphurvulcanised acrylo-nitrile-butadiene rubber (NBR) produced by ECONOMOS. It belongs to the group of polar and unsaturated elastomers. Due to the unsatisfactory shrinkage behaviour of the "old" grade in slight swelling oils for which NBR elastomers are usually used, ECONOMOS have decided to improve the swelling behaviour in this kind of products. The result is this "new" grade of ECORUBBER 1 which replaces the former product from manufacturing date week 21/99; the tubes in the new quality are additionally signed with an "A" on the label.

Characteristics:

The new material has – compared to the former quality – a little bit higher tensile strength, better tear strength and abrasion resistance (90mm³). The service temperature ranges from -30°C to +100°C (short exposure to +120°C possible). At high temperatures, ageing is accelerated and the material becomes hard and brittle. In oxygen atmosphere (air) this effect starts at about 80° C, under exclusion of air ageing occurs slower (e.g. hot oil).

Due to its unsaturated structure, ozone, weather and ageing resistance of this elastomer is – compared to saturated elastomers - only **small** (caution at storage). Swelling in mineral oil is also small, but depends very much on the ingredients of the oil. Gas permeability is quite high and therefore there is an inclination to explosive decompression, through which parts of the material blast out.

Pictures 1 and 2 are showing the compatibility results of the two grades measured in some typical hydraulic fluids

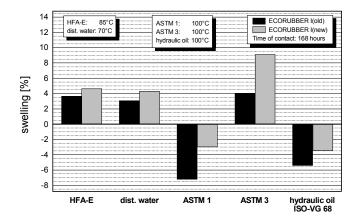


Fig.1: Volume change of ECORUBBER 1 "old" and "new" in various hydraulic fluids after an immersion period of 168 hours

Seite 22 - Stand Februar 2001 - Werkstoffe/E

ECONOMOS[®] AUSTRIA

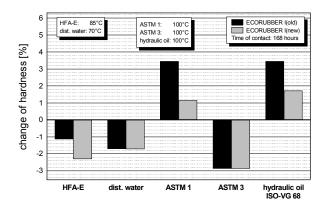


Fig. 2: Change of Shore A hardness of ECORUBBER 1 "old" and "new" in various hydraulic fluids after an immersion period of 168 hours.

The figures are clearly demonstrating that both grades have similar compatibility in aqeous fluids (e.g. distilled water and a fire-resistant pressure fluid of category HFA). The new grade has only slightly higher swelling values, but the volume change itself is only 5% and therefore very small for such applications.

In the reference oil for low swelling mineral oils, the ASTM oil No. 1 the new grade shows a clearly better compatibility with a shinkage of only -3% compared to more than -7% of the old grade. Therefore the increase of hardness is very small in comparison to more than +3% of the former grade.

Also the influence of a standard hydraulic oil of the viscosity class ISO-VG 68 is clearly lower. Only in the high swelling oils like ASTM reference oil No 3 the old grade of ECORUBBER 1 has a little better compatibility. Nevertheless in this kind of oils usually rubbers of the group of H-NBR and FPM are used.

Resistance.		
good resistance	medium resistance	little to no resistance
Mineral oils and greases	Fuels with aromatic parts up to 40 % (leaded fuels)	Aromatic hydrocarbons (toluene, benzene)
Aliphatic hydrocarbons (propane, butane)	Biologically degradable hydraulic fluids (test necessary)	Chlorinated hydrocarbons (trichloro- and perchloroethylene)
Water		Brake fluids basing on glycol
Fire-resistant pressure fluids of the HFA, HFB, HFC group	Silicone oils and greases (oils can cause shrinkage)	Fire-resistant pressure fluids of the HFD group (phosphate ester)
Vegetable and animal oils and fats	fire-resistant fluids category HFD-U	Polar solvents (acetone, ethyl- acetate)
Diesel fuel		
Many diluted acids and bases, saline solutions at room temperature		

Resistance:

Applications:

ECORUBBER 1 is mainly used in applications where high elasticity and extremely good compression set are called for in addition to good fuel and mineral oil resistance.

- e.g.: in sealing technology where "soft seals" are essential, or as a pre-load element for less elastic materials.
- Main use: rod seals for low pressure piston seals for low pressure wipers for special cases rotor seals (oil seals, V-packings) O-rings

Encl.: Data sheet

MATERIAL DATA SHEET

ECORUBBER 1 (black), "NEW" valid from prod.-date 21/99 Acrylonitrile - Butadiene- Rubber (NBR) <u>DIN / ISO</u> <u>ASTM</u> NBR NBR

Property	Unit	Value	Standard
Durometer hardness	SHORE A	85 ± 5	DIN 53505
Density	g/cm ³	$1,31 \pm 0,02$	DIN 53479
Tensile strength	N/mm ²	≥ 16	DIN 53504
Elongation at break	%	≥ 130	DIN 53504
100% Modulus	N/mm ²	≥ 11,0	DIN 53504
Compression set: 100°C / 22h	%	≤ 15	DIN ISO 815
Tear strength	N/mm	20	DIN 53515
Rebound resilience	%	28	DIN 53512
Abrasion	mm ³	90	DIN 53516
Minimum service temperature	°C	-30	
Maximum service temperature	°C	+100	
Glass transition temperature	°C	-28	DSC
Swelling behavior in ASTM Oil No.1 acc. DIN 53521 168h/100°C: Change in durometer hardness Volume change	Shore A	+1 -3,0	DIN 53505 DIN 53521
Swelling behavior in ASTM Oil No.3		-5,0	DIN 33321
acc. DIN 53521 168h/100°C: Change in durometer hardness Volume change	Shore A %	-3 +9,1	DIN 53505 DIN 53521
Heat resistance, air 168h/100°C: Change in durometer hardness Volume change	Shore A %	+2 -0,5	DIN 53505 DIN 53521
Swelling behavior, water 168h/70°C: Change in durometer hardness Volume change	Shore A %	-3 +4,0	DIN 53505 DIN 53521

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

ECONOMOS[®] AUSTRIA

ECORUBBER-H (H-NBR) - black

ECORUBBER-H is a semi-finished material consisting of peroxide-crosslinked hydrogenated acrylonitrile-butadiene-rubber produced by ECONOMOS. ECORUBBER-H belongs to the group of polar and saturated elastomers. ECORUBBER-H is **not** filled with carbon black, but it is coloured black.

Characteristics:

As compared to ECORUBBER 1, ECORUBBER-H has better mechanical properties such as tensile strength, elongation at break and abrasion resistance. Due to its saturated structure, the temperature range is considerably wider (from -25° C up to $+150^{\circ}$ C; for a short time up to $+170^{\circ}$ C). Because of its saturated structure, excellent ozone, weather and ageing resistance are existing.

Swelling in mineral oil is very small, but depends very much on the composition of the oil. Compatibility with highly additivated oils is better than that of ECORUBBER 1. Gas permeability is relatively high leading to an inclination to explosive decompression, through which parts of the material blast out.

good resistance	medium resistance	little to no resistance
Mineral oils and grease	Fuels with aromatic parts up	Aromatic hydrocarbons (toluene,
	to 40 % (unleaded fuels)*	benzene)
Aliphatic hydrocarbons (propane,	Biologically degradable	Chlorinated hydrocarbons
butane)	hydraulic fluids (shrinking,)	(trichloro- and perchloroethylene)
Water	additives may also cause	Brake fluids basing on glycol
Fire-resistant pressure fluids of	swelling - test necessary)	Fire resistant pressure fluids of the
type HFA, HFB, HFC		HFD group (phosphate ester)
Vegetable and animal oils and	Silicone oils and grease (oils	Polar solvents (acetone, ethyl-
fats	can cause shrinkage)	acetate)
Diesel fuel		Hot steam
Highly additivated oils		
(transmission hypoid oils)*		
Many diluted acids and bases,		
saline solutions at room		
temperature		
Crude oils (also hydrogen sulfide		
and amine containing)		

Resistance:

*test recommended

Application:

ECORUBBER-H is mainly used for applications where very good compression set together with high temperatures and highly additivated oils is called for in addition to good mineral oil resistance and high elasticity (substitute for fluororubber).

- e.g. Motor and transmission sealing for vehicles
 - Sealing elements for oil-field application (also for sour gas)

Main use: rotor seals O-rings special seals

Encl.: Data sheet

MATERIAL DATA SHEET

ECORUBBER-H (black)

Hydrogenated acrylonitrile-butadiene-rubber (HSN, H-NBR) marked with green dve

Property	Unit	Value	Standard
Durometer hardness	SHORE A	85 ± 5	DIN 53505
Density	g/cm ³	$1,22 \pm 0,02$	DIN 53479
Tensile strength	N/mm ²	≥ 18	DIN 53504
Elongation ab break	%	≥ 180	DIN 53504
100 % modulus	N/mm ²	≥ 10	DIN 53504
Compression set:			
100°C / 22h	%	≤ 22	DIN ISO 815
Tear strength	N/mm	30	DIN 53515
Rebound resilience	%	29	DIN 53512
Abrasion	mm ³	90	DIN 53516
Minimum service temperature	°C	-25	
Maximum service temperature	°C	+150	
Swelling behavior in ASTM Oil No.1			
acc. DIN 53521 70h/100°C:			
Change in durometer hardness	Shore A	+6	DIN 53505
Volume change	%	-8	DIN 53521
Swelling behavior in ASTM Oil No.3			
acc. DIN 53521 70h/100°C:			
Change in durometer hardness	Shore A	-8	DIN 53505
Volume change	%	+11	DIN 53521
Heat resistance, air 70h/100°C:			
Change in durometer hardness	Shore A	+5	DIN 53505
Volume change	%	0	DIN 53521
Swelling behavior in water			
70h/100°C:			
Change in durometer hardness	Shore A	0	DIN 53505
Volume change	%	+2,5	DIN 53521

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, July 1996 Dr. TS/He wdrubhe/werkstoffe

ECORUBBER 2 (FPM, FKM) – brown Improved Quality

The "new" grade of ECORUBBER 2 is a semi-finished material made of a bisphenolcrosslinked fluorocarbon rubber based on VITON[®] of Du Pont. With this new, improved quality ECONOMOS has made another step in machining seals out of highperformance materials. The new material is based on a VITON terpolymer of vinylidene fluoride, hexa-fluoropropylene and tetrafluorethylene, which is showing a lot of advantages compared to the existing grade of ECORUBBER 2, which was based on a copolymer of vinylidene fluoride and hexafluoropropylene. The most important improvement of this material is the higher chemical resistance especially against low moleculare polar chemicals as for example alcohols and aromatic hydrocarbons.

The new grade of ECORUBBER 2 is also belonging to the group of polar and saturated special elastomers and is colored in the same brown as the previous grade.

The new grade will replace the former product effective with the manufacturing date "week 01/00". The new grade is additionally signed with an "A" on the label. All the test results have proved that there is no problem to apply the new product in the same applications / aggregates, etc. like the old product, so there should be no troubles to replace former seals with the new material. Anyhow, you should not use both qualities for a serial production of seals for one shipment, because on the one hand seals of the same size are differing in the weight and on the other hand there should not be used materials of different specification within the same shipment of serial seals.

Characteristics:

The new material has – compared to the former quality – a slightly smaller tensile strength, but a significantly improved elongation at break which leads to a better performance of the seals in critical applications and also lowers problems during the installation process. Futhermore the new elastomer shows an increased tear strength which protects the seals against cutting during the installation process. The compression set of the material is slightly higher than that of the former grade, which, anyhow, does not influence the performance of the seals.

Due to the chemical composition of the new material and the higher fluorine content, the chemical resistance of the new grade is significantly higher, especially against low molecular polar organic chemicals like alcohols and also against aromatic hydrocarbons. This improved chemical resistance is demonstrated in fig. 1 and 2.

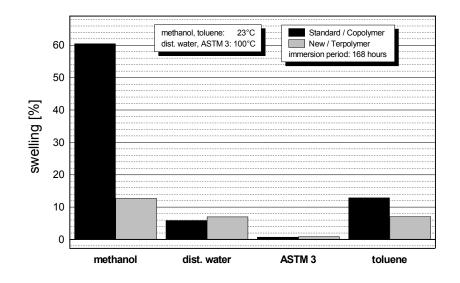


Fig. 1.: Volume change of ECORUBBER 2 "old" and "new" in various hydraulic fluids after an immersion period of 168 hours

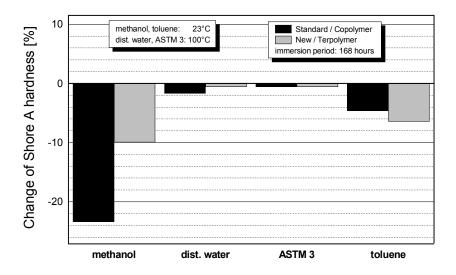


Fig. 2.: Change of Shore A hardness of ECORUBBER 2 "old" and "new" in various hydraulic fluids after an immersion period of 168 hours

Both pictures are clearly demonstrating the higher compatibility of the new grade, which has the same resistance in strongly affecting mineral oil like ASTM Oil No. 3 and water-based fluids and a significantly higher resistance in aromatic hydrocarbons and especially in low molecular polar medias like methanol, in which the volume change is only a fifth part of the old grade.

The new grade of ECORUBBER 2 is highly temperature and chemical resistant like the former grade. Operating temperatures range from -20° C up to $+200^{\circ}$ C (short exposure to approx. $+230^{\circ}$ C possible). Due to its saturated nature and its chemical structure ECORUBBER 2 has extraordinary ozone, weather and ageing resistance. Swelling in different media is very small, also in aromatic hydrocarbons. Gas permeability is very low and therefore it can be used in high vacuum.

ECORUBBER 2 is not inflammable. Radiation resistance is low.

good resistance	medium resistance	little to no resistance
Mineral oils and grease	Hot water	
Aliphatic hydrocarbons (propane, butane)	alcohols	Skydrol 500
Silicone oils and grease		Ammonia, amines, alkali
Vegetable and animal oils and fats		Overheated steam
Fuels, also premium blend petrol and	Fire-resistant fluids of	Low molecular organic acids
unleaded petrol with aromatic parts up to 40%	type HFA, HFB and HFC	(formic and acetic acid)
Sulphured and high aromatic oils		Hydrofluoric acid, chlorosulfonic acid
Fire-resistant pressure fluids of the HFD-S (chlorinated hydrocarbons) and HFD-R group (phosphate ester - certain types can have destructive effects)		Polar solvents (acetone, methylethyl-ketone, ethyl- acetate, dioxane)
Biologically degradable hydraulic fluids		Brake fluids basing on glycol
Aromatic hydrocarbons (benzene, toluene)		
Chlorinated hydrocarbons		
Diluted solutions and nonorganic acids		

Resistance:

Application:

ECORUBBER 2 is mainly used for applications where high temperatures and chemical stress can be expected. In addition to that, ECORUBBER 2 is used in hydraulic systems working with fire-resistant hydraulic fluids of the HFD group (except some phosphate esters) and as a preload element for H-ECOPUR seals in biologically degradable hydraulic fluids.

Main use: Special seals for the chemical industry and in heat engineering Shaft seals for high speed O-rings Hydraulic seals for HFD-fluids

MATERIAL DATA SHEET

ECORUBBER 2 (brown), "new grade", valid from prod-date 01/00

Fluoro-Rubber	<u>DIN / ISO</u>	<u>ASTM</u>
(Viton = Trade mark of DuPont)	FPM	FKM

Property	Unit	Value	Standard
Durometer hardness	SHORE A	83 ± 5	DIN 53505
Density	g/cm ³	$2,30 \pm 0,03$	DIN 53479
Tensile strength	N/mm ²	$\geq 8,0$	DIN 53504
Elongation at break	%	≥ 200	DIN 53504
100 % modulus	N/mm ²	≥ 5,0	DIN 53504
Compression set:			
175°C / 22h	%	≤ 20	DIN ISO 815
Tear strength	N/mm	21	DIN 53515
Rebound resilience	%	7	DIN 53512
Abrasion	mm ³	150	DIN 53516
Minimum service temperature	°C	-20	
Maximum service temperature	°C	+200	
Heat resistance 168h / 225°C:			
Change in durometer hardness	Shore A	+3	DIN 53505
Change in tensile strength	%	+24	DIN 53504
Change in elongation at break	%	-24	DIN 53504
Swelling behavior in ASTM Oil			
No.3 acc. DIN 53521 168h/100°C:			
Change in durometer hardness	Shore A	-1	DIN 53505
Volume change	%	+0,9	DIN 53521

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, Dec. 1999 Dr. TS/Fi wdrub2e/werkstoffe

ECORUBBER 3 (EPDM) - black

ECORUBBER 3 is a semi-finished product produced by ECONOMOS, made from peroxide crosslinked ethylen-propylene-diene rubber. This material belongs to the the nonpolar and saturated elastomers. ECORUBBER 3 is filled with carbon black and therefore **not** suitable for electric insulation.

Characteristics:

ECORUBBER 3 has good mechanical properties and can be used at a very wide temperature range of -50°C up to +150°C (hot steam up to 180°C). Due to its saturated structure ECORUBBER 3 is highly ozone, weather and ageing resistant. Because of its nonpolarity, ECORUBBER 3 is **not** resistant to mineral oils. Mineral oils and grease as well as animal and vegetable oils and fats cause intolerable swelling. Special use of plasticizers allows use in brake fluids basing on glycol (SL-DOT4). For this application, regional permission regulations have to be observed and the corresponding release is to be obtained (ECONOMOS is **not** in the position **to supply** them). Gas permeability is relatively high; radiation resistance is high.

Resistance:

good resistance	medium resistance	little to no resistance
Hot water and hot steam up to 180°C		Mineral oils and grease
Fire-resistant pressure fluids of the	Silicone oils and grease (oils	Fire-resistant pressure fluids of
HFD-R group without mineral oil	can cause shrinkage, test	the HFA, HFB and HFD-S
addition (phosphate ester)		(chlorinated hydrocarbons)
Detergents, soda lye, potash lye	recommended)	group
Many organic and anorganic bases		Aromatic and chlorinated
and acids		hydrocarbons
Saline solutions and oxidation		Aliphatic hydrocarbons
causing media		(propane, butane)
Fire-resistant pressure fluids of the		Vegetable and animal oils and
HFC group (glycol-water, if it is		fats
ensured that the fluid is free of		
mineral oil)		
Many polar solvents (e.g. alcohols,		Biologically degradable
ketones, esters, etc.)		hydraulic fluids
Skydrol 500 und 7000		
Brake fluids basing on glycol		

Application:

ECORUBBER 3 is mainly used for cleaning and washing technology where polar media are used (household detergents, soda lye, etc.) ECORUBBER 3 is the best suitable material for use in hot water and/or hot steam (lubrication with silicone grease).

Main use: special parts for washers piston and rod seals O-rings rotor seals (parts for motor vehicles)

MATERIAL DATA SHEET

ECORUBBER 3 (black) Ethylene-Propylene-Rubber (EPDM) peroxide-cured marked with blue dye		<u>DIN/ISO</u> EPDM	<u>ASTM</u> EPM
Property	Unit	Value	Standard
Durometer hardness	SHORE A	85 ± 5	DIN 53505
Density	g/cm ³	$1,22 \pm 0,02$	DIN 53479
Tensile strength	N/mm ²	≥ 12	DIN 53504
Elongation at break	%	≥ 110	DIN 53504
100 % modulus	N/mm ²	≥ 9	DIN 53504
Compression set:			
100°C / 22h	%	≤ 15	DIN ISO 815
Tear strength	N/mm	15	DIN 53515
Rebound resilience	%	38	DIN 53512
Abrasion	mm ³	120	DIN 53516
Minimum service temperature	°C	-50	
Maximum service temperature	°C	+150	
Heat resistance, air 70h/150°C:			
Change in durometer hardness	Shore A	+4	DIN 53505
Change in tensile strength	%	-15	DIN 53504
Change in elongation at break	%	-22	DIN 53504
Compatibility with			
SL-DOT 4 - 168h/100°C		0/1	DDL 53505
Change in durometer hardness	Shore A	0/-1	DIN 53505
Volume change	%	+2,1	DIN 53521

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples. Valid from the manufacturing date week 45/1998

> Judenburg, November 1998 Dr. TS/He wdrub3e/werkstoffe

<u>ECONOMOS</u>®

short

AUSTRIA

ECOSIL (MVQ) - reddish brown

ECOSIL is a semi-finished material from peroxide crosslinked silicone rubber produced by ECONOMOS. ECOSIL belongs to the group of polar and saturated special elastomers. ECOSIL is not filled with carbon black and suitable for electric insulation.

Characteristics:

As compared to other elastomers ECOSIL has lower regidity properties. It can be used at temperatures between -60° C and $+200^{\circ}$ C. Due to its saturated structure ECOSIL has excellent ozone, weather and ageing resistance.

Swelling in mineral oils is very low, but depends very much on the composition of the oil. Compatibility with high additivated oils is better than with ECORUBBER 1. Gas permeability is very high. ECOSIL is used as a sealing material in the pharmaceutical and food industry.

good resistance	medium resistance	little to no resistance
Motor and transmission oil of aliphatic nature, also sulphured oils		Aromatic mineral oils
Brake fluids basing on glycol		Fuels
Vegetable and animal oils and fats		Silicone oils and grease
Water up to 100°C		Aromatic hydrocarbons (toluene, benzene)
Fire-resistant pressure fluids of the HFD-R, HFD-S groups (phosphate esters and chlorinated hydrocarbons)		Low molecular chlorinated hydrocarbons (trichloroethylene)
Diluted saline solutions		Low-molecular esters and ethers
		Overheated steam above 120°C (stime steam sterilisation possible)
		Acids and alkalis

Application:

Ecosil is mainly used in cases where are no other alternatives because of high temperatures and chemical stress. Due to its low mechanical properties use should be reduced to static application.

Main use: special seals in the chemical and food industry rotor-seals for special use O-rings flange seals

Encl.: Data sheet

MATERIAL DATA SHEET

DIN

ECOSIL (reddish brown) Silicone Bubber

Silicone Rubber		<u>DIN</u> MVQ	<u>ASTM</u> VMQ
Property	Unit	Value	Standard
Durometer hardness	SHORE A	85 ± 5	DIN 53505
Density	g/cm ³	$1,52 \pm 0,03$	DIN 53479
Tensile strength	N/mm ²	≥7	DIN 53504
Elongation at break	%	≥ 130	DIN 53504
100 % modulus	N/mm ²	≥ 5	DIN 53504
Compression set:			
175°C / 22h	%	≤ 15	DIN ISO 815
Tear strength	N/mm	8	DIN 53515
Rebound resilience	%	44	DIN 53512
Abrasion			
Minimum service temperature	°C	-60	
Maximum service temperature	°C	+200	
Heat resistance, air 168h/225°C			
Change in durometer hardness	Shore A	+3	DIN 53505
Change in tensile strength	%	-10	DIN 53504
Change in elongation at break	%	-40	DIN 53504

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

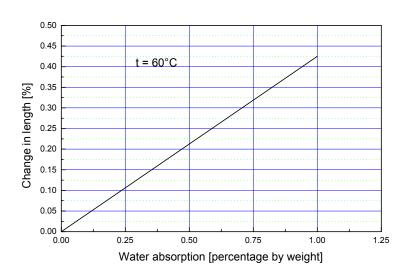
Judenburg, July 1996 Dr. TS/He wdsile/werkstoffe

ECOTAL (POM) - black

ECOTAL is a semi-finished material made of polyacetal (polyoxymethylene) produced by ECONOMOS and belongs to the group of technical thermoplastics. ECOTAL is coloured in black.

Characteristics:

ECOTAL is highly dimensionally stable, stiff and absorbs only little moisture. ECOTAL has a high creep resistance, i.e. the cold-flow tendency is low at temperatures below 80°C. ECOTAL shows excellent sliding and wear behaviour.


Sliding friction coefficient $\mu = 0.25 - 0.32$ (dry run against steel 16 MnCr5 - p = 0.5 kp/cm², V = 0.6 m/s/5h)

Standard value for pv-values (dry run):

v = 0.05 m/s	$pv = 0,11 (N.m/mm^2.s)$
v = 0.5 m/s	$pv = 0,1 (N.m/mm^2.s)$
v = 5 m/s	$pv = 0,07 (N.m/mm^2.s)$

It can be used at temperatures between -50° and $+100^{\circ}$ C (for short time up to $+130^{\circ}$ C). The use in cases where high stresses have to be maintained over long periods of time (retaining rings, clamping pieces, such as rotary shaft lip seals) the operationg temperature is to be limited to 80° C max. (stress relaxation, creeping).

ECOTAL has good electric properties and high resistance to chemicals and stress cracks. For linear change of dimensions due to water absorption see picture below.

Change of length when water is absorbed

Resistance:

good resistance	medium resistance	little to no resistance
Mineral oils and grease	Ketones	Strong acids and bases
Vegetable and animal fats and oils		Oxidizing agents
Fuels		
Alcohols		
Water		
Weak acids and bases		
Aliphatic and aromatic		
hydrocarbons		

Application:

ECOTAL is mainly used for applications where high hardness and low coefficients of friction are called for, i.e. guiding and support elements up to 100°C.

Main use: guide rings back-up rings special seal parts wipers for special applications valve parts/seats construction parts bearing shells/bushes

Encl.: Data sheet

MATERIAL DATA SHEET

ECOTAL (black) Polyoxymethylene (POM) (also known under "Polyacetale")

Property	Unit	Value	Standard
Density	g/cm ³	1,40	DIN 53479
Ball hardnessH 358/30	N/mm ²	135	DIN 53456
Durometer hardness	Shore D	82	DIN 53505
Yield stress	N/mm ²	62	DIN 53455
Elongation at yield	%	8 - 10	DIN 53455
Elongation at break	%	40	DIN 53455
Tensile-modulus	N/mm ²	2600	DIN 53457
Izod-Impact resistance			
at + 23°C	kJ/m ²	70	ISO 180
at - 30°C	kJ/m ²	40	ISO 180
Water absorption, 23°C,	%	0,8	DIN 53495/L2
satuation			
Coefficient of sliding	μ	0,17 bis 0,43	
Minimum service temperature	°C	- 50	
Maximum service temperature	°C	+100	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. These values are only tested on selected samples.

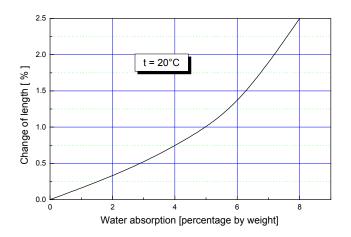
Judenburg, July 1996 Dr. TS/He wdtalewerkstoffe

ECONOMOS[®] AUSTRIA

ECOMID (PA6) - black

ECOMID is a semi-finished material delivered by ECONOMOS, made from cast polyamide and belongs to the group of technical thermoplastics. ECOMID is coloured in black. ECOMID is used instead of ECOTAL for diameters above 250 mm.

Characteristics:


ECOMID has very good dimensional stability, stiffness and hardness values, but relatively high moisture absorption. Moisture absorption leads to decrease of stability and volume change. ECOMID has good sliding functions.

Sliding friction coefficient $\mu = 0.35 - 0.42$ (dry run against steel 16 MnCr5-p = 0.5 kp/cm², V = 0.6 m/S/24h)

Standard values for pv - value (dry-run)

v = 0.05 m / s	$pv = 0.09 (N.m/mm^2.s)$
	$pv = 0.06 (N.m/mm^2.s)$
v = 5 m/s	$pv = 0.05 (N.m/mm^2.s)$

Suitable for temperatures between -40° C and $+100^{\circ}$ C (for short time up to 140° C). Good resistance to chemicals, poor electric properties due to high water absorption. The moisture content influences the mechanical characteristics. Hardness and stiffness decrease with increasing water content. Water absorption (8,5 % at saturation at 23°C) leads to dimensional changes. The dimensional change caused by water absorption cannot be exactly calculated, since influences of shape, production method and processing are very important (change in crystallisation). The Fig. below shows the values for changes of length when water is absorbed.

Resistance:

good resistance	medium resistance	little to no resistance
Mineral oils and grease	Chlorinated hydrocarbons	Acids and strong bases
Vegetable and animal oils and fats		
Aliphatic and aromatic hydrocarbons		
Esters		
Ketones		
Alcohols		
Weak bases		
Fuels		

Application:

ECOMID is mainly used for applications where high hardness (hardness loss at water absorption), low coefficient of friction and excellent gliding and wear properties are called for, i.e. for guide and back-up elements up to approx. 100°C. The use in watery media is not recommended because of the high water absorption of ECOMID.

Main use: guide rings back-up rings special seal parts valve parts/seats construction parts bearing shells/bushes

Encl.: Data sheet

ECOMID (black) casting polyamide 6

Property	Unit	Value	Standard
Density	g/cm ³	1,15	DIN 53479
Ball hardness, wet	N/mm ²	125	DIN 53456
Durometer hardness, wet	Shore D	77	DIN 53505
Yield stress, wet	N/mm ²	65	DIN 53455
Elongation at break, wet	%	120	DIN 53455
Tensile modulus, wet	N/mm ²	1800	DIN 53457
Impact resistance,			DIN 53453
Charpy, 23 °C, wet	kJ/m ²	no break	
Water absorption 23°C,	%	8,5	DIN 53495/12
Saturation			
Moisture absorption 23°C,	%	2,2	DIN 53714
saturation			
Coefficient of sliding	P=0,05	0,35 - 0,42	
<u> </u>	N/mm ²		
	V=0,6 m/s		
Minimum service temperature	°C	- 40	
Maximum service temperature	°C	+100	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. These values are only tested on selected samples.

Judenburg, July 1996 Dr. TS/He wdmide/werkstoffe

ECOFLON 1 (PTFE, virgin) - white

ECOFLON 1 is a semi-finished material made from a semi-crystalline thermoplastic on the chemical basis of polytetrafluoro-ethylene. Because of its structure, PTFE cannot be processed with the usual thermoplastic methods. ECOFLON 1 is not coloured and therefore white.

Characteristics:

ECOFLON 1 can be used at an extraordinarily wide temperature range (-200°C up to +260°C), excels with the lowest coefficient of friction ($\mu = 0.1$) of all plastics and is highly resistant to nearly all media. ECOFLON 1 has an antiadhesive surface, does not absorb moisture, and has very good electric properties. The plastic deformation depending on time (creeping) even under small stress (cold flow) has to be observed.

Resistance:

To almost all chemicals with the exception of elementary fluor, chlortrifluoride and melted alkali metals.

PTFE has the lowest radiation resistance of all plastics.

Dynamic use in water is not recommended (high wear).

Application:

ECOFLON 1 is mainly used in cases where no other material can be used because of thermal and chemical stress, and where antiadhesive surfaces and the lowest friction coefficients are called for. In seal engineering, the otherwise often unwanted cold flow is used (O-ring-back-up rings).

Main use: sealing elements for high and low temperature ranges gliding and supporting elements rotor seals O-rings construction parts for chemical and electrical purposes

Encl.: Data sheet

ECOFLON 1 (white) Polytetrafluorethylene (Virgin PTFE)

Property	Unit	Value	Standard
Donaity	g/cm ³	2,17	DIN 53479
Density Durometer hardness	Shore D	57	DIN 53505
Tensile strength	N/mm ²	27	DIN 53455
Elongation at break	%	300	DIN 53455
Tensile modulus	N/mm ²	750	DIN 53457
Impact resistance, Charpy	kJ/m ²	no break	DIN 54453
Coefficient of thermal expansion		_	
(25°C)	K ⁻¹	16.10 ⁻⁵	DIN 52328
Coefficient of sliding		0,08	
Coefficient of thermal	W/m.K	0,23	
conductivity			
Minimum service temperature	°C	- 200	
Maximum service temperature	°C	+ 260	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. These values are only tested on selected samples.

Judenburg, July 1996 Dr. TS/He wdflon1e/werkstoffe

ECOFLON 2 (PTFE with fillers) - grey

ECOFLON 2 is a semi-finished product made from filled semi-crystalline thermoplastic, on the chemical basis of polytetrafluoro ethylene. ECOFLON 2 is a PTFE filled with glass fibre and molybdenum sulfide. ECOFLON 2 is not coloured and its inherent colour is grey.

Characteristics:

ECOFLON 2 can be used at an extraordinarily wide temperature range (-200°C up to +260°C), has a very low friction coefficient and is very highly resistant to chemicals. ECOFLON 2 has an antiadhesive surface and does not absorb moisture. Because of the fillers deformation dependent on time (creeping) is smaller than with ECOFLON 1 (reduction of cold flow, higher extrusion resistance).

Resistance:

Basic material and glass fibres are resistant to most chemicals, only the MoS_2 can be attacked by several chemicals and a resistance test can be required. Not to be used for radiation application. Dynamic use in water is not recommended (high wear).

Application:

ECOFLON 2 is mainly used in applications with high thermal and chemical stress and in cases where antiadhesive surfaces, little friction and high extrusion and deformation resistance are called for and pure PTFE cannot be used.

Main use: sealing elements for lowest friction at high stress sliding and back-up elements sealing elements with elastic support (elastomers, springs)

Critical pv-values (p = power, v = speed)

v = 0.05 m/s	$pv = 0.032 (N.m/mm^2.s)$
v = 0,5 m/s	$pv = 0.039 (N.m./mm^2.s)^*$
V = 5 m/s	$pv = 0.05 (N.m./mm^2.s)^*$

* Temperature rising beyond 150°C, steel counter surface turns blue

Encl.: Data sheet

ECOFLON 2 (dark grey) PTFE filled with 15% glass-fibre and 5% molybdenum disulfide

Property	Unit	Value	Standard
Density	g/cm ³	2,25	ASTM D 1457
Durometer hardness	Shore D	60	DIN 53505
Tensile strength	N/mm ²	18	ASTM D 1457
Elongation at break	%	200	ASTM D 1457
Coefficient of thermal expansion (25°C)	K ⁻¹	11.10 ⁻⁵	DIN 52328
Deformation unter load, unloaded (14 N/mm², 24 h, 25°C)	%	4,3	
Coefficient of thermal conductivity	W/m.K	0,48	DIN 62612
Minimum service temperature	°C	- 200	
Maximum service temperature	°C	+ 260	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, July 1996 Dr. TS/He wdflon2e/werkstoffe

MATERIAL DATA SHEET

ECOFLON 3 (bronze-colored) PTFE filled with 40% bronze

Property	Unit	Value:	Standard
Density	g/cm ³	3,00	ASTM D 1457
Durometer hardness	Shore D	64	DIN 53505
Tensile strength	N/mm ²	22	ASTM D 1457
Elongation at break	%	280	ASTM D 1457
Coefficient of thermal expansion (25°C)	K ⁻¹	6.10 ⁻⁵	DIN 52328
Deformation unter load, unloaded (14 N/mm², 24 h, 25°C)	%	4,6	
Coefficient of thermal conductivity	W/m.K		DIN 62612
Minimum service temperature	°C	- 200	
Maximum service temperature	°C	+ 260	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, November 1998 Dr. TS/He wdflon3e/werkstoffe

MATERIAL DATA SHEET

ECOFLON 4 (black) PTFE filled with 25% carbon

Property	Unit	Value	Standard
Density	g/cm ³	2,10	ASTM D 1457
Durometer hardness	Shore D	65	DIN 53505
Tensile strength	N/mm ²	15	ASTM D 1457
Elongation at break	%	180	ASTM D 1457
Coefficient of thermal expansion (25°C)	K ⁻¹	9 . 10 ⁻⁵	DIN 52328
Deformation unter load, unloaded (14 N/mm², 24 h, 25°C)	%		
Coefficient of thermal conductivity	W/m.K	0,60	DIN 62612
Minimum service temperature	°C	- 200	
Maximum service temperature	°C	+ 260	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, November 1998 Dr. TS/He wdflon4e/werkstoffe

ECOFLON 5 (white) Polytetrafluorethylene (PTFE modified, special material with superior extrusion resistance)

Property	Unit	Value	Standard
Density	g/cm ³	2,16	DIN 53479
Durometer hardness	Shore D	59	DIN 53505
Tensile strength	N/mm ²	30	DIN 53455
Elongation at break	%	360	DIN 53455
Tensile modulus	N/mm ²		DIN 53457
Impact resistance, Charpy	kJ/m ²	no break	DIN 54453
Coefficient of thermal expansion			
(25°C)	K ⁻¹	12.10 ⁻⁵	DIN 52328
Coefficient of sliding		0,08	
Coefficient of thermal	W/m.K	0,35	
conductivity			
Minimum service temperature	°C	- 200	
Maximum service temperature	°C	+ 260	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. These values are only tested on selected samples.

Judenburg, March 1998 Dr. TS/He wdflon5e/werkstoffe

Special materials ECOPAEK (Polyarylether ketone)

ECOPAEK is a semi-finished material produced by ECONOMOS. It is made from polyarylether ketone and belongs to the group of partly crystalline thermoplastics from the line of high temperature resistant plastics. Types of Victrex Sales Ltd. (Victrex) are used.

Characteristics:

ECOPAEK is a polymer with high tensile strength, stiffness, high heat distortion temperature and good sliding and friction behaviour. As far as strength and stiffness are concerned, ECOPAEK exceeds most technical plastics especially at high temperatures. The torsional vibration test (see Fig. 1) provides a good insight to the mechanical and thermal behaviour of these materials.

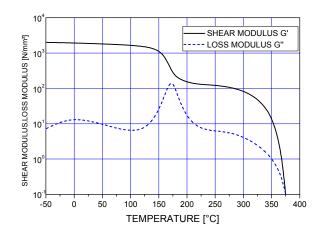


Fig. 1: Shear and loss modulus of ECOPAEK

The pronounced maximum of the loss modulus of ECOPAEK shows the glass transition temperature and thus the softening range of the amorphous parts, whereas the crystalline parts melt above 380°C, thereby ensuring dimensional stability and strength over a wide temperature range.Modulus data remain almost constant up to the glass transition temperature. Then, within a small range of temperature, modulus falls step by step to a new level, the value of which changes only slightly until melting temperature is reached.

The comparison of tensile strength data of ECOPAEK and ECOTAL underlines that these materials can still tolerate mechanical stress at high temperatures which could not be sustained by conventional plastics at room temperature. Figure 2 illustrates this comparision.

ECOPAEK has also a high impact resistance and ductility; just like the most thermoplastics it is sensitive to notches.

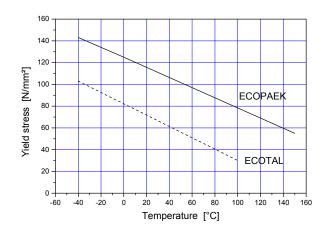


Fig. 2: Yield stress of ECOPAEK and ECOTAL as a function of temperature

ECOPAEK absorbs moisture from the air (0.25 % when stored at standard laboratory atmosphere according to DIN 50014-23/50-2). The maximum moisture absorption at storage in water of 23°C is 0.8 % after 90 days. Hydrolysis resistance is extraordinarily good (after 5000 hrs in water of 140°C no change of tensile strength and elongation at tear is found).

Heat distortion temperature of ECOPAEK measured according to DIN 53461 (ISO 75A) is at 170°C. Thermoxidative stability or thermal ageing resistance of ECOPAEK in air is excellent and one of the highest of all thermoplastics.

According to UL746B a temperature index of 250°C can be expected (temperaturetime limit - tensile strength after 40 000 hours is still 50 % of the initial value). In many cases the limit can be seen as maximum application temperature.

The behaviour of parts made from ECOPAEK in heat and under the influence of various chemicals depends on time and kind of the temperature influence as well as on the design of the parts.

Figure 3 shows stress-strain diagrams and indicates the tensile properties over wide range of temperatures.

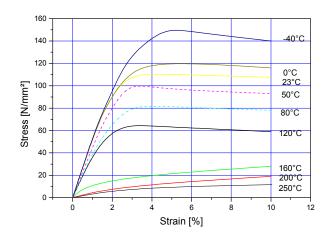


Fig. 3: Stress-strain diagram of ECOPAEK at different temperatures Seite 50 - Stand Februar 2001 - Werkstoffe/E

ECONOMOS[®] AUSTRIA

Resistance of ECOPAEK against creeping is extraordinarily high. Behaviour under constant static loads is shown by creep curves at 23°C, 100°C and 200°C. Values inbetween may be interpolated (see Fig. 4)

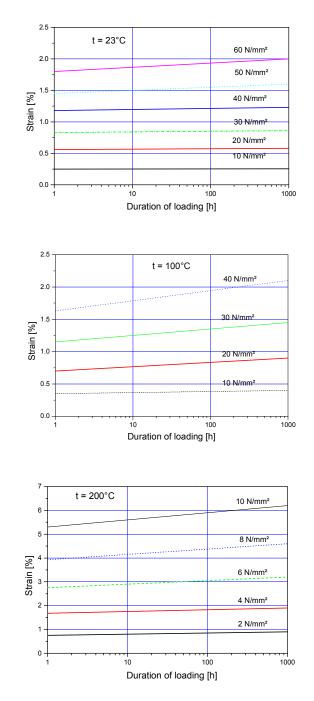


Fig. 4: Creep curves of ECOPAEK at various temperatures and loads

ECONOMOS[®] AUSTRIA

ECOPAEK is a good bearing material. Low friction coefficients and low wear rates make ECOPAEK interesting for tribiological applications. Figure 5 shows a comparision of the tribiological properties of ECOPAEK and ECOTAL determined with the peg- and disc-apparatus under defined conditions.

	Coefficient of sliding friction µ		Rate of wear ΔS (μm / km)	
	Surface temperature °C		Surface temperature °C	
	40	120	40	120
ECOPAEK	0,56	0,51	2,4	7,0
Ecotal	0,45		30	

Coefficient of sliding friction μ and rate of wear ΔS

Pressure: 1 N/mm² Rubbing velocity: 0.5 m/sec

Mating steel surface: 100 Cr6/800 HV Surface roughness: 2.5 μ

Fig. 5: Tribiological properties of ECOPAEK and ECOTAL

The good electric properties combined with good mechanical properties and excellent heat resistance and fire behaviour allow a wide range of applications in electronics and electrical engineering.

Resistance:

good resistance	medium resistance	little to no resistance
Mineral oils and grease	Concentrated water-free acids	Concentrated sulphuric acid
Silicone oils and grease	Oxidizing acids	Concentrated nitric acid
Glycols		Some halogenated hydrocarbons
Fuels		
Chlorinated hydrocarbons		
Brake fluids		
Alcohols		
Esters, ethers, ketones		

Application:

ECOPAEK is mainly used where high temperatures, high chemical and mechanical requirements do not allow the use of traditional technical plastics.

Main use: special construction parts guide and back-up elements seals and parts for oil field applications

Encl.: Data sheet Seite 52 - Stand Februar 2001 - Werkstoffe/E

E C O P A E K - POLYARYLETHERKETONE (cream-colored)

Property	Unit	Value	Testspecification
Density	g/cm ³	1,32	ISO R 1183
Durometer hardness	Shore D	86	DIN 53505
Yield stress	N/mm ²	97	ISO R 527
Elongation at yield stress	%	4,9	ISO R 527
Elongation at break	%	> 50	ISO R 527
Tensile modulus	N/mm ²	3600	ISO R 527
Impact resistance, Charpy + 23°C, - 40°C	kJ/m ²	no break	DIN 53453
Impact resistance notched, Charpy + 23°C	kJ/m ²	8,2	ISO 179
Dimensional stability at high temperature HDT/A	°C	152	ISO R 75
Dimensional stability at high temperature HDT/B	°C	> 250	ISO R 75
Maximum service temperature	°C	260	
Water absorption 24h / 23°C	%	0,5	ISO R 262 A

The values indicated are based on data determined for samples of the corresponding standards; when transfering these data to the corresponding semifinished product some restrictions should be observed.

Judenburg, August 1996 Dr.TS/He wdbpaeke / werkstoffe

SPECIAL MATERIALS

ECOFLAS (TFE/P, AFLAS®)

ECOFLAS is a semi-finished material produced by ECONOMOS. It is made on the chemical basis of tetrafluoroethylene-propylene-rubber (AFLAS®).

This material is chemical related to fluorocarbon-rubber. ECOFLAS has a lower fluorine content than ECORUBBER 2 but for certain applications it exhibits a better chemical resistance. The material is black coloured and can be manufactured in certain dimensions as a special material.

Characteristics:

Compared to FPM-elastomers ECOFLAS shows slightly higher tensile strength and a quite similar heat resistance. The restistance of ECOFLAS to mineral oils is not as high compared to ECORUBBER 2, but better than the mineral oil restistance of ECORUBBER 1 and ECORUBBER-H. Generally ECOFLAS can be seen as a combination of ECORUBBER 2 and 3. This results in an outstanding resistance to hot water and hot steam. The resistance to sour gas and amines, brake fluids (based on glycol, mineral oil or silicon oil) and fire-resistant hydraulic fluids is excellent as well. ECOFLAS shows in contrast to ECORUBBER 2 a good radiation resistance.

Good resistance	Medium resistance	Little to no resistance
Mineral oils and greases		Aromatic hydrocarbons
Steam and hot water		Chlorinated hydrocarbons
Sour gas		Ethers
Alcohols, amines		Low-molecular weight organic
		acids and acetates
Acids and bases		Coolants
Fire-resistant hydraulic fluids		
(categories HFA, HFB, HFC		
and HFD)		
Brake fluids on glycol basis		

Resistance:

Applications:

Generally for seals and construction parts, which have to withstand an extensive exposure to chemicals.

For a great number of applications which can be found in oil and gas exploration and chemical industry.

ASTM

MATERIAL DATA SHEET

DIN / ISO

ECOFLAS (black)

Tetrafluoroethylene-Propylene Rubber (TFE/P, ALFAS)

		TFE/P	TFE/P
Property	Unit	Value	Standard
Durometer hardness	SHORE A	83 ± 5	DIN 53505
Density	g/cm ³	1,60	DIN 53479
Tensile strength	N/mm ²	13	DIN 53504
Elongation at break	%	220	DIN 53504
100 % modulus	N/mm ²	8	DIN 53504
Compression set: 175°C / 22h	%	29	DIN ISO 815
Tear strength	N/mm	19	DIN 53515
Rebound resilience	%		DIN 53512
Abrasion	mm ³	110	DIN 53516
Minimum service temperature	°C	-10	
Maximum service temperature	°C	+200	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, Dezember 2000 Dr. TS/He wdflas/werkstoffe

SPECIAL MATERIALS

ECOTEX

ECOTEX is a compound based on a thermosetting polyester resin and reinforced with fabric inlays. Due to the addition of graphite the material shows very good characteristics in respect to the tribological requirements of bearing materials in gliding systems.

Characteristics:

ECOTEX shows high compressive strength and outstanding friction and wear properties. Therefore ECOTEX is very well suited for guide rings and bearing bushes. Due to the very low absorption of moisture, ECOTEX is particularly suitable for use in water and media containing water (swelling in water < 0,1 %).

Additional to its high form stability and damping characteristics ECOTEX shows very good sliding and emergency running properties in systems lacking in lubrication. The textured surface of the material provides a good embedding ability of dirt particles through which a scratching or damaging of the cylinder bore by system contamination is prevented.

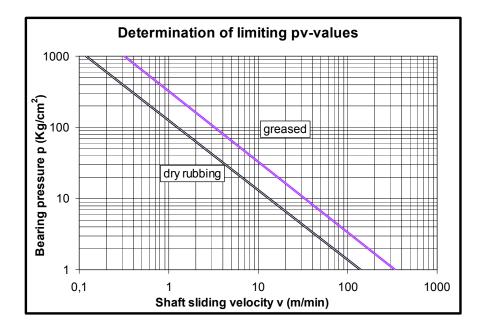
Dynamic coefficient of friction:

Lubricant	Dry	water*	HFA fluids*	grease*	Oil*
μ	0,18-0,21	0,01	0,019	0,013	0,02

(running against 18/8 stainless steel; bearing pressure p = 15,4 N/mm²; speed v = 2,25 m/s) * hydrodynamic conditions

Guideline for load-bearing capacity:

Use as guide ring/linear guidance:


permissible compressive strength under dynamic load (T = 60° C): $p_{max} = 90 \text{ N/mm}^2$ permissible speed (linear movement): $v \le 1 \text{ m/s}$

The nonlinear distribution of pressure between rod and guide ring is already considered at the indicated value for p_{max} . A safety factor of v=3 is recommended for the calculation of the guide ring width.

Use as a slide bearing for rotating applications:

The maximum load rating of a bearing in a rotary application is limited by the amount of heat generated, within the bearing. Many factors influence the amount of heat generated within a system, therefore the listed pv-values give only a rough guideline for the maximum bearing load.

ECONOMOS[®] Austria

In some cases the calculated pv-values might be exceeded. For special requirements please contact our technical department for support.

Resistance:

good resistance	medium resistance	Little or no resistance
Mineral oils and grease		Strong acids and bases
Fuels		Oxidising agents
Water		Ketones
Many diluted acids and bases		

Application :

Due to its high compressive strength and outstanding friction and wear properties, ECOTEX will mainly used for guide rings and bearing bushes. Guide rings exceeding a diameter of 200mm can be cut to the required length from ECOTEX tape. ECOTEX is therefore a suitable substitute for ECOMID guide rings.

Main use:

- guide rings exceeding a diameter of 200mm
- special seal parts
- construction parts
- bearing shell / bushes

ECOTEX

polyester resin + polyester fabric + graphite filler

Property	Unit	Value	Standard
Density	g/cm ³	1,25	
Tensile strength	N/mm ²	90	
Compressive strength static, normal to laminate,		345	
fully comprehended	N/mm ²	97	
parallel to laminate			
Tensile modulus	N/mm ²	3200	
(tensile test)			
Moisture absorption	%	< 0,1	
(saturation)			
Minimum service	°C	- 40	
temperature			
Maximum service	°C	130	
temperature		(100)	
(in water)			
Hardness Rockwell M		100	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

SPECIAL MATERIALS

S-ECOPUR – 57 D

S-ECOPUR-57 D is a thermoplastic polyurethane elastomer (TPU), which has been optimised in regard of the tribological characteristics (friction and wear), achieved by an addition of a synergetic combination of solid lubricants.

Compared to the S-ECOPUR standard material S-ECOPUR-57 D has a higher hardness and therefore further improved sliding properties. Because of the higher hardness the material can be used for composite and glyd-ring seals (e.g. S09 and K08); sealing elements of these types are usually performing better than comparable PTFE seals in terms of wear and leakage.

Characteristics:

The material shows similar tensile strength and elongation at break but a clearly higher 100 %- modulus compared to the standard S-ECOPUR quality. Also it has a superior tear strength, whereas the compression set is on the same level.

Furthermore S-ECOPUR-57 D has a better extrusion resistance than the standard material and therefore sealing elements of this material can be used at higher pressures, assuming the same profiles are used.

Chemical Resistance:

Compatibility and swelling behaviour is similar to that of the standard grade.

Judenburg, Dezember 2000 Dr.S/Fi SECOPUR57D

MATERIAL DATA SHEET

S-ECOPUR - 57 D (grey/black)

Self-lubricated thermoplastic polyurethane-		
elastomer (TPU) with lubricating agents for	DIN	<u>ASTM</u>
friction-reduced applications	YAU	YAU

Property	Unit	Value	Standard
Durometer hardness	SHORE A	96	DIN 53505
Durometer hardness	SHORE D	57	DIN 53505
Density	g/cm ³	1,26	DIN 53479
Tensile strength	N/mm ²	45	DIN 53504
Elongation at break	%	350	DIN 53504
100 % modulus	N/mm ²	24	DIN 53504
Compression set:			
70°C / 24h, 20 % compression	%	24	
Compression set:			
100°C / 24h, 20 % compression	%	30	
Compression set:			
70°C/70h, 10 % compression	%		DIN ISO 815
Tear strength	N/mm	160	DIN 53515
Rebound resilience	%		DIN 53512
Abrasion	mm ³	20	DIN 53516
Minimum service temperature	°C	-20	
Maximum service temperature	°C	+110	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. These values are only tested on selected samples.

Judenburg, December 2000 Dr. TS/Fi wdspur57D/werkstoffe

SPECIAL MATERIALS

ECORUBBER 3 – 85 A – w – FG (white)

This material is made of a sulfur-cured ethylene-propylene-diene rubber which is suitable for applications in the food industry. It is white coloured and has the same range of hardness as ECORUBBER 3.

Characteristics:

Compared to the standard material this special material shows similar tensile strength and elongation at break, the 100 % modulus value is smaller and the compression set is on a slightly higher level. Its structure causes a slightly decreased processibility in machining. The material possesses the same chemical resistance as the standard material, but is not suitable for the use with brake fluids based on glycol.

This special material is designed according the FDA- and BGA-guidelines (see also enclosure) and therefore suitable for food applications.

good resistance	medium resistance	little to no resistance
Hot water and hot steam up to 180° C		
Fire-resistant pressure fluids of the	Silicone oils and	Aliphatic hydrocarbons
HFD-R group without mineral oil	greases (oils can	(propare, butane, benzine)
addition (phosphate ester)	cause shrinkage,	
	test	
	recommended)	
Detergents, soda lye, potash lye		Mineral oils and greases
Many organic and anorganic bases		Aromatic and chlorinated
and acids		hydrocarbons
Saline solutions and oxidation		Vegetable and animal oils and
causing media		greases
Fire-resistant pressure fluids of the		Biodegradable hydraulic fluids
HFC group (glycol-water, if it is		
ensured that the fluid is free of		
mineral oil)		
Many polar solvents (e.g. alcohols,		Fire-resistant hydraulic fluids
ketones, esters, etc.)		of group HFA, HFB and HFD-S
Skydrol 500 and 7000		(chlorinated hydrocarbons)
		Break fluids on glycol basis

Resistance:

Applications:

Seals for the food industry free of greases and oils

ECORUBBER 3 – 85A – w – FG (white)

Ethylene-Propylene-Rubber (EPDM) for food applications

		<u>DIN/ISO</u> EPDM	<u>ASTM</u> EPM
Property	Unit	Value:	Standard
Durometer hardness	SHORE A	85 ± 5	DIN 53505
Density	g/cm ³	1,26	DIN 53479
Tensile strength	N/mm ²	12	DIN 53504
Elongation at break	%	280	DIN 53504
100 % modulus	N/mm ²	5,5	DIN 53504
Compression set: 100°C / 22h	%	33	DIN ISO 815
Tear strength	N/mm	28	DIN 53515
Rebound resilience	%		DIN 53512
Abrasion	mm ³	120	DIN 53516
Minimum service temperature	°C	-50	
Maximum service temperature	°C	+150	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

> Judenburg, Dezember 2000 Dr. TS/He wdrub3-85A-e/werkstoffe

ECONOMOS[®] AUSTRIA

SPECIAL MATERIALS

ECORUBBER-H-85A-b-LT (HNBR) - black

ECORUBBER-H-85A-b-LT is a peroxide-cured hydrogenated nitrile rubber (HNBR) with outstanding properties at low temperatures. The material is produced by ECONOMOS in a hardness of 83 ± 5 Shore A and is colored black.

Properties:

The outstanding cold flexibility of this hydrogenated nitrile rubber makes it useful for applications down to minus 40°C e.g. as sealing elements for the oil-field exploration or in motors and other equipment working in arctic climate.

Tensile strength and elongation at break are nearly at the same level as our standard material ECORUBBER-H, 100%-modulus is on a lower level due to the reduced hardness; compression set is nearly on the same level.

The cold flexibility of the material was characterised by using thermoanalytical methods like DSC (differential scanning calorimetry) and DMA (dynamical mechanical analysis).

A comparison of the low temperature properties of ECORUBBER-H-85A-b-LT and two further HNBR grades, standard ECORUBBER-H and a competitor material for low temperature use, is shown in figure 1 and 2.

ECORUBBER-H-85A-b-LT shows an appr. 3 to 4°C lower dynamical glass temperature TG (the dynamical glass temperature measured as the peak maximum ot the loss modulus is the characteristic value for the lower working temperature for dynamical applications) and app. 10°C lower than the standard grade. This difference is more strongly developed by the glass temperature measured by differential scanning calorimetry (Fig. 2).

Regarding the fluid compatibility slight changes in swelling characteristics in mineral oil is to be expected; in water-based fluids the volume change seems to be similar to the standard grade (Fig. 3 and 4).

AUSTRIA

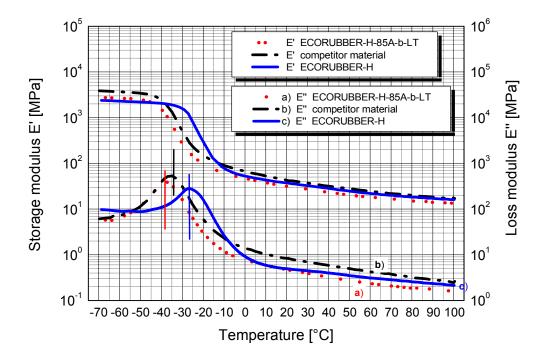


Fig. 1: Storage and loss modulus of various HNBR grades vs. temperature

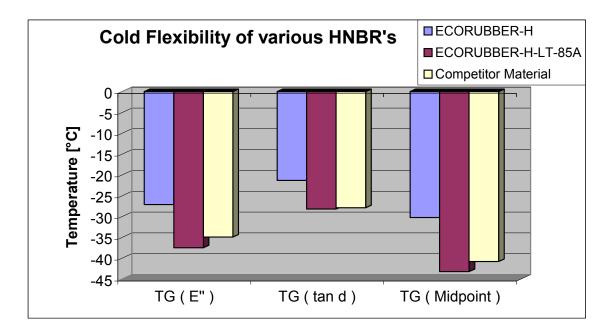


Fig. 2: Glass transition temperatures of HNBR grades characterised by different test methods

Seite 64 - Stand Februar 2001 - Werkstoffe/E

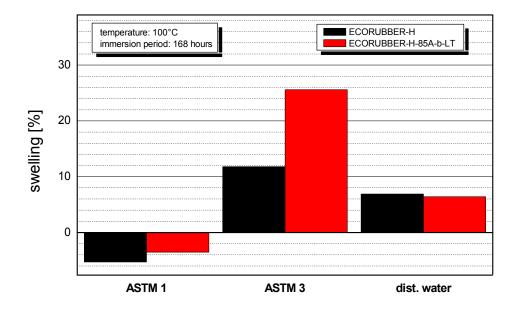


Fig. 3: Volume change of HNBR grades in various fluids

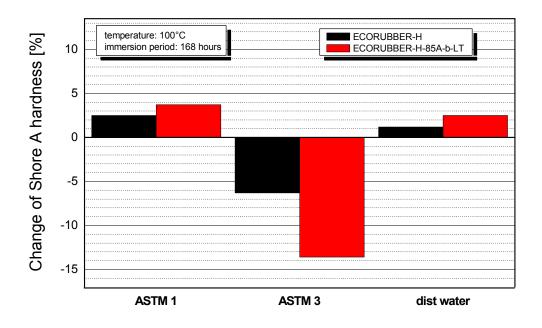


Fig. 4: Change of hardness of HNBR grades in various fluids Seite 65 - Stand Februar 2001 - Werkstoffe/E

ECORUBBER-H-85A-b-LT (black, low temperature grade)

Hydrogenated acrylonitrile-butadiene-rubber (HSN, H-NBR)

Property	Unit	Value	Standard
Durometer hardness	SHORE A	83 ± 5	DIN 53505
Density	g/cm ³	$1,21 \pm 0,02$	DIN 53479
Tensile strength	N/mm ²	18	DIN 53504
Elongation at break	%	180	DIN 53504
100% Modulus	N/mm ²	9,0	DIN 53504
Compression set:			
100°C / 22h	%	23	DIN ISO 815
Tear strength	N/mm	15	DIN 53515
Rebound resilience	%		DIN 53512
Abrasion	mm ³	94	DIN 53516
Minimum service temperature	°C	-40	
Maximum service temperature	°C	150	

The mentioned data are only valid for test pieces of the corresponding ISO, DIN and ASTM standards and cannot be directly related to gaskets and joints. The values which are marked with the symbols greater than (\geq) and smaller than (\leq) are nominal values and must be fulfilled of each batch. All values which are not marked are typical values which are only tested on selected samples.

Judenburg, July 2002 Dr. TS wdrubh-85A-b-LT./werkstof

